• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    OBLIQUE TOWING TEST AND MANEUVER SIMULATION AT LOW SPEED AND LARGE DRIFT ANGLE FOR DEEP SEA OPEN-FRAMED REMOTELY OPERATED VEHICLE*

    2012-06-27 05:54:10FANShiboLIANLian

    FAN Shi-bo, LIAN Lian

    State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China, E-mail: fredtalent@sjtu.edu.cn

    REN Ping

    Chinese Underwater Technology Institute, Shanghai Jiao Tong University, Shanghai 200231, China

    HUANG Guo-liang

    State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

    OBLIQUE TOWING TEST AND MANEUVER SIMULATION AT LOW SPEED AND LARGE DRIFT ANGLE FOR DEEP SEA OPEN-FRAMED REMOTELY OPERATED VEHICLE*

    FAN Shi-bo, LIAN Lian

    State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China, E-mail: fredtalent@sjtu.edu.cn

    REN Ping

    Chinese Underwater Technology Institute, Shanghai Jiao Tong University, Shanghai 200231, China

    HUANG Guo-liang

    State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

    This article presents the newly designed oblique towing test in the horizontal plane for the scaled model of 4 500 m deep sea open-framed Remotely Operated Vehicle (ROV), which is being researched and developed by Shanghai Jiao Tong University. Accurate hydrodynamics coefficients measurement is significant for the maneuverability and control system design. The scaled model of ROV was constructed by 1:1.6. Hydrodynamics tests of large drift angle were conducted through Large Amplitude Horizontal Planar Motion Mechanism (LAHPMM) under low speed. Multiple regression method is adopted to process the test data and obtain the related hydrodynamic coefficients. Simulations were designed for the horizontal plane motion of large drift angle to verify the coefficients calculated. And the results show that the data can satisfy with the design requirements of the ROV developed.

    Remotely Operated Vehicle (ROV), scaled model, large drift angle, multiple regression, Large Amplitude Horizontal Planar Motion Mechanism (LAHPMM)

    Introduction

    Remotely Operated Vehicle (ROV) has been applied in many fields, such as ocean resource exploration and exploitation, military defense and protection, seafloor geography mapping[1-3]. It has become an important assistant tool to accomplish different underwater missions. However, the lack of experimentally verified mathematical models, which is the critical request for reliable control system design and maneuverability, has been obstructing the research and development of model-based motion controlling technology. Accordingly, the determination and analysis of hydrodynamics forces and moments on model based control systems through experiment and theoretical calculation, are of great significance for the structure designing and parameter selections for underwater vehicles[4-5].

    Generally, deep sea underwater vehicles operate some missions in the underwater space without considering the effects of free surface and wave resistance[6,7]. When moving under seafloor, the vehicles could only be affected by viscous hydrodynamics and inertial forces. For the calculation of the inertial forces, the empirical formula or potential flow theory can be used in researches besides the Planar Motion Mechanism (PMM) and vibration test. Currently, the following methods are usually adopted to compute the viscous forces: the constrained or free model test, CFD, system identification and empirical estimation[8-11]. System identification approach considers the performance of experimental runs with the propelled prototype, and can make full use of the data of onboard sensors. The method is cost-effective and with high repeatability[12,13]. CFD is mainly aimed at the vehicles with streamline configuration. However, itgreatly limits the application into the vehicles with irregular open-framed structure. The model test through using PMM is still the most effective method although it needs high cost and long time.

    Fig.1 Layout and structure of Open-framed ROV

    This article makes an effort to the nonlinear hydrodynamics coefficients test for the ROV developed by using towing mechanisms. The ROV developed is a deep sea open-framed ROV, and its maximum operation depth is 4 500 m. Figure 1 shows the configurations and layout of the real ROV body. There are some unique features about its structure and layout of the ROV, which can be summarized as follows:

    (1) The vehicle manufactured has the features of open-framed body structure and rectangle shape.

    (2) The sway damping is so large that the relating coefficients with p can’t be tested by current devices.

    (3) The vehicle will mainly operate in the horizontal planar, while the motion and maneuverability in the vertical planar has only small attack angles.

    According to the above characteristics and the requirements of operation, such as maneuvering under the whole range of drift angles, we manufacture the scaled model by 1:1.6. The test procedures at low speed and large drift angles by using Large Amplitude Horizontal Planar Motion Mechanism (LAHPMM) are proposed. And the test data are processed through multiple regression method to figure out the related nonlinear hydrodynamics coefficients. Matlab is employed to simulate the horizontal plane motion of large drift angle at low speed.

    1. Test model of open-framed ROV

    As is illustrated in Fig.2, the ROV model was constructed by 1:1.6 according to the layout of hydraulic power systems, valves, manipulators, thrusters. The buoyancy material of model is made of woods, and the bottom chassis is made of steel. We only manufactured ROV itself without considering umbilical cable and sampling chassis. The thrust direction between the x-axis is 35oin the horizontal plane, and the vertical thrust between the z-axis is 10o. And the main parameters of ROV model are summarized in Table 1, including body size of the model, mass in air, and displacement of volume.

    Fig.2 Test model of open-framed ROV

    Table 1 Parameters of ROV model

    Fig.3 Hydrodynamics components of oblique motions

    2. Oblique towing test at low speed and large drift angle

    2.1 Test prnciples

    The drift angle (β=atan(-v,u)) will be changed to large extent due to the very slow rotation motions of underwater vehicle, and the forces affected byposition will also be altered. To obtain the hydrodynamics model of oblique motions for the vehicle, the fluid dynamics are divided into the following components: ideal fluid force (munk), linear lift (Lv), induced drag (Dst), transverse flow resistance (-Yc), longitudinal resistance (Xf) and asymmetrical lift along longitudinal direction (Xlas). Figure 3 illustrates the forces acted on the vehicle in detail.

    According to the above forces, the fluid dynamics model of underwater vehicles at low speed and

    where V is the resultant velocity, and Cx, Cy,Cnare fluid dynamics coefficients, which are usually the functions of β in the towing test results.

    Equations (4)-(6) can be transformed as the following dimensionless formulas:

    Submitting Eqs.(1)-(3) into Eqs.(7)-(9), we may obtain the following equations:

    For the convenient of the multiple regression calculation, Eq.(17) can be rewritten as

    It is assumed that Y is the predictive objective,which is determined by multiple factors,x1,x2,…, xm. It is also hypothesized that the effective factors has the linear relations with Y, thus, we can establish the following multiple regression model

    Submitting the ith observed value of predictive objective and effective factors, yi,x1i,x2i,…,xmi, into Eq.(19), respectively. Then

    where eiis the regression error, and n is the observed number.

    Equation (20) can be expressed as a matrix form

    where

    The coefficients could mainly be figured out by observed value for the multiple linear regression. According to the least square method and extremum principle matrix, we have

    According to the above algorithm, the nonlinear hydrodynamics coefficients could be obtained by using the computer.

    Under low speed and large drift angles, the longitudinal resistance affects the underwater vehicle very slightly when moving at oblique direction. So we make the following assumption

    Additionally, the purely resistance test along the x-axis were conducted to obtain the coefficient, Xu'u. Here, we mainly discuss Y(.)and N(.).

    2.2 Test procedures

    The towing test was carried out in the ship model towing tank of Science Research Center of Marine Industry at Shanghai, which is the member of ITTC, and the tank dimensions is as follows: length 198 m× width 10 m×depth 4 m. LAHPMM is adopted for the towing tests, and the device is shown as Fig.4.

    Fig.4 Large Amplitude Horizontal Planar Motion Mechanism (LAHPMM)

    Table 2 Test conditions of oblique towing test

    Fig.5 Oblique towing test by 30o

    The model was installed in two ways when testing, including upright and side. And four resistance sensors are installed on the model along the xaxis and y-axis, the measuring range of x-axis and y-axis is 1 000 N and 700 N, respectively. The water temperature t=16oC , and Table 2 illustrates the testing parameters.

    Fig.6 Oblique towing test by 90o

    Fig.7 Oblique towing test by 180o-

    ROV model was fixed on the two trestles of the tow truck. The tests were carried out at designed speed, u=1m/s. Figure 5 shows the oblique towing test of the ROV model at β=30o, Figure 6 shows the oblique towing test of the ROV model installed by side at β=90o, Figure 7 shows the oblique towing test of the ROV model at β=-180o.

    2.3 Test results

    During the oblique test with large drift angles, the towing speed keeps at 1 m/s. And the forces and moments are obtained through resistance sensors, and the tested discrete results of Y and N are illustrated in Figs.8 and 9, respectively. Through examining the original results, we can see that Y arrives at the maximum value whenβ=±90o, while N arrives at the maximum value when β=±45oand β=±120o. Meanwhile, the rotation hydrodynamics induced by instantaneous angular rate alters not very obviously.

    Fig.8 Test result of Y

    Fig.9 Test result of N

    Fig.10 Fitting curve of lateral force

    The test results of Y and N are addressed and analyzed by the multiple regression method employed, Figs.10 and 11 give the related fitting curve of Y and N, respectively. Through seeing the curves, the relationship between Y , N andβ has high nonlinear features, and in the range of β=0o±180o, the force and moment are similar with sine distribution. And it is verified that the dynamics model and multiple regression method employed can satisfy the correction of the tested data.

    The nonlinear hydrodynamics coefficients for theROV model at low speed and large drift angles are figured out, shown as Table 3. And the coefficients obtained will be used to design the motion controller in the applications of ROV operations.

    Fig.11 Fitting curve of yawing moment

    Table 3 Nonlinear hydrodynamics coefficients of ROV

    Fig.12 Simulation results of linear and angular speed

    3. Maneuvering simulation

    Matlab and GNC tool box were employed to simulate the dynamics model according to the test results at low speed and large drift angles[17,18]. The simulation designed mainly includes linear and angular speed control, drift angle response and rotation trajectory. The original thrust force 1 500 N along the axis is set as the input of the simulating model, the time step is 0.1 s and the initial speed is 1 m/s.

    Fig.13 Simulation results of drift angle

    Fig.14 Simulation results of rotation trajectory on horizontal plane

    Figure 12 gives the speed control results in the horizontal plane, Fig.13 shows the response trend of the drift angles, and Fig.14 illustrates the trajectory that ROV moves along. The results demonstrate the ROV has good stability and maneuverability, and the model can be used to design motion controller:

    (1) Linear and angular speed control simulation.

    (2) Drift response simulation.

    (3) Trajectory simulation on horizontal plane.

    4. Conclusion

    The nonlinear hydrodynamics coefficients for the ROV model at low speed and large drift angles have been determined through the model test. The scaled model of 4500 m deep sea open-framed remotely operated vehicle is manufactured, which is researched and developed by Shanghai Jiao Tong University. The oblique towing tests are conducted through LAHPMM at designated low speed and the whole range drift angles. Multiple regression method is adopted to address the testing data and obtain the related hydrodynamic coefficients. Simulations are designed for themaneuvering of large drift angle to verify the coefficients calculated. And the simulating results show that the data can meet the designing requirements of the ROV developed. We only manufactured the ROV model itself without considering the cable[19,20]. Accordingly, for the future application and operation, we will focus on the effects of the cable and select the appropriate algorithm to guarantee the good maneuverability and control capability.

    [1]RATMEYER V., RIGAUD V. Europe’s growing fleet of scientific deepwater ROVs: Emerging demands for interchange, workflow enhancement and training[C]. Proc. IEEE OCEANS, Bremen, Germany, 2009.

    [2]BOWEN A. D., YOERGER D. R. and TAYLOR C. et al. The nereus hybrid underwater robotic vehicle for global ocean science operations to 11 000 m depth[C]. Proc. IEEE/MTS OCEANS Conf. Quebec, Canada, 2008.

    [3]INOUE T., SUZUKI H. and KITAMOTO R. et al. Hull form design of underwater vehicle applying CFD (Computational Fluid Dynamics)[C]. Proc. IEEE OCEANS. Sydney, Australia, 2010.

    [4]WALLACE M. B., MAX S. D. and EDWIN K. Depth control of remotely operated underwater vehicles using an adaptive fuzzy sliding mode controller[J]. Robotics and Autonomous Systems, 2008, 56(3): 670-677.

    [5]WANG Bo, WAN Lei and XU Yu-ru et al. Modeling and simulation of a mini AUV in spatial motion[J]. Journal of Marine Science and Application, 2009, 18(1): 7-12.

    [6]GUO Bing-jie, STEEN Sverre. Evaluation of added resistance of KVLCC2 in short waves[J]. Journal of Hydrodynamics, 2011, 23(6): 709-722.

    [7]HU Zhi-qiang, LIN Yang and GU Hai-tao. On numerical computation of viscous hydrodynamics of unmanned underwater vehicle[J]. Robot, 2007, 29(2):145-150.

    [8]ZHANG Yan, XU Guo-hua and XU Xiao-long et al. Measuration of the hydrodynamics coefficients of the microminiature open-shelf underwater vehicle[J]. Shipbuilding of China, 2010, 51(1): 63-72(in Chinese).

    [9]AVILA J. P. J., ADAMOWSKI J. C. Experimental evaluation of the hydrodynamic coefficients of a ROV through Morison’s equation[J]. Ocean Engineering, 2011.

    [10]SUN Yu-shan, LIANG Xiao and WAN Lei et al. Study on motion control of an open-frame ROV[J]. Journal of Sichuan University (Natural Science Edition), 2008, 40(2): 147-153.

    [11]ZHANG He, XU Yu-ru and CAI Hao-peng. Using CFD software to calculate hydrodynamic coefficients[J]. Journal of Marine Science and Application, 2010, 19(2): 149-155.

    [12]SUNG Y. J., LEE T. I. and YUM D. J. et al. An analysis of the PMM tests using a system identification method[C]. Proceedings of the 7th International Marine Design Conference. Kyonyju, Korea, 2000, 1-10.

    [13]WANG Pei-fang, WANG Chao and ZHU David Z. Hydraulic resistance of submerged vegetation related to effective height[J]. Journal of Hydrodynamics, 2010, 22(2): 265-273.

    [14]MA Ling, CUI Wei-cheng. Heading control study of a deep manned submersible at a low speed and large drift angles based upon fuzzy sliding mode control[J]. The Ocean Engineering, 2006, 24(3): 74-78(in Chinese).

    [15]YOON H. K., RHEE K. P. Identification of hydrodynamic coefficients in ship maneuvering equations of motion by estimation-before-modeling technique[J]. Ocean Engineering, 2003, 45(30): 2379-2404.

    [16]YANG Hai, MA Jie. Optimization of displacement and gliding path and improvement of performance for an underwater thermal glider[J]. Journal of Hydrodynamics, 2010, 22(5): 618-625.

    [17]MA Cheng, LIAN Lian. Maneuvering control and simulation technology of underwater vehicles[M]. Beijing: National Defense Industry Press, 2009(in Chinese).

    [18]FOSSEN T. I. Marine control systems: guidance, navigation and control of ships, rigs and underwater vehicles[M]. Trondheim, Norway: Marine Cybernetics, 2002.

    [19]FENG Z., ALLEN R. Evaluation of the effects of the communication cable on the dynamics of an underwater flight vehicle[J]. Ocean Engineering, 2004, 31(8-9): 1019-1035.

    [20]HOU Z. The effects of the umbilical cable and currents on the motions of remotely operated vehicle[D]. Master Thesis, Tainan: National Cheng Kung University, 2005 (in Chinese).

    January 4, 2012, Revised February 21, 2012)

    * Project supported by the National High Technology Research and Development Progm of China (863 Program, Grant No. 2008AA092301).

    Biography: FAN Shi-bo (1981-), Male, Ph. D. Candidate

    LIAN Lian, E-mail: llian@sjtu.edu.cn

    可以免费在线观看a视频的电影网站| 黑人巨大精品欧美一区二区mp4| 精品久久蜜臀av无| 久久久精品欧美日韩精品| 日韩欧美一区二区三区在线观看| 别揉我奶头~嗯~啊~动态视频| 亚洲av日韩精品久久久久久密| 成在线人永久免费视频| 国产精品免费一区二区三区在线| 丁香六月欧美| 亚洲国产精品合色在线| 日韩精品中文字幕看吧| 国内久久婷婷六月综合欲色啪| 亚洲成a人片在线一区二区| 中国美女看黄片| 国产精品九九99| 男人舔女人的私密视频| 亚洲成人免费电影在线观看| 精品国产国语对白av| 丁香六月欧美| 亚洲欧美激情综合另类| 亚洲国产精品成人综合色| 国产精品二区激情视频| 深夜精品福利| 亚洲熟妇熟女久久| 亚洲精品美女久久av网站| 亚洲无线在线观看| 大型av网站在线播放| 男女视频在线观看网站免费 | 久久人妻av系列| 精品一区二区三区av网在线观看| 久久精品国产亚洲av高清一级| 国产伦人伦偷精品视频| 99久久无色码亚洲精品果冻| 听说在线观看完整版免费高清| 午夜两性在线视频| 天天一区二区日本电影三级| 午夜免费激情av| 国产高清有码在线观看视频 | 女性被躁到高潮视频| 国产激情欧美一区二区| 国产精品久久电影中文字幕| 国产视频内射| 久久香蕉激情| 久久久久久久精品吃奶| 长腿黑丝高跟| 亚洲美女黄片视频| 亚洲成人免费电影在线观看| 欧美日韩瑟瑟在线播放| 欧美 亚洲 国产 日韩一| 日日爽夜夜爽网站| 99热6这里只有精品| 色精品久久人妻99蜜桃| 久久亚洲真实| 99re在线观看精品视频| 亚洲精品久久成人aⅴ小说| 国产一区二区激情短视频| 草草在线视频免费看| 亚洲成人精品中文字幕电影| 日本熟妇午夜| 久久 成人 亚洲| 九色国产91popny在线| 在线观看午夜福利视频| 女警被强在线播放| 天天添夜夜摸| 淫秽高清视频在线观看| www.999成人在线观看| 亚洲国产毛片av蜜桃av| 一区二区三区激情视频| 精品久久久久久久久久免费视频| 亚洲成a人片在线一区二区| 1024手机看黄色片| 18美女黄网站色大片免费观看| 中文字幕高清在线视频| 亚洲精品美女久久久久99蜜臀| 国产精品影院久久| 亚洲中文字幕一区二区三区有码在线看 | 国产av一区二区精品久久| 日本 av在线| 国产又爽黄色视频| 国产午夜福利久久久久久| 99国产精品99久久久久| 怎么达到女性高潮| 丁香六月欧美| 成人欧美大片| 国产欧美日韩一区二区精品| 免费在线观看完整版高清| 国产主播在线观看一区二区| 免费电影在线观看免费观看| www日本黄色视频网| 免费一级毛片在线播放高清视频| or卡值多少钱| 亚洲av日韩精品久久久久久密| 亚洲狠狠婷婷综合久久图片| 欧美黑人精品巨大| 9191精品国产免费久久| 国产亚洲欧美精品永久| АⅤ资源中文在线天堂| 在线永久观看黄色视频| 国产亚洲精品av在线| 1024手机看黄色片| 俄罗斯特黄特色一大片| 99热只有精品国产| 国产精品久久久久久精品电影 | 免费av毛片视频| 精华霜和精华液先用哪个| 国产午夜福利久久久久久| 一边摸一边抽搐一进一小说| 亚洲三区欧美一区| 伦理电影免费视频| 色av中文字幕| 很黄的视频免费| a在线观看视频网站| 99热只有精品国产| 91av网站免费观看| 嫁个100分男人电影在线观看| 久久精品国产亚洲av高清一级| 好男人在线观看高清免费视频 | 日韩免费av在线播放| 国产免费av片在线观看野外av| 日本免费a在线| 久9热在线精品视频| 日本三级黄在线观看| 一本综合久久免费| 日日夜夜操网爽| 听说在线观看完整版免费高清| 亚洲精品久久国产高清桃花| 亚洲第一电影网av| 一级黄色大片毛片| 男女下面进入的视频免费午夜 | 亚洲精品中文字幕一二三四区| 非洲黑人性xxxx精品又粗又长| 看免费av毛片| 久热爱精品视频在线9| 久久精品aⅴ一区二区三区四区| 免费看美女性在线毛片视频| 一进一出抽搐动态| 免费在线观看成人毛片| 成人18禁高潮啪啪吃奶动态图| 我的亚洲天堂| 日韩精品中文字幕看吧| 日韩欧美国产一区二区入口| 色综合站精品国产| 两性夫妻黄色片| 一卡2卡三卡四卡精品乱码亚洲| 少妇熟女aⅴ在线视频| 午夜视频精品福利| 搡老岳熟女国产| 男女床上黄色一级片免费看| 色综合亚洲欧美另类图片| 欧美zozozo另类| 嫁个100分男人电影在线观看| 日本在线视频免费播放| 真人做人爱边吃奶动态| 亚洲全国av大片| АⅤ资源中文在线天堂| 黄色视频不卡| 午夜福利免费观看在线| 亚洲国产欧美一区二区综合| 国产精品久久久久久人妻精品电影| 亚洲人成伊人成综合网2020| 国产99久久九九免费精品| 一级a爱视频在线免费观看| 亚洲成人免费电影在线观看| 亚洲精品一区av在线观看| 国产亚洲精品第一综合不卡| 亚洲狠狠婷婷综合久久图片| 亚洲精品久久国产高清桃花| 女人被狂操c到高潮| 男女视频在线观看网站免费 | 黄色成人免费大全| 少妇粗大呻吟视频| 啦啦啦 在线观看视频| 99国产精品一区二区蜜桃av| 校园春色视频在线观看| 搞女人的毛片| 欧美日本亚洲视频在线播放| 99在线人妻在线中文字幕| 欧美人与性动交α欧美精品济南到| 热re99久久国产66热| 国产片内射在线| 色婷婷久久久亚洲欧美| 色哟哟哟哟哟哟| 亚洲欧美日韩无卡精品| 两个人视频免费观看高清| 亚洲免费av在线视频| 欧美大码av| 熟妇人妻久久中文字幕3abv| 激情在线观看视频在线高清| avwww免费| 午夜精品在线福利| 亚洲中文日韩欧美视频| 一进一出抽搐gif免费好疼| 久久99热这里只有精品18| 长腿黑丝高跟| 久久香蕉激情| 最新美女视频免费是黄的| 在线十欧美十亚洲十日本专区| 悠悠久久av| 亚洲国产精品sss在线观看| 国产91精品成人一区二区三区| 欧美日韩亚洲综合一区二区三区_| 两个人视频免费观看高清| 俺也久久电影网| 国产国语露脸激情在线看| 国产区一区二久久| 国产精品野战在线观看| 欧美人与性动交α欧美精品济南到| 观看免费一级毛片| 国产伦在线观看视频一区| 很黄的视频免费| 久久午夜亚洲精品久久| 欧美性猛交╳xxx乱大交人| 在线观看免费日韩欧美大片| 老司机福利观看| 欧美 亚洲 国产 日韩一| 午夜影院日韩av| 久久久精品欧美日韩精品| 欧美日韩乱码在线| 日本一区二区免费在线视频| 午夜精品久久久久久毛片777| 午夜免费鲁丝| 欧美日本视频| 999久久久国产精品视频| 亚洲国产看品久久| 亚洲国产欧洲综合997久久, | 亚洲狠狠婷婷综合久久图片| 欧美日韩亚洲综合一区二区三区_| 狠狠狠狠99中文字幕| 操出白浆在线播放| 99精品在免费线老司机午夜| 熟女电影av网| 日韩三级视频一区二区三区| 欧美乱妇无乱码| 热re99久久国产66热| 国产区一区二久久| 亚洲一区二区三区不卡视频| 国产成人欧美| 男人舔女人下体高潮全视频| 国产精品精品国产色婷婷| xxxwww97欧美| 美国免费a级毛片| 国产爱豆传媒在线观看 | 侵犯人妻中文字幕一二三四区| 国产精品98久久久久久宅男小说| 亚洲精品国产精品久久久不卡| 十八禁人妻一区二区| 精品久久久久久成人av| 午夜成年电影在线免费观看| 一级a爱视频在线免费观看| 两个人免费观看高清视频| 黄频高清免费视频| 国产久久久一区二区三区| 中文字幕精品免费在线观看视频| 久久久久久人人人人人| 亚洲人成77777在线视频| 国产色视频综合| 国产激情偷乱视频一区二区| 日韩精品青青久久久久久| 91成年电影在线观看| 国产亚洲欧美精品永久| 观看免费一级毛片| 日韩精品免费视频一区二区三区| 性色av乱码一区二区三区2| 啦啦啦观看免费观看视频高清| 波多野结衣av一区二区av| 中文字幕人妻熟女乱码| 成年版毛片免费区| 日本免费a在线| 精品国内亚洲2022精品成人| 91麻豆精品激情在线观看国产| 一本一本综合久久| 国产亚洲av高清不卡| 日本a在线网址| 国产精品电影一区二区三区| 波多野结衣高清作品| 国产成人欧美在线观看| 国产三级在线视频| 久久久久国内视频| 国产精品亚洲美女久久久| 十八禁网站免费在线| 特大巨黑吊av在线直播 | 妹子高潮喷水视频| 人人妻,人人澡人人爽秒播| 欧美性猛交黑人性爽| 久久久久国产一级毛片高清牌| 久久久国产成人精品二区| 欧美乱码精品一区二区三区| www.自偷自拍.com| 国产精品爽爽va在线观看网站 | 免费在线观看日本一区| 少妇被粗大的猛进出69影院| 亚洲一区高清亚洲精品| 国产99白浆流出| 女性生殖器流出的白浆| 国产又黄又爽又无遮挡在线| 午夜a级毛片| 女人被狂操c到高潮| 国产午夜福利久久久久久| 欧美zozozo另类| 中文资源天堂在线| 91成年电影在线观看| 亚洲欧美日韩高清在线视频| 久久狼人影院| 91麻豆av在线| 99国产极品粉嫩在线观看| 好男人在线观看高清免费视频 | 精品熟女少妇八av免费久了| 国产一区二区三区视频了| 午夜福利在线观看吧| 色播在线永久视频| av有码第一页| 成人欧美大片| 老汉色av国产亚洲站长工具| 中文字幕最新亚洲高清| av欧美777| 亚洲第一欧美日韩一区二区三区| 久久久久亚洲av毛片大全| 久久午夜亚洲精品久久| 亚洲电影在线观看av| 精品久久久久久久末码| 又黄又爽又免费观看的视频| 黑丝袜美女国产一区| 国产99久久九九免费精品| 宅男免费午夜| www.精华液| 亚洲国产毛片av蜜桃av| 久久午夜亚洲精品久久| 老汉色∧v一级毛片| 最近最新免费中文字幕在线| 欧美日韩精品网址| 亚洲aⅴ乱码一区二区在线播放 | 无遮挡黄片免费观看| 午夜老司机福利片| 亚洲精品国产一区二区精华液| 大型黄色视频在线免费观看| 日韩有码中文字幕| 久久久久久人人人人人| 国产真实乱freesex| 日韩中文字幕欧美一区二区| 熟妇人妻久久中文字幕3abv| 久久99热这里只有精品18| 两个人视频免费观看高清| 欧美又色又爽又黄视频| 亚洲熟妇熟女久久| 日韩有码中文字幕| 欧美中文综合在线视频| 成人三级做爰电影| 日本熟妇午夜| 久久人人精品亚洲av| 亚洲精品国产精品久久久不卡| 久久久国产成人免费| 成人18禁在线播放| 国产精品99久久99久久久不卡| 嫩草影视91久久| 亚洲av成人av| 国产伦人伦偷精品视频| 久久精品影院6| 麻豆成人午夜福利视频| 在线播放国产精品三级| 人人妻人人澡人人看| 国产在线精品亚洲第一网站| 一区二区三区激情视频| 久久中文字幕人妻熟女| 国产成人欧美在线观看| 麻豆成人av在线观看| 在线观看www视频免费| 在线免费观看的www视频| 午夜精品在线福利| 熟妇人妻久久中文字幕3abv| 长腿黑丝高跟| 又大又爽又粗| 正在播放国产对白刺激| 岛国在线观看网站| 日本 av在线| 女警被强在线播放| 国产成+人综合+亚洲专区| 黑人巨大精品欧美一区二区mp4| 欧美性猛交黑人性爽| 国产久久久一区二区三区| 手机成人av网站| 成人三级黄色视频| 午夜精品在线福利| 在线观看66精品国产| 国产精品免费一区二区三区在线| 久久久久国内视频| 久久久久久久久中文| 久久婷婷人人爽人人干人人爱| 精品欧美国产一区二区三| 国产精品 欧美亚洲| 精品久久久久久久人妻蜜臀av| 精品人妻1区二区| 99久久无色码亚洲精品果冻| 99热6这里只有精品| 免费高清视频大片| 三级毛片av免费| 成人国语在线视频| 精品国产超薄肉色丝袜足j| 久久国产精品男人的天堂亚洲| 国产三级黄色录像| 黄色片一级片一级黄色片| 国产亚洲精品av在线| av中文乱码字幕在线| 啦啦啦 在线观看视频| 精品久久蜜臀av无| 国产1区2区3区精品| 国产精品国产高清国产av| 免费无遮挡裸体视频| www日本黄色视频网| 十八禁人妻一区二区| 一级毛片高清免费大全| 无遮挡黄片免费观看| 中国美女看黄片| 人妻久久中文字幕网| 成人av一区二区三区在线看| 久久亚洲真实| 国产熟女xx| 欧美黑人欧美精品刺激| 欧美一级毛片孕妇| 精品电影一区二区在线| av超薄肉色丝袜交足视频| 久久 成人 亚洲| 亚洲全国av大片| 久久午夜亚洲精品久久| 国产99久久九九免费精品| 熟女电影av网| 亚洲欧美日韩无卡精品| 最近最新中文字幕大全免费视频| 婷婷丁香在线五月| av免费在线观看网站| 久久天堂一区二区三区四区| xxxwww97欧美| 曰老女人黄片| 在线天堂中文资源库| 精品一区二区三区四区五区乱码| 国产成+人综合+亚洲专区| 19禁男女啪啪无遮挡网站| 久久伊人香网站| 91成人精品电影| 午夜精品久久久久久毛片777| 国产精品电影一区二区三区| 在线观看一区二区三区| 可以免费在线观看a视频的电影网站| 久久久国产欧美日韩av| 久9热在线精品视频| 亚洲中文字幕日韩| 极品教师在线免费播放| 一本精品99久久精品77| 一区二区三区高清视频在线| 亚洲aⅴ乱码一区二区在线播放 | 满18在线观看网站| 日韩有码中文字幕| 91九色精品人成在线观看| 国产在线观看jvid| 亚洲aⅴ乱码一区二区在线播放 | 韩国av一区二区三区四区| 变态另类丝袜制服| 最新美女视频免费是黄的| 男女下面进入的视频免费午夜 | 欧美 亚洲 国产 日韩一| 国产成人一区二区三区免费视频网站| 欧美日本亚洲视频在线播放| a级毛片在线看网站| 中文字幕av电影在线播放| 久久精品夜夜夜夜夜久久蜜豆 | 久久久久久免费高清国产稀缺| 久久精品夜夜夜夜夜久久蜜豆 | 操出白浆在线播放| 999精品在线视频| 又大又爽又粗| 一本综合久久免费| 在线观看66精品国产| 亚洲av电影在线进入| 中出人妻视频一区二区| www.自偷自拍.com| 欧美日韩一级在线毛片| 男人舔女人的私密视频| 欧美日韩乱码在线| 亚洲人成网站高清观看| 人人妻人人澡欧美一区二区| 啪啪无遮挡十八禁网站| 亚洲精品国产一区二区精华液| 最好的美女福利视频网| 亚洲av熟女| www.www免费av| 脱女人内裤的视频| 亚洲,欧美精品.| 色综合欧美亚洲国产小说| 91字幕亚洲| 午夜精品在线福利| 黄色 视频免费看| 啪啪无遮挡十八禁网站| 欧美乱色亚洲激情| 长腿黑丝高跟| 久久伊人香网站| 又黄又爽又免费观看的视频| 午夜福利一区二区在线看| 国产国语露脸激情在线看| 麻豆成人av在线观看| 亚洲片人在线观看| 18禁裸乳无遮挡免费网站照片 | 中文字幕av电影在线播放| 亚洲三区欧美一区| 免费看十八禁软件| 好看av亚洲va欧美ⅴa在| 美女大奶头视频| 香蕉国产在线看| 一级a爱视频在线免费观看| 免费高清在线观看日韩| xxx96com| 黄色a级毛片大全视频| 男女做爰动态图高潮gif福利片| 青草久久国产| 在线十欧美十亚洲十日本专区| 亚洲精品美女久久av网站| 亚洲人成网站高清观看| 男女做爰动态图高潮gif福利片| 国产v大片淫在线免费观看| 精品国产国语对白av| 亚洲人成77777在线视频| 成人欧美大片| 免费av毛片视频| 午夜久久久久精精品| 男女午夜视频在线观看| 精品一区二区三区四区五区乱码| 亚洲专区中文字幕在线| 老司机午夜十八禁免费视频| 亚洲va日本ⅴa欧美va伊人久久| av视频在线观看入口| 激情在线观看视频在线高清| 国产亚洲欧美在线一区二区| 真人做人爱边吃奶动态| 琪琪午夜伦伦电影理论片6080| 国产精品野战在线观看| 亚洲精品美女久久av网站| 亚洲在线自拍视频| 亚洲av五月六月丁香网| 欧美人与性动交α欧美精品济南到| 日韩免费av在线播放| 午夜精品久久久久久毛片777| 精品国产一区二区三区四区第35| 可以在线观看毛片的网站| 久久精品国产亚洲av高清一级| 亚洲成人免费电影在线观看| 欧美日韩福利视频一区二区| 亚洲精品久久成人aⅴ小说| 看免费av毛片| 听说在线观看完整版免费高清| 国产亚洲精品久久久久久毛片| 国产精品久久久久久人妻精品电影| 女性被躁到高潮视频| 国产精品久久久久久人妻精品电影| 欧洲精品卡2卡3卡4卡5卡区| 亚洲自偷自拍图片 自拍| 99精品欧美一区二区三区四区| 婷婷丁香在线五月| 亚洲国产精品999在线| av片东京热男人的天堂| 国产三级在线视频| 国产黄色小视频在线观看| 亚洲 欧美一区二区三区| 亚洲熟妇熟女久久| xxx96com| 老汉色av国产亚洲站长工具| 亚洲人成网站高清观看| 国产精品免费一区二区三区在线| 日本撒尿小便嘘嘘汇集6| 婷婷精品国产亚洲av在线| 女警被强在线播放| 亚洲av成人不卡在线观看播放网| 1024视频免费在线观看| 一边摸一边做爽爽视频免费| 两性夫妻黄色片| 欧美日韩黄片免| 99精品久久久久人妻精品| 亚洲电影在线观看av| 亚洲七黄色美女视频| 欧美日韩精品网址| 男人的好看免费观看在线视频 | 欧美日韩亚洲国产一区二区在线观看| 中文字幕人成人乱码亚洲影| 国产精品久久电影中文字幕| 国产不卡一卡二| 久久久久久久久免费视频了| АⅤ资源中文在线天堂| 一本综合久久免费| 国产精品久久视频播放| 亚洲av五月六月丁香网| 成人手机av| 欧美日本亚洲视频在线播放| 少妇被粗大的猛进出69影院| 亚洲第一青青草原| 午夜老司机福利片| 老司机靠b影院| 国产熟女午夜一区二区三区| 老熟妇仑乱视频hdxx| 亚洲欧美激情综合另类| 亚洲成人精品中文字幕电影| 成熟少妇高潮喷水视频| 宅男免费午夜| 最新美女视频免费是黄的| 成人免费观看视频高清| 亚洲五月婷婷丁香| 色播在线永久视频| 亚洲七黄色美女视频| 亚洲专区国产一区二区| 色播亚洲综合网| 动漫黄色视频在线观看| 51午夜福利影视在线观看| 手机成人av网站| 亚洲av熟女| 白带黄色成豆腐渣| 久久精品成人免费网站| 亚洲专区国产一区二区| 久久久久九九精品影院|