曹文虎,尹 嵐,宋城邑,鄭平衛(wèi),周方貝,馬萬坤
托卡馬克中高諧快波和低雜波協(xié)同電流驅動模擬研究
曹文虎1,尹嵐2,*,宋城邑1,鄭平衛(wèi)4,周方貝3,馬萬坤1
(1. 南華大學 核科學技術學院,湖南 衡陽 421001;2. 南華大學 數(shù)理學院,湖南 衡陽 421001;3. 南華大學 電氣工程學院,湖南 衡陽 421001;4. 南華大學 資源環(huán)境與安全工程學院,湖南 衡陽 421001)
基于全超導托卡馬克EAST上的低e運行參數(shù),采用射線追蹤和Fokker-Planck方程程序模擬研究由高場側發(fā)射的高諧快波(HHFW)和低雜波(LHW)聯(lián)合電流驅動。研究結果表明,滿足一定的條件,高場側發(fā)射的HHFW和LHW存在較大的協(xié)同效應,且從靠近芯部到離軸較寬的區(qū)域內均有正協(xié)同效應,能有效提升電流驅動效率,改善電流分布,通過分析其物理機制發(fā)現(xiàn)協(xié)同效應發(fā)生與兩支波共振區(qū)的速度空間位置關系密切相關,并進一步分析研究了平行折射率、波頻率、波功率等參數(shù)對兩波聯(lián)合電流驅動協(xié)同效應的影響。
低雜波;高諧快波;協(xié)同效應;電流驅動;托卡馬克
在可控熱核聚變裝置托卡馬克中,射頻波電流驅動(CD)是產(chǎn)生等離子體電流,補充自舉電流的重要方式[1]。其中低雜波電流驅動(LHCD)是目前托卡馬克裝置上公認效率較高的射頻波電流驅動方式,物理機制是波在等離子體傳播過程中通過朗道阻尼機制在平行方向上加速電子,形成環(huán)向電流。利用LHW 驅動電流是實現(xiàn)托卡馬克穩(wěn)態(tài)運行的重要手段[2-4],LHCD雖然具有很高的電流驅動效率,但存在密度極限問題,即:在高等離子體密度條件下,LHW難以傳入等離子體內部,電流驅動效率迅速下降[5]。以往研究顯示從高場側發(fā)射LHW能部分緩解LHW在高密度條件下的可近性問題[6]。
本文第2節(jié)簡要描述了HHFW和LHW聯(lián)合電流驅動采用的模擬方法。第3節(jié)給出了在低e運行參數(shù)下高場側發(fā)射HHFW和LHW聯(lián)合電流驅動的具體模擬結果。第4節(jié)對兩支波協(xié)同效應結果進行分析和討論。第5節(jié)給出結論。
準線性擴散項的表達式如下[21]。
其中:
圖1 磁平衡位形和波跡
模擬中從高場側中平面發(fā)射的LHW的頻率采用2.65 GHz,其平行折射率峰值為2.32,功率譜譜寬為0.1,發(fā)射機的高度為0.776 m,輸入功率設置為1 MW。從高場側中平面發(fā)射的HHFW的頻率為1.8 GHz,其平行折射率峰值為2.12,功率譜譜寬為0.1,輸入功率設置為1 MW。利用模擬程序GENRAY從5個不同的極向位置發(fā)射50條射線模擬波在等離子體中的傳播和阻尼,由GENRAY程序計算后得到的HHFW和LHW的射線軌跡如圖1所示,然后對 HHFW和LHW的準線性擴散項進行求和,求解電子分布函數(shù),模擬聯(lián)合電流驅動。
圖2 HHFW、LHW和HHFW+LHW的徑向功率吸收
圖4 速度空間中HHFW和LHW準線性擴散強度的等值線圖
圖5 ρ=0.42時電子分布函數(shù)f與歸一化速度u/unorm的關系
圖6 協(xié)同電流和協(xié)同因子與HHFW和LHW的ω和n‖的關系
通過掃描HHFW和LHW的注入波功率(0.5~3 MW),研究了兩支波的協(xié)同電流和協(xié)同因子與波功率之間的關系,結果如圖7所示。模擬時注入相同功率的HHFW和LHW,當注入功率在0.5~1.5 MW時,協(xié)同電流隨著注入波功率的增加而增大,這是因為注入的波功率越多相當于更多的電子被加速至高相速度波(HHFW)的共振區(qū),當注入功率在1.5~3 MW時,協(xié)同電流幾乎不受注入波功率的影響,這是因為當功率達到一定值時,不會再有新的電子被加速至高相速度波(HHFW)的共振區(qū)??傮w來說,協(xié)同因子會隨著注入波功率的增加而降低。
圖7 協(xié)同電流和協(xié)同因子與波功率P的關系
本文是對可控熱核聚變裝置EAST在低e運行參數(shù)下采用波跡程序和Fokker-Planck方程程序GENRAY/CQL3D模擬計算HHFW和LHW均在高場側注入時的聯(lián)合電流驅動。通過模擬研究表明HHFW和LHW存在顯著的協(xié)同效應,由于協(xié)同效應使得總的電流驅動效率顯著提高。和低場側注入聯(lián)合兩波電流驅動在近軸區(qū)域出現(xiàn)負協(xié)同效應[24]不同,高場側注入聯(lián)合兩波電流驅動在近軸區(qū)域和離軸區(qū)域均出現(xiàn)正協(xié)同效應,因此更有利于電流驅動效率的提升。其物理機制是LHW和HHFW與電子的速度共振區(qū)彼此相鄰,低相速度波(LHW)與較低平行速度電子相互作用,這些電子加速后被推至高相速度波(HHFW)的共振區(qū),導致高相速度波共振區(qū)的電子數(shù)量急劇增加,驅動出額外的電流。當注入相同功率的HHFW和LHW,在一定的注入波功率區(qū)間內,兩支波的協(xié)同電流隨著兩支波注入功率的增加而增加,當注入波功率達到一定值時,協(xié)同電流幾乎不再受注入波功率影響,而協(xié)同因子會隨著注入波功率的增加而降低。此外,在對LHW和HHFW的波頻率和平行折射率的掃描中,盡管協(xié)同電流和協(xié)同因子略有不同,但是不同的波頻率和平行折射率的LHW和HHFW之間廣泛存在正協(xié)同效應。目前EAST上采用低場側注入低雜波的方式驅動等離子體電流,未來有可能在高場側安裝低雜波天線,研究結果為EAST和未來聚變反應堆上在高場側應用LHW和HHFW聯(lián)合高效電流驅動提供了可選擇方案。
[1] Wesson J,Campbell D J. Tokamaks[M]. Oxford university press,2011.
[2] Bonoli P T,Porkolab M,Ramos J J,et al. Possible achievement of second stability by means of lower hybrid current drive[J]. Nuclear fusion,1990,30(3):533-540.
[3] Bonoli P T,Englade R C. Simulation model for lower hybrid current drive[J]. The Physics of fluids,1986,29(9):2937-2950.
[4] Bonoli P T,Ott E. Accessibility and Energy Depositon of Lower-Hybrid Waves in a Tokamak with Density Fluctuations[J]. Physical Review Letters,1981,46(6):424.
[5] Fisch N J. Theory of current drive in plasmas[J]. Reviews of Modern Physics,1987,59(1):175.
[6] Bonoli P T,Wallace G M,Shiraiwa S,et al. High field side lower hybrid wave launch for steady state plasma sustainment[J]. Nuclear Fusion,2018,58(12):126032. 1-35.
[7] Torreblanca H,Moeller C,F(xiàn)ishler B,et al. A high-power helicon antenna for the DIII-D tokamak and its electromagnetic aspects[J]. Fusion Engineering and Design,2019,146:626-630.
[8] Lau C,Jaeger E F,Bertelli N,et al. Using AORSA to simulate helicon waves in DIII-D[C]. AIP Conference Proceedings. AIP Publishing LLC,2015,1-4.
[9] Kojima T,Okuda T,Taka S. Radio Frequency current generation by helical slow-wave antennas in a torus[J]. Plasma physics,1983,25(12):1469.
[10]Paul M K,Bora D. Wave-induced helicity current drive by helicon waves[J]. Physics of Plasmas,2007,14(8):082507. 1-6.
[11]Kaye S M,Bell M G,Bell R E,et al. Progress towards high performance plasmas in the National Spherical Torus Experiment(NSTX)[J]. Nuclear fusion,2005,45(10):S168-S180.
[12]Wilson J R,Bell R E,Bernabei S,et al. Exploration of high harmonic fast wave heating on the National Spherical Torus Experiment[J]. Physics of Plasmas,2003,10(5):1733-1738.
[13]Li X,Liu H,Xiang N,et al. Theoretical analysis of helicon wave current drive in EAST with higheoperation[J]. Physics Letters A,2020,384(30):126779. 1-4.
[14]Zhai X M,Chen J L,Xiang N,et al. Synergy of two lower hybrid waves with different frequencies on EAST[J]. Physics of Plasmas,2019,26(5):052509. 1-7.
[15] Smirnov A P,Harvey R W. The GENRAY ray tracing code[J]. CompX Report No. CompX-2000-01,2001.33-59.
[16]Bertelli N,Wallace G,Bonoli P T,et al. The effects of the scattering by edge plasma density fluctuations on lower hybrid wave propagation[J]. Plasma Physics and Controlled Fusion,2013,55(7):074003. 1-10.
[17]Wallace G M,Parker R R,Bonoli P T,et al. Absorption of lower hybrid waves in the scrape off layer of a diverted tokamak[J]. Physics of Plasmas,2010,17(8):082508. 1-10.
[18]Harvey R W,McCoy M G. The cql3d fokker-planck code[C]. Proceedings of the IAEA Technical Committee Meeting on Simulation and Modeling of Thermonuclear Plasmas, 1992:489-526.
[19]Petrov Y V,Harvey R W. A fully-neoclassical finite-orbit- width version of the CQL3D Fokker-Planck code[J]. Plasma Physics and Controlled Fusion,2016,58(11):115001. 1-19.
[20]Harvey R W,Petrov Y V,Kim C C,et al. Time-dependent runaway electron simulations:Ampere-Faraday equations implemented in CQL3D[J]. Nuclear Fusion,2019,59(10):106046. 1-8.
[21]Kennel C F,Engelmann F. Velocity space diffusion from weak plasma turbulence in a magnetic field[J]. The Physics of Fluids,1966,9(12):2377-2388.
[22]Lao L L,John H S,Stambaugh R D,et al. Reconstruction of current profile parameters and plasma shapes in tokamaks[J]. Nuclear fusion,1985,25(11):1611-1622.
[23]Yang Y,Xiang N,Hu Y M. Synergy effects during current drive by two lower-hybrid waves[J]. Physics of Plasmas,2017,24(3):032502. 1-6.
[24]Yin L,Zheng P,Gong X,et al. New synergy effects of the lower hybrid wave and the high harmonic fast wave current drive[J]. Nuclear Fusion,2022,62(6):066023. 4-7.
Simulation Study of High Harmonic Fast Wave and Low Hybrid Wave Synergy Current Drive in Tokamak
CAO Wenhu1,YIN Lan2,*,SONG Chengyi1,ZHENG Pingwei4,ZHOU Fangbei3,MA Wankun1
(1. School of Nuclear Science and Technology,University of South China,Hengyang of Hunan Prov.421001,China;2. School of Mathematics and Science,University of South China,Hengyang of Hunan Prov.421001,China;3. School of Electrical Engineering,University of South China,Hengyang of Hunan Prov.421001,China;4. School of Resource Environment and Safety Engineering,University of South China,Hengyang of Hunan Prov.421001,China)
Based on the loweoperating parameters on the fully superconducting Tokamak EAST, ray tracing and the Fokker-Planck equation codes are used to simulate the combined current drive of high harmonic fast wave (HHFW) and low hybrid wave (LHW) with high field side emission. The results show that under certain conditions, there is a large synergistic effect between the HHFW and LHW emitted from the high-field side, and there is a positive synergistic effect from close to the core to the wider off-axis region, which can effectively improve the current drive efficiency and improve the current distribution. The physical mechanism is analyzed and it is found that the synergistic effect is closely related to the spatial position of the velocity in the resonance region of the two waves. In addition, the effects of parallel refractive index, wave frequency, wave power and other parameters on the synergistic effect of the two-wave joint current drive are also studied.
Low hybrid wave; High harmonic fast wave; Synergy effects; Current drive; Tokamak
TL11
A
0258-0918(2023)05-1167-07
2022-09-29
國家磁約束核聚變能發(fā)展研究專項(2022YFE03090001);國家自然科學基金資助項目(11805096);湖南省教育廳優(yōu)秀青年項目(20B502);湖南省自然科學基金項目(2022JJ50157)
曹文虎(1993—),男,山東省濱州人,碩士研究生,現(xiàn)從事核聚變與等離子體物理方面研究。
尹 嵐,E-mail:yinlan82@126.com