張宇揚,陸道綱,王孝天,曹 瓊,*,李 臻
定位格架對鉛鉍堆燃料組件熱工水力影響的數(shù)值研究
張宇揚1,2,陸道綱1,2,王孝天1,2,曹瓊1,2,*,李臻1,2
(1. 非能動核能安全技術北京市重點實驗室,北京 102206;2. 華北電力大學核科學與工程學院,北京 102206)
鉛鉍合金(LBE)作為冷卻劑的快堆是第四代核能系統(tǒng)的主要堆型之一。燃料組件的定位格架是燃料棒束的定位結構,同時對燃料組件的熱工水力性能也有重要的影響。本研究首先對板翼型格架組件的熱工水力特性進行數(shù)值模擬,并通過與實驗對比,驗證了模擬方法的有效性;其次對板翼型、雙翼型、單板型三種定位格架組件的熱工水力特性進行了數(shù)值模擬。結果表明:流經不同格架造成LBE的最高溫度位置不同,雙翼型、單板型格架組件LBE溫度分布更為均勻;格架的翼和板(翼)的中間區(qū)域會使對LBE溫度均勻起到一定作用的橫向速度疊加抵消,單板型格架無此情況;對于格架造成的局部壓降,單板型格架阻力系數(shù)最小。綜合考慮,單板型格架組件的熱工水力性能最佳。
鉛鉍合金(LBE);定位格架;冷卻劑通道;熱工水力
鉛鉍堆是第四代核能系統(tǒng)的主要堆型之一,可實現(xiàn)在核動力潛艇、小型電網(wǎng)等供能和供電場所中的應用,具有廣闊的發(fā)展前景。LBE冷卻劑相較于前代反應堆冷卻劑的優(yōu)勢較為突出,主要表現(xiàn)在固有安全性高、小型化實現(xiàn)程度高、可持續(xù)性好等。
LBE換熱實驗開展難度較大,表現(xiàn)在冷卻劑腐蝕性強,實驗溫度高,對于實驗回路要求高等方面。故CFD方法為研究鉛鉍堆堆芯熱工水力的主要方法之一。目前,研究鉛鉍堆燃料組件定位結構及其對熱工水力的影響主要有:Liu等[1]針對格架定位的鉛鉍堆燃料組件,研究了適用分析其熱工水力的CFD模型,通過湍流普朗特數(shù)和湍流模型的配合得到了更精確的數(shù)值模擬模型。Yeong等[2]通過實驗和模擬相結合的研究方法,提出了適用于液態(tài)金屬反應堆的一種U形繞絲墊片,用以加強冷卻劑的周向混合和降低壓降。Pacio等[3]通過實驗和模擬對MYRRHA堆繞絲固定燃料組件的熱工水力特性進行研究并評估了經驗關聯(lián)式的適用性。Chai等[4]基于RANS方法進行數(shù)值模擬,研究了鉛冷快堆冷卻劑質量流量對纏繞墊片引起的通道間混合的影響。目前研究多是與繞絲定位相關,但對于鉛鉍堆格架相關的研究較少。由于LBE導熱性能優(yōu)異,對于燃料棒束的定位除了可加強橫向攪混的繞絲定位外,在一些小型鉛鉍堆的應用中,亦可采用格架定位。對于三角布置的燃料棒束,六邊形格架是格架的基本形式,但是對于格架外圍即貼近組件盒內壁部分的不同設計對熱工水力的影響還有待研究。
因此本文基于CFD方法,采用配置三層格架、19棒束的鉛鉍堆燃料組件模型,分析定位格架的不同結構形式對熱工水力性能的影響。
本文計算所用的幾何模型參照于Pacio[5]的格架定位19棒束組件的液態(tài)金屬冷卻劑傳熱實驗,具體參數(shù)如表1所示。三層格架布置位置如圖1所示。為了便于闡述,令加熱段起始位置為0。
圖1 格架布置
表1 模型參數(shù)
湍流模型可根據(jù)數(shù)學描述方式不同分為雷諾應力模型和渦粘模型兩類,在液態(tài)金屬流動的數(shù)值模擬中,渦粘模型適用性更高。standard-模型與SST-模型更為適用[6]。對于湍流模型中的一項湍流普朗特數(shù)Pr的數(shù)值,常規(guī)流體Pr0.85已經不適用于液態(tài)金屬。湍流模型一般只建立了湍流黏性,即湍流動量擴散率的模型,并沒有直接地定義湍流導熱率,即湍流熱擴散率模型。為了對湍流導熱率建模,定義Pr為湍流動量擴散率與湍流導熱率之比。許多學者對Pr的數(shù)值進行了研究,本文選取Cheng[7]的經驗公式進行計算,并編寫UDF(User Defined Function)。Pr的經驗公式為:
其中:——貝克萊數(shù),表征對流作用與擴散作用的相對大小。
考慮到湍流模型與湍流普朗特數(shù)模型的配合使用,standard-模型相對于SST-模型,與Cheng模型配合使用時平均模擬偏差低0.85%[8]。故綜合考慮,本文湍流模型選擇standard-模型進行數(shù)值計算。
為使數(shù)值模擬結果更加精確,考慮換熱過程中溫升對導熱率、定壓比熱、黏度等參數(shù)的影響,本文將冷卻劑液態(tài)LBE的物性參數(shù)表示為溫度的函數(shù),并編寫UDF。LBE物性參數(shù)參考文獻[9],具體物性參數(shù)如表2所示。
表2 物性參數(shù)
由于實驗工況較多,本文僅選取部分工況進行對比,工況為:體積流量分別為1、2、4、5、6、8、9.23和10 m3/h,入口溫度為473.15 K,熱功率為50 kW。
圖2 模擬值與實驗值對比
本文選取三種格架結構進行對比分析,橫截面圖如圖3所示,模型其他參數(shù)如1.1節(jié)所述。由于鉛鉍堆組件盒為六棱柱形式,燃料棒束為三角布置,即中心燃料棒周圍有六根燃料棒。故定位格架亦應采用六邊布置。三種格架中心子通道均為正六邊形,區(qū)別在于外圍子通道的形狀。對于外圍格架的常規(guī)設計,可考慮兩種方式,一是全部采用六邊形密排布置,組件盒邊緣亦無其他布置;二是僅中心格架采用密排布置,外圍簡化成單板與組件盒內壁連接的布置。其中圖3(a)為實驗中所用的格架。其格架外圍除了與邊緣直接連接的板外,還加了一翼片,為板翼型格架。圖3(b)周圍子通道也近似為六邊形,僅是將連接壁面處的角去掉,為雙翼型格架。圖3(c)周圍子通道為五邊形,由內部格架與壁面直接相連構成,為單板型格架。三種格架分別為實驗所用格架和常規(guī)設計的格架,選取三種格架進行對比,可確定鉛鉍堆格架設計的基本方案,為進一步設計提供基礎。
對幾何模型劃分的網(wǎng)格是在CFD軟件中生成的非結構型多面體網(wǎng)格,為確定合適的網(wǎng)格數(shù)量,保證計算精度,根據(jù)板翼型格架的模型以網(wǎng)格基礎尺寸6 mm、7 mm、8 mm生成了網(wǎng)格數(shù)量分別為1 260萬、964萬、817萬的三種網(wǎng)格進行網(wǎng)格無關性分析。
8 mm的網(wǎng)格計算收斂性較差,對于6 mm和7 mm的網(wǎng)格,如圖4所示為兩個網(wǎng)格的模型沿程溫升圖,計算結果相差很小,為10-1K數(shù)量級,可認為計算結果與網(wǎng)格數(shù)量無關。綜合考慮網(wǎng)格精度和計算所需時間,最終確定設置網(wǎng)格基礎尺寸為7 mm。三種組件的模型均設置為基礎尺寸7 mm,網(wǎng)格數(shù)量均在950~1000萬范圍內。并將網(wǎng)格導入FLUENT中進行模擬計算。
圖4 網(wǎng)格無關性
對溶解在高溫液態(tài)LBE中氧濃度的控制,直接影響液態(tài)金屬水力學性能及其與材料的兼容性。這就要求LBE流速不能過快,需要限制其在一定范圍內,本文選取LBE入口體積流量1~5 m3/h。設置燃料棒熱功率50 kW、100 kW,LBE入口溫度選取473.15 K,入口絕對壓力設置為0.25 MPa。外壁面及上下端面設置為絕熱。具體工況如表3所示,工況均在<1 500的與實驗符合較好的低貝克萊數(shù)區(qū)域。
表3 工況表
3.3.1不同組件冷卻劑溫度對比分析
對于LBE的流通區(qū)域可劃分為42個子通道,按位置不同可分為內部通道、邊通道、角通道,如圖5所示。其中27、30等為角通道,25、26等為邊通道,1、7等為內部通道。
圖5 子通道示意圖
在工況5條件下,三種格架對于LBE溫度分布的影響如圖6所示,圖6為流過第二層格架562 mm處LBE橫截面的溫度云圖。對于邊通道,三型組件差異較小,均存在LBE溫度較低的情況;對于角通道,板翼型格架組件LBE的最高溫度出現(xiàn)在角通道30、36、42處,這三個角通道所在的格架的夾圍區(qū)域要比角通道27、33、39的小,故出現(xiàn)角通道溫度分布不同的現(xiàn)象,其余兩型組件無此情況;而對于內部通道,三型組件LBE溫度相差不大。對于周向最大溫差,板翼型格架組件LBE溫差53.0 K,雙翼型格架組件LBE溫差48.8 K,單板型格架組件LBE溫差50.4 K。綜合來看,雙翼型格架、單板型格架組件LBE溫度分布更加均勻。
圖6 x=562 mm處LBE溫度云圖
圖7 軸向LBE溫度分布
對于邊通道,流經格架過程中,板翼型格架組件、雙翼型格架組件、單板型格架組件溫升分別為7.68 K、6.69 K、9.51 K。單板型格架組件LBE后溫升幅度更為明顯,原因在于其橫向速度較大,與附近熱流體攪混更為均勻;對于角通道,在格架上游LBE溫度就已經受到了影響,流經格架過程溫升梯度減小,板翼型格架組件的LBE溫度振蕩更明顯。流經加熱段后,由于與周圍冷卻劑間換熱,LBE溫度有了一定降低,三型組件溫降分別為1.21 K、0.82 K、0.50 K。單板型格架組件LBE溫降更小;而對于內部通道,LBE流經格架后,溫度產生了小幅振蕩,流過加熱段溫度仍有一定的升高,三種組件內部通道的LBE溫度變化趨勢較為一致。
3.3.2不同組件冷卻劑速度對比分析
圖8 x=532 mm處LBE橫向速度云圖
圖9 LBE橫向速度分布
3.3.3不同組件冷卻劑壓降對比分析
隨著入口質量流量的增加,LBE壓降呈非線性增長,三種格架壓降增長率不同。在各個工況下,三種格架造成的壓降關系均為:雙翼型格架>板翼型格架>單板型格架。Re為37 000時,流經格架造成LBE壓降分別為:板翼型格架4 175 Pa,雙翼型格架4 387 Pa,單板型格架3 650 Pa。板翼型格架、雙翼型格架壓降較為接近,單板型格架壓降更小。
圖11 LBE阻力系數(shù)與Re關系
Fig.11 The dragcoefficient-Re relation of LBE
本研究采用CFD分析方法,在鉛鉍堆堆芯燃料組件設計中,對板翼型格架、雙翼型格架、單板型格架三種格架結構造成的熱工水力影響進行了數(shù)值研究。通過數(shù)值模擬和分析,得到結論如下:
(1)格架結構對換熱影響主要在于:LBE的最高溫度位置不同,流經板翼型格架會使個別角通道LBE溫度增高,雙翼型、單板型格架組件LBE溫度分布更為均勻;
(2)格架結構對流動影響主要在于:格架的翼和板(翼)的中間區(qū)域會使對LBE溫度均勻起到一定作用的橫向速度疊加抵消,單板型格架組件無此情況,其LBE的橫向速度亦較大;對于格架造成的局部壓降,單板型格架阻力系數(shù)最小。
綜合考慮格架結構對LBE換熱和流動的影響,單板型格架在三種格架中綜合熱工水力性能最佳,可作為鉛鉍堆格架設計的首選方案,本研究可為鉛鉍堆的格架設計提供參考。
[1] Liu J,Song P,Zhang D L,et al.Thermal-hydraulic research on rod bundle in the LBE fast reactor with grid spacer[J]. Nuclear Engineering and Technology,2022,54(7):2728-2735.
[2] Yeong S J,Ji Y K,In C B.Enhanced heat transfer and reduced pressure loss with U-pattern of helical wire spacer arrangement for liquid metal cooled-fast reactor fuel assembly[J]. Annals of Nuclear Energy,2020,135.
[3] Pacio J,Wetzel T,Doolaard H,et al.Thermal-hydraulic study of the LBE-cooled fuel assembly in the MYRRHA reactor:Experiments and simulations[J]. Nuclear Engineering and Design,2017,312:327-337.
[4] Chai X,Liu X J,Cheng X.Numerical investigation of thermal-hydraulic behaviors in a LBE-cooled 19-pin wire-wrapped rod bundle[J]. Progress in Nuclear Energy,2020,119.
[5] Pacio J,Daubner M,F(xiàn)ellmoser F,et al.Heavy-liquid metal heat transfer experiment in a 19-rod bundle with grid spacers[J]. Nuclear Engineering and Design,2014,273:33-46.
[6] Thiele R,Anglart H.Numerical modeling of forced- convection heat transfer to lead–bismuth eutectic flowing in vertical annuli[J]. Nuclear Engineering and Design,2013,254:111-119.
[7] Cheng X,Tak N I.Investigation on turbulent heat nuclear applications[J]. Nuclear Engineering and Design,2006,236:385-393.
[8] 王琛,王成龍,張衍,等. 液態(tài)鉛鉍合金管內流動傳熱特性研究[J]. 原子能科學技術,2021,55(05):822-828.
[9] Fazio C,Sobolev V P,Aerts A,et al.Handbook on Materials Compatibility Thermal-hydraulics and Technologies-2015 Edition[R]. Paris,F(xiàn)rance:Organization for Economic Cooperation and Development,2015.
Numerical Study on the Effect of Grid Spacer on Thermal-Hydraulics of LBE Fast Reactor Fuel Assembly
ZHANG Yuyang1,2,LU Daogang1,2,WANG Xiaotian1,2,CAO Qiong1,2,*,LI Zhen1,2
(1. Beijing Key Laboratory of Passive Safety Technology for Nuclear Energy,Beijing 102206,China;2. School of Nuclear Science and Engineering,North China Electric Power University,Beijing 102206,China)
As one of the main types of the fourth-generation nuclear power system,the lead-cooled fast reactor has a wide development prospect, which can be applied in the nuclear powered submarine, the small power grid, and other power supply areas. The lead-bismuth eutectic (LBE) is one of the best coolants in the lead-cooled fast reactor. The grid spacer is not only used to support and position the fuel assembly, but also has a certain effect on the thermal-hydraulics of reactor core.However, there are many studies on thermal-hydraulics characteristics of fuel assembly positioned by wire spacer, but there are few relative studies on the grid spacer, and some existing numerical studies lack experimental verification. In order to study the effect of the spacer structure on thermal-hydraulics in the LBE fast reactor core,In a 19-rod fuel assembly with three grid spacers, the flow and heat transfer of coolant LBE in the hexagonal flow channel and spacer-positioned fuel assembly were numerically simulated and analyzed by the CFD method. Firstly, the numerical simulation was carried out for the fuel assembly of the plate-airfoil spacer, and the effectiveness of the simulation method was verified by comparing with the experimental results. Secondly, the thermal-hydraulic characteristics of fuel assemblies with the three grid spacers of the plate-airfoil spacer, the double airfoil spacer and the single plate spacer were compared. The results show that there is some difference in the effect of the three spacers on heat transfer, but great difference on the flow. In particular, the highest temperature of coolant of the plate-airfoil spacer assembly is located in the corner subchannel after flowing through the spacer, and the highest temperature of coolant of the other two assemblies are located near the exit of the internal subchannel. Meanwhile, the coolant temperature of the single plate spacer assembly is higher in all three subchannels. In the middle area of the plate (airfoil) and airfoil of the spacer, the transverse velocity in two directions caused by disturbance will appear superposition cancelling phenomenon. But this is not the case for the single plate spacer, and the transverse velocity of coolant for the single plate spacer assembly is also larger.With the increase of Re, the pressure drop through the three kinds of spacers increases nonlinearly. Of the three types of spacers, the single plate spacer caused the least pressure drop. In a word, the comprehensive thermal-hydraulic characteristics of the single plate spacer assembly is the best among the plate-airfoil spacer, double airfoil spacer and single plate spacer assembly. The single plate spacer can be used as the first choice in the spacer design of lead-cooled fast reactor. The results of this study can provide a reference for the spacer design of lead-cooled fast reactor.
Lead-bismuth eutectic (LBE); Grid spacer; Coolant channel; Thermal-hydraulics
TL333
A
0258-0918(2023)05-1158-09
2022-09-26
張宇揚(1998—),男,遼寧營口人,碩士研究生,現(xiàn)從事反應堆熱工水力方面研究
曹瓊,E-mail:caoqiong@ncepu.edu.cn