• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Phase-Field Simulation of δ Hydride Precipitation with Interfacial Anisotropy

    2023-12-15 03:57:08HailongNieXinchengShiWenkuiYangKaileWangandYuhongZhao2
    Computers Materials&Continua 2023年11期

    Hailong Nie,Xincheng Shi,Wenkui Yang,Kaile Wang and Yuhong Zhao2,,3,★

    1School of Materials Science and Engineering,Collaborative Innovation Center of Ministry of Education and Shanxi Province for High-Performance Al/Mg Alloy Materials,North University of China,Taiyuan,030051,China

    2Beijing Advanced Innovation Center for Materials Genome Engineering,University of Science and Technology Beijing,Beijing,100083,China

    3Institute of Materials Intelligent Technology,Liaoning Academy of Materials,Shenyang,110004,China

    ABSTRACT Previous studies of δ hydride in zirconium alloys have mainly assumed an isotropic interface.In practice,the difference in crystal structure at the interface between the matrix phase and the precipitate phase results in an anisotropic interface.With the purpose of probing the real evolution of δ hydrides,this paper couples an anisotropy function in the interfacial energy and interfacial mobility.The influence of anisotropic interfacial energy and interfacial mobility on the morphology of δ hydride precipitation was investigated using the phase-field method.The results show that the isotropy hydride precipitates a slate-like morphology,and the anisotropic δ hydride precipitates at the semi-coherent and non-coherent interfaces exhibited parallelogram-like and needle-like,which is consistent with the actual experimental morphology.Compared with the coherent interface,the semi-coherent or non-coherent interface adjusts the lattice mismatch,resulting in lower gradient energy that is more consistent with the true interfacial state.Simultaneously,an important chain of relationships is proposed,in the range of Ix <Iy <1.5Ix(Iy <Ix or Iy >1.5Ix),with the increase of the anisotropic mobility Iy in the y-axis,the gradient energy increases(decreases),the tendency of the non-coherent(semi-coherent)relationship at the interface,and the precipitation rate of hydride decreases(increases).Furthermore,the inhomogeneous stress distribution around the hydride leads to a localized enrichment of the hydrogen concentration,producing a hydride tip.The study of interfacial anisotropy is informative for future studies of δ hydride precipitation orientation and properties.

    KEYWORDS Zirconium;δ hydride;phase-field method;interfacial anisotropy;interfacial mobility

    1 Introduction

    Zirconium alloy is widely used in nuclear fuel rod cladding for nuclear reactors,motivated by excellent mechanical properties,corrosion resistance,and low neutron adsorption cross-section [1].In nuclear reactors,at constant temperatures,the concentration of hydrogen in a solid solution is lower than the final solid solubility of the hydride precipitate [2].When the hydrogen concentration reaches its solid solution limit,the zirconium alloy absorbs hydrogen to produce brittleδhydride[3].The morphology affects the ductility and fracture toughness of zirconium alloy materials [4,5].In the past decade,researchers have made great efforts to observe the morphology ofδhydride using high-resolution electron microscopy or bright field transmission electron microscopy,namely the morphology of needles and platelets[6,7].Meanwhile,different environmental variables can also affect the distribution state ofδhydride.For example,the introduction of grain boundaries[8],internal stress[9],and external load[10]would alter the reorientation behavior[11]and precipitation habit plant of circumferential and radial hydride,resulting in a small amount of radial hydride precipitation at the grain boundary has the orientation relationship ofα//{111}δand radialδhydride is precipitated when applied load.

    The nature of the interface between theδhydride and the zirconium matrix affects the morphology and orientation of the precipitate phase.However,due to the spatial and temporal limitations of the experimental process,it is difficult to study and analyze the relationship between the nature of the interface and the morphology of the precipitate phase in a continuous and quantitative manner.Therefore,the effect of interfacial anisotropy on the morphology ofδhydride precipitation has been less studied.

    The phase-field method is a good remedy for the inability of experiments to observe the phase transformation process dynamically and continuously[12-14].This method has been used to simulate and predict the microstructure and tissue morphology evolution during the phase transformation of materials by solving the controlling equations [15-17].It helps to understand the precipitation mechanism of solid phase change processes [18-24].The phase-field method has been widely used to simulate the microstructure of hydride in zirconium alloy[25-29].Usually,the majority of research on stress-induced (internal stress and external load) nucleation,growth,stacking,and reorientation behavior ofδhydrides [30-33].However,these theoretical achievements were based on a coherent interface between the precipitate phase and the matrix phase.

    In fact,due to the difference in crystal structure between the hexagonal close-packed (HCP)matrix phase and the face-centered cubic (FCC)δhydride precipitate phase.The semi-coherent or non-coherent interface produces interfacial energy difference,resulting in interfacial anisotropy,which ultimately affects the morphology of theδhydride precipitated.Anisotropy has been extensively studied by previous authors.Ghosh et al.[34]used a three-dimensional phase field method to study the microstructural evolution of binary eutectic alloy with interphase boundary anisotropy during the solidification process.Cai et al.[35] simulated the critical orientation angle of the anisotropic structure of a needle-like Al4C3.Mao et al.[36]considered the anisotropic interfacial energy and elastic interaction to simulate the evolution of the precipitation morphology ofβ′′in Al-Mg-Si alloy.In this study,by incorporating an anisotropy function related to the precipitation angle in the interfacial energy and interfacial mobility,this paper aims to reveal the effect of anisotropy on the precipitation morphology ofδhydride in zirconium alloys.

    2 Phase-Field Model

    The phase-field simulation forδhydride precipitation coupled with interfacial anisotropy in this work is based on the EasyPhase software package,a comprehensive phase field theory software package developed by Professor Yuhong Zhao’s research group[37].The phase-field method expresses the precipitation process of the phase through continuous diffusion of the interface and uses both conserved field variables and non-conserved field variables to describe the microstructure evolution of the system[38,39].The conserved field variableCis controlled by the Cahn-Hilliard equation[40]and the non-conserved field variableηpis controlled by the Allen-Cahn equation[41],as shown in Eqs.(1)and(2)[42].

    Cahn-Hilliard phase-field equation:

    Allen-Cahn phase-field equation:

    whereCis the concentration field indicating the composition.ηpis the order parameter,p=1,2,3 representing three different directional variants of hydride,where variants 2,3 are obtained by rotating variant 1 by 120°and 240°.Mis the diffusion mobility[43]of hydrogen atoms in zirconium.Fis the total free energy of the system.L(φx,φy)is the interfacial mobility,φx,φyare the angles between the normal direction of hydride precipitation and the x and y axes,respectively.ξandζpare noise terms satisfying the up and-down dissipation theorem.

    Total free energy of the system[44]:

    whereFis the total free energy.fis the chemical free energy density.The second and third terms are gradient energy.κpandλare the gradient coefficients.κpandλare positively correlated withγs/lin Shi et al.[45],whereγsis the interfacial energy between the hydride and matrix phase,lis the interfacial thickness.Eelis the strain energy term.Vis the system volume.

    The chemical free energy densityf(C,ηp)is expressed using a Landau polynomial:

    whereA1-A7are image-only parameters with positive values.A1-A4give locally smaller values offatC=C1,ηp=0 andC=C2,ηeq=0,whereηeqis the equilibrium value ofηpin the ordered phase.A5-A7ensures that two or more different variants are not produced at the same position.p,q,rare different variants of the hydride.C1andC2have the chemical free energy density minimum points atη=0 andη=±1,respectively.

    The strain energy can be calculated according to the Khanchaturyan theory of micro-elastic strain energy[46-48]:

    The lattice difference between the FCCδhydride and the HCP matrix phase could lead to anisotropy.The anisotropic interfacial energy formulas(6)and(7)[49-51]are coupled by considering the anisotropy of semi-coherent and non-coherent interfaces (Due to the large lattice mismatch in the interface,this paper has only considered semi-coherent and non-coherent interfacial states when performing simulations in the 2D plane):

    whereA(φx)is the anisotropic function,φxis the angle between the direction normal to the precipitation direction and the x-axis,as shown in Fig.1.The anisotropic functionsA(φx)in polar coordinates is shown in Fig.2.A(φx)=1 for 0°direction,φx=0,which corresponds to the non-coherent interface andA(φx)=0 for 90° direction,φx=which corresponds to the semi-coherent interface.The orientation relationship between the precipitate phase and the matrix phase in the x-axis directioncompared to the orientation relationship in the y-direction[110]δ||[0001]αis the habit surface.Therefore,it is reasonable to consider a semi-coherent interface in the x-axis direction and a non-coherent interface in the y-axis direction.γ1,γ2are the semi-coherent and non-coherent interfacial energy,respectively.It is calculated by first principles thatγ1=3.8J/m2,γ2=7.4J/m2.

    Figure 1: Schematic representation of the angle φx between the direction normal to the hydride precipitation direction at a point and the x-axis

    Figure 2:Anisotropic functions A(φx)in polar coordinates

    In the KKS(Kim,Kim,and Suzuki)phase field model,interfacial mobility is related to interfacial energy [52].The interfacial mobilityL[53,54] is affected by the interfacial anisotropy.Following Hu et al.[55] who defined the anisotropic interfacial mobility using segmented functions,the anisotropic interfacial mobilityL(φx,φy)is defined as follows:

    whereIxis the x-axis mobility coefficient andIyis the y-axis mobility coefficient,representing the weighting of the x-and y-axis mobility,respectively.Ix=1.0,Iy=0.2,which is not fixed but can be adjusted according to actual data.L0is the interfacial mobility coefficient.

    The relevant parameters are shown in the following Table 1:

    Table 1: Relevant parameters[56,57]

    3 Simulation Results and Analysis

    The crystal structure and lattice constant of the hydride precipitate phase and matrix phase are different,resulting in a semi-coherent or non-coherent interface.Differences in interfacial states will produce differences in interfacial energy,resulting in interfacial anisotropy of the hydride,which affects the precipitate morphology and orientation of the hydride.Fig.3 is a schematic diagram of the hydride variants with different precipitation orientations.The formation ofδhydride favors the transition from HCP to FCC,splitting the stress-free transformation strain into three components and giving rise to three different structural variants obeying a triple symmetry relationship[58].Variant 2 and variant 3 are obtained by rotating variant 1 by 120°and 240°,respectively.Fig.4 shows the simulation diagram and experiment diagram ofδhydride.Periodic boundary conditions are used.The metallographic photo of hydride in zirconium alloy tubes is shown in Fig.4d.The hydride observed in the experiment has different precipitated orientations.Fig.4a shows the precipitation of slate-shaped hydride in the xaxis and y-axis directions under the action of isotropic interfacial energy.Fig.4b shows the needle-like morphology of variant 1 hydride precipitation and variant 2 and variant 3 hydride precipitation parallelogram morphology under the action of anisotropic interfacial energy and interfacial mobility.Fig.4c shows anisotropy hydride precipitation morphology at the concentration order parameter field.The formation of the hydride tip is due to the uneven distribution of hydrogen concentration in the matrix under the action of tensile and compressive strain,and there are local enrichment areas.The hydrogen content at the hydride tip is less,which is not enough to continue the nucleation of the hydride,so the shape of the tip is formed[23].In the case of interfacial isotropy hydride without applied stress,the trend of hydride growth in the x-axis direction is significantly larger than that in the y-axis direction.X-axis direction is the habitual direction ofδhydride,and to minimize the stress around the matrix,the hydride tends to precipitate in the x-axis direction growth.However,there is no difference in precipitate orientation between the different variants.The anisotropic hydrides are less dependent on the plane of inertia,and the trend in precipitation growth of variant 1 hydride is not significant compared to that of variant 2 and variant 3 hydrides.The anisotropic hydrides have different precipitation orientations,which is consistent with experimental results and a more realistic situation,so anisotropy must be introduced.Subsequent studies have been directed towards anisotropy.

    Figure 3:Schematic diagram of different precipitation orientation variants of hydrides

    Figure 4: δ hydride simulation diagram and experiment diagram.(a),(b),(c) Hydride simulation diagram at time steps t=4000,t=10000,and t=20000,(a1-a3) Isotropy hydride precipitation morphology.(b1-b3) Anisotropy hydride precipitation morphology at structural order parameter field.(c1-c3) Anisotropy hydride precipitation morphology at concentration order parameter field.(d)Hydride metallographic photograph of zirconium alloy tubes[59]

    To obtain accurate hydride morphology characteristics,the different variants were simulated and tested individually.Fig.5 shows the precipitated morphology,equivalent forces diagram,and the circumferential length and radial height curves with time for different time steps of the individualδhydride.With the nucleation sites in the middle region.Fig.5a shows theδhydride of variant 1,which exhibits needle-like morphology with circumferential length (AB) and radial height (CD) of about 1215 and 345 nm at t=20000,and aspect ratio(AB/CD)of 3.52.Fig.5b shows theδhydride of variant 2,which exhibits a parallelogram-like morphology with a circumferential length (AB) of about 1252 nm and a radial height(CD)of about 355 nm at t=20000,with an aspect ratio of 3.53 and hydride precipitated deflection angle ofθ1=19°.Variant 3 is symmetrical with variant 2 and precipitates similar morphology,as shown in Fig.5c.The circumferential length(AB)of variant 3 is approximately 1237 nm and the radial height(CD)is approximately 340 nm at time step t=20000,with an aspect ratio of 3.64 and precipitated deflection angle ofθ1=19°.As shown in Figs.5d and 5e,the circumferential length is linear with time,and the radial height has a stepped change,which is due to the precipitation of hydride in a lateral stacking pattern[60],and there is an interval when measuring the radial height at a certain time.The equivalent stress is calculated using the VonMises equation[61],defined as:

    whereσxxis the positive stress in the x-direction.σyyis the positive stress in the y-direction.σzz=v(σxx+σyy),wherevis the Poisson’s ratio.σxyis the tangential stress.The stress of the acicular hydride is concentrated at the tip,the stress value in the inner and middle regions of the hydride is small,and the stress state inside the hydride is evenly distributed.The stress in the matrix on both sides of the hydride increases from the middle to the tip,and the stress in the matrix presents a cross-like distribution.The growth state and stress state of parallelogram-like shaped hydride is complicated.Stress in the matrix is concentrated at the tip,the middle region of the hydride is low,and the stress value on both sides is high.The stress state of the hydride in the matrix gradually decreases and then increases from both sides to the tip region,and the stress in the matrix shows a lateral H-shaped distribution.

    Figure 5: (Continued)

    Figure 5: Individual hydride morphology,equivalent force diagram,and circumferential length and height variation curves for different time steps t.(a,b,c) Morphology of variant 1,variant 2 and variant 3,(a1,b1,c1)t=4000,(a2,b2,c2)t=10000,(a3,b3,c3)t=20,000,(a4,b4,c4)Equivalent force diagram at t=20,000.(d)Variant 1,variant 2,and variant 3 circumferential length(AB length)curve with t.(e)Variant 1,variant 2,and variant 3 radial height(CD height)curve with t

    In general,the interfacial mobility coefficient is closely related to the interfacial energy.Therefore,anisotropic interfacial energy leads to the anisotropy of interfacial mobility.The change of hydride precipitated morphology is observed by changing the ratio of x and y-axis coefficients in interfacial mobility.Fig.6 shows the hydride morphology and equivalent force diagrams for different anisotropic mobility ratios.The variation curves of circumferential length and radial height and aspect ratio of hydride with anisotropic mobility ratio are shown in Fig.7.As the y-axis mobility ratio increases,the circumferential length peaks significantly atIy=1.0,showing a process of increase and then decrease and finally increase.The radial height variation fluctuates less,but has the same trend.The circumferential length is approximately 675 nm for variant 1,variant 2 about 630 nm,and variant 3 about 520 nm atIy=1.0.The radial height is approximately 160 nm for variant 1,variant 2 about 220 nm,and variant 3 about 190 nm atIy=1.0.The variation in the aspect ratio of variant 1 hydride compared to variant 2 and variant 3 tends to be greater.Variant 1 has an aspect ratio of about 2.7 atIy=0.2 and about 4.2 atIy=1.0.Variant 2 and variant 3 have aspect ratios of about 2.2 and 2.1 atIy=0.2 and about 2.8 and 2.7 atIy=1.0,respectively,which is a smaller difference.The growth orientation of the hydride is gradually tilted toward the y-axis,and the variation of the hydride precipitated deflection angle with the ratio of anisotropic mobility is shown in Fig.8.As the anisotropic mobility of variant 2 increases,the first precipitated deflection angleθ1tends to decrease.The second precipitated deflection angleθ2tends to increase.But the angle changes are small,withθ1varying in the range of about 17°-18.5°andθ2varying in the range of about 26.5°-28°.Variant 3 only precipitated the deflection angleθ1,which varies over a wide range of approximately 40°-45°.The stress is concentrated at the tip of the hydride,and the internal stress of variant 1 hydride is more powerful than variant 2 and variant 3 hydrides.Fig.9 shows the curve of the equivalent stress of the hydride with time for different anisotropic mobility ratios.Stress around the hydride can hinder the growth of the precipitate phase.With the increase of anisotropic interfacial mobility,the rate of increase of equivalent stress decreased,then increased,and finally decreased.The rate of hydride precipitation showed a trend of acceleration,then slowdown,and then acceleration.Later the hydride growth state is stable,the equivalent stress values for different ratios also tend to be stable with little difference.

    Figure 6: Hydride morphology and equivalent stress diagrams for different anisotropic interfacial mobility ratios at time step t=20000.(a1)Ix=1.0,Iy=0.2,(a2)Ix=1.0,Iy=0.5,(a3)Ix=1.0,Iy=1.0,(a4)Ix=1.0,Iy=1.5,(a5)Ix=1.0,Iy=2.0.(b1-b5)Equivalent stress diagrams

    Figure 7: Variation of circumferential length and radial height and aspect ratio of hydride with anisotropic mobility ratios at time step t=20000

    Figure 8:Variation curve of hydride precipitated deflection angle with anisotropic mobility ratios at time step t=20000

    Figure 9:Hydride equivalent stress curve with time for different anisotropic interfacial mobility ratios

    The magnitude of energy will affect the nucleation and growth of hydride.The gradient energy coefficient is related to interfacial energy,and the magnitude of anisotropic interfacial energy will affect the variation of gradient energy.Under the action of anisotropic interfacial energy,hydride forms parallelogram-like and needle-like morphology.Figs.10 and 11 are isotropic and anisotropic hydride gradient energy diagrams and curves.Interfacial anisotropy results in a decrease in gradient energy.Due to the influence of interfacial anisotropy between the hydride and matrix phase,the structure change at the interface is larger than the concentration change.Therefore,the gradient energy related to the structure tends to decrease significantly compared with the gradient energy related to the concentration.

    Figure 10: Gradient energy diagrams of isotropy and anisotropy hydrides at time step t=20000.(a1-a2) Isotropy hydride,(a1) Concentration gradient energy,(a2) Structural gradient energy.(b1-b2)Anisotropy hydride,(b1)Concentration gradient energy,(b2)Structural gradient energy

    Interfacial anisotropy leads to different hydride morphology,and there are differences in the stress states around different hydride morphology.Fig.12 shows the stress distribution of anisotropic hydride.The evolution of the equivalent stress with time step is shown in Fig.12a.The stress distribution shows that the equivalent stresses are concentrated at the hydride tips,and the stresses are less at the sides and inside the hydride.Figs.12b-12d show the positive stress in the x direction,the positive stress in the y direction,and the shear stress in the xy direction of the hydride,respectively.The stress value around the hydride is negative,which is manifested as compressive stress,and the positive stress value shows tensile stress.From Figs.12b and 12c,it can be seen thatσxxis negative andσyyis positive in the region on both sides of the hydride and at the tip of the hydride,σxxis positive andσyyis negative.The shear stress is caused by the hydride deflection precipitation,so the internal stress in the lateral precipitate hydride is larger than the internal stress in the precipitate hydride in the x-axis direction.For the lateral precipitate hydride,the shear stress is concentrated at the tip,negative inside the hydride and at the tip for variant 2,positive on both sides of the hydride,and the opposite for variant 3.The internal shear stress of the hydride precipitated along the x-axis is small,and the shear stress near the tip is evenly distributed.

    Figure 12: Anisotropic hydride stress distribution at time steps t=4000,10000,and 20000.(a1-a3)Equivalent stress,(b1-b3)σxx,(c1-c3)σyy,(d1-d3)γxy

    4 Discussions

    Under the effect of anisotropic interfacial energy and interfacial mobility,hydrides precipitate needle-like and parallelogram-like morphologies(Fig.4b).Yuan et al.[6]obtainedδhydride by hydrogen permeation treatment of Zr-4 alloy,and the bright field image was observed using Transmission electron microscope(TEM)to obtain the hydride morphology in Fig.13,where the parallelogram-like and needle-like morphology is the same as the simulation results.The stress state,aspect ratio,and precipitated deflection angle of the different hydrides were investigated by morphology observation of individualδhydrides as shown in Fig.5.Variant 1 hydrides have needle-like morphology and aspect ratios of approximately 3.52.Variant 2 and variant 3 hydrides have aspect ratios of approximately 3.5 and 3.64,respectively,and the precipitated deflection angle isθ1=19°,with parallelogram-like morphology.

    Figure 13:Experimental morphology[6]and simulated morphology of hydride at time step t=20000.(The yellow dotted line in the figure is labeled)

    Interfacial isotropy assumes that the interface is coherent.However,in practice,the semi-coherent or non-coherent interfacial state between HCP and FCC crystal structures will generate anisotropy.The effect on hydride morphology was investigated by varying the y-axis anisotropic interfacial mobility,as shown in Fig.6.It was found that the y-axis mobility coefficientIyincreased,the gradient energy at the interface showed a trend of decrease then increase and finally decrease,and the structural gradient energy varied more than that of the concentration gradient energy,as shown in Fig.14.WhenIy <Ix,with the increase of the y-axis interfacial anisotropy mobility coefficient,the gradient energy decreases,the trend of the semi-coherent relationship between the precipitate phase and the matrix phase increases,and the hydride precipitation rate is accelerated.However,the x-axis precipitate still dominates,and the hydride precipitate along the circumferential direction is obvious.The circumferential precipitated rate of variant 1 is accelerated and the aspect ratio increases,while the difference in aspect ratio of variant 2 and variant 3 are smaller,as shown in Fig.7.WhenIx < Iy <1.5Ix,as the y-axis mobility coefficient continues to increase,disincentives the x-axis interfacial mobility.X-axis directional interfacial energy increases and the trend of non-coherent relationship increases.The circumferential precipitation rate decreased,the circumferential length growth rate decreased,and the difference in hydride aspect ratio decreased.As the y-axis mobility coefficient continues to increase,whenIy >1.5Ix,the y-axis interfacial energy decreases,the trend of semi-coherent relationship again increases,and the hydride precipitation rate increases.The radial height growth rate of variant 2 and variant 3 are stronger than variant 1.Fig.9 shows the hydride equivalent stress curve with time for different anisotropic interfacial mobility ratios.The stress state of the precipitate phase includes elastic stress caused by lattice distortion and volume stress caused by hydride precipitation,and the stress around the hydride will inhibit the growth and precipitation of the hydride.The stress state around hydride decreases with the increase of anisotropic mobility,then increases,and finally decreases.When the hydride growth reaches the limit,the stress value tends to be stable between 850-880 MPa.

    Figure 14:Gradient energy curves with time for different anisotropic mobility ratios.(a)Concentration gradient energy,(b)Structural gradient energy

    Hydride precipitated morphology and orientation depend on the interfacial energy and interfacial mobility.The gradient energy coefficient is related to the interfacial energy[59,62].Under the action of anisotropic interfacial energy and interfacial mobility,variant 1 hydride precipitates needle-like morphology,and variant 2 and variant 3 hydride precipitates parallelogram-like morphology.Figs.10 and 11 show the gradient energy diagram and energy curve of the interfacial isotropy and anisotropy hydride in Fig.3.The interfacial anisotropy gradient can be reduced compared to the interfacial isotropy.As the interfacial anisotropy adjusts the lattice mismatch,it reduces the energy difference due to the lattice mismatch,resulting in a lower gradient energy.The structural difference changes significantly compared to the concentration difference.Therefore,the structure gradient energy decreases significantly more than the concentration gradient energy.It shows that the non-coherent or semi-coherent interface conforms to the interfacial state between the precipitate hydride phase and the matrix phase.It is more advantageous to replace the coherent interface with a semi-coherent or non-coherent interface close to the real situation.

    Differences in the precipitated morphology and growth characteristics of anisotropic hydride affect the change in the stress state around the hydride.Fig.12 represents the stress state of the anisotropy hydride,where the equivalent force is concentrated at the tip.Due to the mismatch between the two phases lattice,the matrix is strained to accommodate the growing hydride.The matrix part around the hydride is compressed,the rest is stretched,and the hydrogen atoms tend to diffuse toward the tension zone[25].The internal stress of the hydride precipitation in the x-axis direction is small,and the tensile stress and compressive stress at the tip are symmetrical.Since the regions above and below the hydride are in a compressed state,the hydrogen depletion region is formed,while the region near the hydride edge is in a stretched state,thus attracting hydrogen atoms.The tension region also tends to promote hydride precipitation,while compression impedes it,thus causing the hydride shape to be elongated.

    5 Conclusions

    In this study,phase-field simulation was performed onδhydride coupled with interfacial anisotropy in zirconium alloys,and the effect of interfacial anisotropy onδhydride precipitated morphology and stress state were analyzed.The main conclusions are as follows:

    1.The interfacial isotropic hydride precipitated morphology is slat-like.The addition of interfacial anisotropy,under the combined effect of interfacial energy and anisotropic interfacial mobility,transforms the hydride morphology from slat-like to parallelogram-like and needlelike morphology.This study optimizes the model to be closer to the real state,which is consistent with the experimental results.

    2.As the y-axis mobility coefficientIyincreases,whenIx <Iy <1.5Ix(Iy <IxorIy >1.5Ix),the gradient energy increases (decreases),and the non-coherent (semi-coherent) relationship between the interfaces increases.The growth rate of hydride circumferential length,radial height,and aspect ratio also decreases (increases),and the trend of the hydride growth decreases(increases).The stress state around the hydride tends to decrease,then increase,then decrease again.When the growth of the hydride reaches the limit,the stress value tends to be stable.

    3.The gradient energy coefficient is related to the interfacial energy.The anisotropy of the noncoherent or semi-coherent interface reduces the lattice mismatch between the precipitate phase and the matrix phase interface.Reduce the energy difference caused by lattice distortion,resulting in a decrease in gradient energy related to interfacial anisotropy.The semi-coherent or non-coherent interface instead of the coherent interface conforms to the real interfacial state between the precipitate phase and the matrix phase.

    4.The hydride morphology affects the stress state around the hydride.Due to the lattice mismatch between the two phases,the hydride in the matrix is under compression on both sides,hindering the absorption of hydrogen atoms.The tip and inside are stretched,promoting the absorption of hydrogen atoms,resulting in stress concentration at the tip and elongation of the hydride.At the same time,the uneven stress distribution around the hydride causes local enrichment of hydrogen concentration and produces tip morphology.

    Acknowledgement:The authors especially acknowledge Prof.Sanqiang Shi of Hong Kong Polytechnic University and Dr.Zhihua Xiao of Peking University.

    Funding Statement:The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (Nos.52375394,52074246,52275390,52205429,52201146),National Defense Basic Scientific Research Program of China (JCKY2020408B002,WDZC2022-12),Key Research and Development Program of Shanxi Province (202102050201011,202202050201014),Science and Technology Major Project of Shanxi Province(20191102008,20191102007)and Guiding Local Science and Technology Development Projects by the Central Government(YDZJSX2022A025,YDZJSX2021A027).

    Author Contributions:Investigation: H.L.Nie,X.C.Shi,W.K.Yang,K.L.Wang,Y.H.Zhao;data collection: H.L.Nie,X.C.Shi,W.K.Yang;analysis and interpretation of results: H.L.Nie,X.C.Shi,W.K.Yang,K.L.Wang,Y.H.Zhao;draft manuscript preparation: H.L.Nie,X.C.Shi,W.K.Yang,K.L.Wang,Y.H.Zhao;software and funding:Y.H.Zhao.All authors reviewed the results and approved the final version of the manuscript.

    Availability of Data and Materials:All data generated or analysed during this study are included in this article and are available from the corresponding author upon reasonable request.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    国产精品久久视频播放| 日韩大片免费观看网站 | 一级黄片播放器| ponron亚洲| 国产欧美日韩精品一区二区| 禁无遮挡网站| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲乱码一区二区免费版| 国产午夜精品一二区理论片| 久久精品国产99精品国产亚洲性色| 国产精品日韩av在线免费观看| 亚洲国产精品sss在线观看| 国产一级毛片七仙女欲春2| 国产伦精品一区二区三区四那| 午夜亚洲福利在线播放| 赤兔流量卡办理| 美女被艹到高潮喷水动态| 乱码一卡2卡4卡精品| 麻豆av噜噜一区二区三区| 亚洲人与动物交配视频| 简卡轻食公司| 国产黄色视频一区二区在线观看 | 精品久久久久久久久av| 日韩欧美 国产精品| 欧美日韩国产亚洲二区| 久久这里有精品视频免费| 女的被弄到高潮叫床怎么办| 国产亚洲精品久久久com| 日韩av在线大香蕉| 亚洲最大成人av| 亚洲欧洲日产国产| 国产成人福利小说| 亚洲精品乱久久久久久| 亚洲美女视频黄频| 自拍偷自拍亚洲精品老妇| 国产乱人视频| 亚洲中文字幕日韩| 国产麻豆成人av免费视频| 又粗又爽又猛毛片免费看| 一级毛片aaaaaa免费看小| 美女cb高潮喷水在线观看| 久久亚洲精品不卡| 久久亚洲国产成人精品v| 乱系列少妇在线播放| 亚洲综合精品二区| 成人特级av手机在线观看| 国产高清视频在线观看网站| 亚洲欧美成人综合另类久久久 | 亚洲国产最新在线播放| 狠狠狠狠99中文字幕| 欧美zozozo另类| 天天躁日日操中文字幕| 91精品伊人久久大香线蕉| 有码 亚洲区| 超碰97精品在线观看| 国产精品三级大全| 久久亚洲精品不卡| 国产精品1区2区在线观看.| 亚洲人成网站高清观看| 精品人妻熟女av久视频| 午夜激情福利司机影院| 两个人视频免费观看高清| 国产一区二区在线av高清观看| 三级毛片av免费| 狂野欧美白嫩少妇大欣赏| 国产麻豆成人av免费视频| 久久草成人影院| 亚洲精品一区蜜桃| 免费黄色在线免费观看| 亚洲精品国产av成人精品| 欧美性感艳星| 国产精品久久久久久精品电影| 成年版毛片免费区| 国产免费又黄又爽又色| 97热精品久久久久久| 我的女老师完整版在线观看| 大话2 男鬼变身卡| 免费观看精品视频网站| 秋霞在线观看毛片| 国产精品一及| 永久免费av网站大全| 亚洲精品一区蜜桃| 天天躁日日操中文字幕| 精品久久久久久电影网 | 黄色日韩在线| 国产在线男女| 熟妇人妻久久中文字幕3abv| 波多野结衣巨乳人妻| 国产真实乱freesex| 亚洲熟妇中文字幕五十中出| 精品人妻视频免费看| 免费无遮挡裸体视频| 久久精品国产99精品国产亚洲性色| 免费看美女性在线毛片视频| 美女国产视频在线观看| 久久久午夜欧美精品| 国产极品天堂在线| 国内精品美女久久久久久| 久久精品91蜜桃| 小说图片视频综合网站| 亚洲av二区三区四区| 国产av码专区亚洲av| 国产极品精品免费视频能看的| av天堂中文字幕网| 精品国产一区二区三区久久久樱花 | 精品国产露脸久久av麻豆 | 国产淫片久久久久久久久| 最近的中文字幕免费完整| 蜜桃亚洲精品一区二区三区| 国产v大片淫在线免费观看| 丝袜喷水一区| 精品久久久久久久久久久久久| 老女人水多毛片| 国产精品电影一区二区三区| 成人综合一区亚洲| h日本视频在线播放| 日韩欧美在线乱码| 日日摸夜夜添夜夜添av毛片| videos熟女内射| 女的被弄到高潮叫床怎么办| 国产成人aa在线观看| 日本一二三区视频观看| 亚洲国产精品成人综合色| 中文字幕熟女人妻在线| 国产欧美另类精品又又久久亚洲欧美| 美女大奶头视频| 亚洲精品久久久久久婷婷小说 | 六月丁香七月| 午夜老司机福利剧场| 三级毛片av免费| 中文字幕精品亚洲无线码一区| 亚洲欧美一区二区三区国产| 国产精品久久久久久久久免| 亚洲av成人精品一区久久| 一级av片app| 一级爰片在线观看| 国产午夜精品一二区理论片| 一个人看的www免费观看视频| ponron亚洲| 一卡2卡三卡四卡精品乱码亚洲| 99久国产av精品| 又爽又黄无遮挡网站| 91久久精品国产一区二区三区| 婷婷色综合大香蕉| 熟妇人妻久久中文字幕3abv| 乱码一卡2卡4卡精品| 在现免费观看毛片| or卡值多少钱| 亚洲美女视频黄频| 国产精品1区2区在线观看.| 国产精品永久免费网站| 成人av在线播放网站| 六月丁香七月| 亚洲国产欧美人成| 午夜福利高清视频| 三级国产精品欧美在线观看| 国产精品国产三级专区第一集| 国产精品综合久久久久久久免费| 永久免费av网站大全| 国产真实伦视频高清在线观看| 日韩精品有码人妻一区| 3wmmmm亚洲av在线观看| 草草在线视频免费看| 久久婷婷人人爽人人干人人爱| 国产成人91sexporn| 美女黄网站色视频| 日本猛色少妇xxxxx猛交久久| 一边亲一边摸免费视频| 中国国产av一级| 成人午夜高清在线视频| 亚洲综合精品二区| 美女高潮的动态| 在线播放国产精品三级| 夜夜爽夜夜爽视频| 最近的中文字幕免费完整| 一区二区三区免费毛片| 亚洲国产精品成人综合色| 九色成人免费人妻av| 亚洲精品日韩av片在线观看| 日本五十路高清| 国产精品久久久久久久电影| 色5月婷婷丁香| 亚洲经典国产精华液单| 看十八女毛片水多多多| 国产一级毛片七仙女欲春2| 欧美又色又爽又黄视频| 九九久久精品国产亚洲av麻豆| 久久精品影院6| 青青草视频在线视频观看| 国语对白做爰xxxⅹ性视频网站| 麻豆精品久久久久久蜜桃| 久久精品国产亚洲av天美| 国产成人a区在线观看| 亚洲美女搞黄在线观看| 亚洲国产精品国产精品| 夜夜爽夜夜爽视频| 日韩,欧美,国产一区二区三区 | 小蜜桃在线观看免费完整版高清| 国产大屁股一区二区在线视频| av黄色大香蕉| videos熟女内射| 国产综合懂色| 观看免费一级毛片| 中文字幕久久专区| 日韩一区二区视频免费看| 国产又色又爽无遮挡免| av福利片在线观看| 两个人的视频大全免费| 亚洲成人精品中文字幕电影| 精品久久久久久久久亚洲| 亚洲一级一片aⅴ在线观看| 国产黄a三级三级三级人| 国产高清有码在线观看视频| 国产免费视频播放在线视频 | 久久久久久伊人网av| 91久久精品国产一区二区三区| 91精品伊人久久大香线蕉| 国产片特级美女逼逼视频| 久久草成人影院| 可以在线观看毛片的网站| 欧美+日韩+精品| 久久精品国产亚洲av涩爱| 少妇熟女aⅴ在线视频| 精品国产一区二区三区久久久樱花 | 国产精品久久久久久av不卡| 麻豆av噜噜一区二区三区| 日韩欧美国产在线观看| 久久久久久久久久成人| 国产高潮美女av| 日本色播在线视频| 亚洲国产欧洲综合997久久,| 国产高清国产精品国产三级 | 成人午夜高清在线视频| 99久久精品国产国产毛片| 男人狂女人下面高潮的视频| 又黄又爽又刺激的免费视频.| 欧美+日韩+精品| 身体一侧抽搐| 国产成人免费观看mmmm| 国产真实伦视频高清在线观看| 在线观看一区二区三区| 欧美日本亚洲视频在线播放| 日本猛色少妇xxxxx猛交久久| 天天躁日日操中文字幕| 99热这里只有是精品在线观看| 亚洲人成网站高清观看| 亚洲天堂国产精品一区在线| 老师上课跳d突然被开到最大视频| 亚洲国产成人一精品久久久| 免费看av在线观看网站| 国产精品永久免费网站| 一级爰片在线观看| 亚洲性久久影院| 欧美日韩综合久久久久久| 亚洲精品亚洲一区二区| 免费不卡的大黄色大毛片视频在线观看 | 国产在线男女| av福利片在线观看| 国产精品福利在线免费观看| 床上黄色一级片| 日韩av在线大香蕉| 99久国产av精品国产电影| 日韩亚洲欧美综合| 国产精品一区www在线观看| 三级毛片av免费| 精品人妻一区二区三区麻豆| 丝袜喷水一区| 91狼人影院| 亚洲成人av在线免费| 又粗又爽又猛毛片免费看| 午夜a级毛片| 有码 亚洲区| 成人午夜高清在线视频| 国产老妇伦熟女老妇高清| 亚洲精品456在线播放app| 免费观看精品视频网站| 大香蕉久久网| 欧美日本亚洲视频在线播放| 免费av毛片视频| 一二三四中文在线观看免费高清| 亚洲国产色片| 如何舔出高潮| 欧美日本视频| 亚洲第一区二区三区不卡| 看非洲黑人一级黄片| 我的女老师完整版在线观看| 91在线精品国自产拍蜜月| 欧美xxxx性猛交bbbb| 精品国内亚洲2022精品成人| 99视频精品全部免费 在线| 日韩中字成人| 嫩草影院新地址| 国产黄色小视频在线观看| 一二三四中文在线观看免费高清| 国产精品久久久久久精品电影小说 | 亚洲成人精品中文字幕电影| 只有这里有精品99| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 美女内射精品一级片tv| 免费看日本二区| 久久亚洲国产成人精品v| 成人毛片60女人毛片免费| 亚洲欧洲国产日韩| 两个人视频免费观看高清| 麻豆乱淫一区二区| 少妇熟女欧美另类| 婷婷色av中文字幕| 免费看日本二区| 美女被艹到高潮喷水动态| 免费av观看视频| 欧美激情久久久久久爽电影| 人人妻人人澡人人爽人人夜夜 | 国产精品一区www在线观看| 国产乱人偷精品视频| 日韩成人伦理影院| 在线观看av片永久免费下载| 黑人高潮一二区| 久久国内精品自在自线图片| 又爽又黄a免费视频| 老司机影院毛片| 少妇被粗大猛烈的视频| 最近中文字幕高清免费大全6| 干丝袜人妻中文字幕| 国产成人一区二区在线| 人妻夜夜爽99麻豆av| 男人舔女人下体高潮全视频| 国产私拍福利视频在线观看| 淫秽高清视频在线观看| 亚洲最大成人手机在线| 如何舔出高潮| 亚洲人成网站在线观看播放| 黄色日韩在线| 亚洲精品日韩av片在线观看| 亚洲欧洲日产国产| 男插女下体视频免费在线播放| 中文字幕制服av| 久久亚洲国产成人精品v| 男的添女的下面高潮视频| 美女黄网站色视频| 99久久无色码亚洲精品果冻| 大又大粗又爽又黄少妇毛片口| 国产精品国产三级专区第一集| 91在线精品国自产拍蜜月| 欧美xxxx性猛交bbbb| 中文字幕制服av| 一区二区三区高清视频在线| 亚洲av熟女| 又黄又爽又刺激的免费视频.| 欧美又色又爽又黄视频| 最近视频中文字幕2019在线8| 一本一本综合久久| 欧美日本视频| 七月丁香在线播放| 99热全是精品| 伦理电影大哥的女人| 变态另类丝袜制服| 免费看日本二区| 国产免费福利视频在线观看| 一个人免费在线观看电影| 亚洲天堂国产精品一区在线| 久久久午夜欧美精品| 午夜福利在线观看吧| 看片在线看免费视频| eeuss影院久久| 国产亚洲精品久久久com| 国产成人freesex在线| 少妇的逼好多水| 高清在线视频一区二区三区 | 一级毛片电影观看 | 日韩精品青青久久久久久| 精品一区二区三区视频在线| 亚洲av日韩在线播放| 2021少妇久久久久久久久久久| 欧美日韩综合久久久久久| 一区二区三区免费毛片| 高清午夜精品一区二区三区| 男人和女人高潮做爰伦理| 国产一级毛片七仙女欲春2| 亚洲av免费高清在线观看| 国产极品精品免费视频能看的| 99久久精品国产国产毛片| 久久精品91蜜桃| 一区二区三区乱码不卡18| 最近中文字幕2019免费版| av国产久精品久网站免费入址| 国产精品一区二区在线观看99 | 亚洲四区av| 日本-黄色视频高清免费观看| 日韩欧美精品免费久久| 亚洲欧美精品自产自拍| 乱系列少妇在线播放| 午夜福利高清视频| 中文字幕精品亚洲无线码一区| 午夜日本视频在线| 干丝袜人妻中文字幕| 久久国产乱子免费精品| 中文字幕亚洲精品专区| 国产成人91sexporn| 久久精品国产鲁丝片午夜精品| 亚洲综合色惰| 夜夜爽夜夜爽视频| 男女国产视频网站| 欧美人与善性xxx| 久久99热这里只频精品6学生 | 噜噜噜噜噜久久久久久91| 日韩在线高清观看一区二区三区| 一个人免费在线观看电影| 看免费成人av毛片| 国模一区二区三区四区视频| 国产免费福利视频在线观看| 久久久国产成人免费| 中文天堂在线官网| 中文字幕精品亚洲无线码一区| 蜜臀久久99精品久久宅男| 麻豆av噜噜一区二区三区| 精品人妻视频免费看| 成人亚洲精品av一区二区| 日本wwww免费看| 亚洲精品一区蜜桃| 亚洲国产欧美在线一区| 国产午夜精品一二区理论片| 午夜亚洲福利在线播放| 国产精品.久久久| 综合色丁香网| 三级经典国产精品| 大香蕉97超碰在线| 永久免费av网站大全| 久久精品夜色国产| 免费观看a级毛片全部| 中文字幕免费在线视频6| 亚洲欧洲国产日韩| 又黄又爽又刺激的免费视频.| 高清av免费在线| 人人妻人人看人人澡| 青青草视频在线视频观看| www.av在线官网国产| 嫩草影院入口| 插逼视频在线观看| 国产成人aa在线观看| 自拍偷自拍亚洲精品老妇| 欧美成人免费av一区二区三区| 亚洲欧美成人综合另类久久久 | 狂野欧美激情性xxxx在线观看| 97超碰精品成人国产| 一级毛片久久久久久久久女| 亚洲av二区三区四区| 久久国内精品自在自线图片| 男人舔奶头视频| 国产一级毛片在线| av免费在线看不卡| 亚洲丝袜综合中文字幕| 观看美女的网站| 国产精品.久久久| 春色校园在线视频观看| 亚洲精品乱码久久久久久按摩| 久久精品久久久久久久性| av免费观看日本| 国产av一区在线观看免费| 久久久精品欧美日韩精品| 精品久久久噜噜| 男女边吃奶边做爰视频| 日日摸夜夜添夜夜添av毛片| 99久久无色码亚洲精品果冻| 日本黄大片高清| 一级黄片播放器| 日韩中字成人| 久久久久久久亚洲中文字幕| 一级毛片电影观看 | 一级毛片电影观看 | 九九热线精品视视频播放| 麻豆成人av视频| 性插视频无遮挡在线免费观看| 亚洲中文字幕日韩| 秋霞在线观看毛片| 午夜a级毛片| 久久久久久久亚洲中文字幕| 国产高清国产精品国产三级 | 亚洲综合精品二区| 亚洲精品亚洲一区二区| 如何舔出高潮| 亚洲av免费在线观看| 赤兔流量卡办理| 日本av手机在线免费观看| 三级男女做爰猛烈吃奶摸视频| 大香蕉97超碰在线| 欧美日本亚洲视频在线播放| 国产精品永久免费网站| 国产一区二区亚洲精品在线观看| 久久鲁丝午夜福利片| 一边摸一边抽搐一进一小说| 国产精品综合久久久久久久免费| 又爽又黄无遮挡网站| 免费av毛片视频| a级一级毛片免费在线观看| 搡老妇女老女人老熟妇| 精品不卡国产一区二区三区| 三级毛片av免费| 看非洲黑人一级黄片| 99热这里只有是精品50| 欧美一区二区亚洲| 成人亚洲欧美一区二区av| 国产精品一区www在线观看| 亚洲精品日韩av片在线观看| 日韩欧美在线乱码| 亚洲av熟女| 国产一级毛片七仙女欲春2| 青春草国产在线视频| 九九久久精品国产亚洲av麻豆| 国产精品电影一区二区三区| 日日干狠狠操夜夜爽| 成年女人看的毛片在线观看| 美女高潮的动态| 3wmmmm亚洲av在线观看| 啦啦啦观看免费观看视频高清| 一级毛片久久久久久久久女| 在线天堂最新版资源| 水蜜桃什么品种好| 久久精品夜夜夜夜夜久久蜜豆| 国产色爽女视频免费观看| 亚洲最大成人av| 色综合色国产| 18禁裸乳无遮挡免费网站照片| 亚洲精品乱码久久久久久按摩| 国产91av在线免费观看| 麻豆国产97在线/欧美| 国产成人freesex在线| 大香蕉97超碰在线| 精品人妻视频免费看| 日本一本二区三区精品| 视频中文字幕在线观看| 国产极品精品免费视频能看的| 成年免费大片在线观看| 国产私拍福利视频在线观看| 国产亚洲精品av在线| 丰满少妇做爰视频| 免费看a级黄色片| 亚洲天堂国产精品一区在线| 亚洲欧洲日产国产| 久久鲁丝午夜福利片| 男人和女人高潮做爰伦理| 少妇人妻一区二区三区视频| av在线老鸭窝| 在线观看美女被高潮喷水网站| 熟女电影av网| 国产乱来视频区| 久久婷婷人人爽人人干人人爱| 波多野结衣巨乳人妻| 六月丁香七月| 亚洲av中文av极速乱| 久久精品国产鲁丝片午夜精品| 综合色av麻豆| 三级男女做爰猛烈吃奶摸视频| 中文字幕精品亚洲无线码一区| 亚洲伊人久久精品综合 | av又黄又爽大尺度在线免费看 | 淫秽高清视频在线观看| 精品不卡国产一区二区三区| 久久99热6这里只有精品| 亚洲精品乱久久久久久| 一个人看视频在线观看www免费| 久久久色成人| 男人舔女人下体高潮全视频| 麻豆一二三区av精品| 亚洲五月天丁香| 日日啪夜夜撸| 中文在线观看免费www的网站| 国产亚洲最大av| 人体艺术视频欧美日本| 免费看av在线观看网站| 又粗又硬又长又爽又黄的视频| 九草在线视频观看| 亚洲人与动物交配视频| 亚洲欧洲国产日韩| 欧美高清成人免费视频www| 亚洲国产最新在线播放| 中文欧美无线码| 国产免费又黄又爽又色| 亚洲aⅴ乱码一区二区在线播放| 纵有疾风起免费观看全集完整版 | 国产高清三级在线| 69人妻影院| 欧美一区二区精品小视频在线| 亚洲图色成人| 噜噜噜噜噜久久久久久91| 日本黄色视频三级网站网址| 欧美成人精品欧美一级黄| 国产av不卡久久| 免费无遮挡裸体视频| 能在线免费观看的黄片| 九九久久精品国产亚洲av麻豆| 亚洲国产日韩欧美精品在线观看| 18禁裸乳无遮挡免费网站照片| 深夜a级毛片| 成人一区二区视频在线观看| 亚洲高清免费不卡视频| av播播在线观看一区| 国产探花在线观看一区二区| 六月丁香七月| 久久99蜜桃精品久久| 联通29元200g的流量卡| 国产精品久久久久久av不卡| 亚洲真实伦在线观看| 久久久a久久爽久久v久久| 日本爱情动作片www.在线观看| 22中文网久久字幕| 午夜久久久久精精品| 嫩草影院新地址| 日韩一本色道免费dvd| 高清在线视频一区二区三区 | 午夜视频国产福利| 午夜免费激情av| 色噜噜av男人的天堂激情| 日韩在线高清观看一区二区三区| 一本一本综合久久| 草草在线视频免费看|