• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Leveraging Blockchain with Optimal Deep Learning-Based Drug Supply Chain Management for Pharmaceutical Industries

    2023-12-15 03:59:04ShanthiPerumalsamyandVenkateshKaliyamurthy
    Computers Materials&Continua 2023年11期

    Shanthi Perumalsamy and Venkatesh Kaliyamurthy

    Department of Networking and Communications,School of Computing,SRM Institute of Science and Technology,Kattankulathur,Tamil Nadu,603 203,India

    ABSTRACT Due to its complexity and involvement of numerous stakeholders,the pharmaceutical supply chain presents many challenges that companies must overcome to deliver necessary medications to patients efficiently.The pharmaceutical supply chain poses different challenging issues,encompasses supply chain visibility,cold-chain shipping,drug counterfeiting,and rising prescription drug prices,which can considerably surge out-of-pocket patient costs.Blockchain(BC)offers the technical base for such a scheme,as it could track legitimate drugs and avoid fake circulation.The designers presented the procedure of BC with fabric for creating a secured drug supplychain management(DSCM)method.With this motivation,the study presents a new blockchain with optimal deep learning-enabled DSCM and recommendation scheme(BCODL-DSCMRS)for Pharmaceutical Industries.Firstly,Hyperledger fabric is used for DSC management,enabling effective tracking processes in the smart pharmaceutical industry.In addition,a hybrid deep belief network(HDBN)model is used to suggest the best or top-rated medicines to healthcare providers and consumers.The spotted hyena optimizer (SHO) algorithm is used to optimize the performance of the HDBN model.The design of the HSO algorithm for tuning the HDBN model demonstrates the novelty of the work.The presented model is tested on the UCI repository’s open-access drug reviews database.

    KEYWORDS Drug supply chain;pharmaceutical industry;deep learning;blockchain;hyper ledger fabric;security;drug recommendation

    1 Introduction

    Over several years,pharmaceutical industries have faced the problem of tracking products through the supply chain.These drawbacks have become easier for fraudsters to launch fake drugs into the market[1,2].A new technique for tracking and tracing drugs is obligatory to overcome these problems.Research workers believe Blockchain(BC)could give the technical basis for those systems because it tracks legal drugs and prevents the circulation of fake ones[3].Counterfeit drugs are determined by the World Health Organization(WHO)as those that“are manufactured fraudulently,mislabelled of low quality,hiding the source details or identity,and the defined standard”.Despite being consumed,they might cause severe health problems.Sometimes the maker of fake drugs uses legitimate companies’logos to get their products into the market[4,5].Even though a global challenge,this practice extremely affects well-developed countries.Fake medications are distributed over an extremely complex network,making them challenging to remove and detect[6].A system is needed to track and trace drug delivery at all stages to avoid their distribution.BC is the modern innovation that promises to accomplish these objectives[7,8].Fig.1 represents the pipeline of supply chain management(SCM)in the medical industry.

    Figure 1:SCM in pharmaceutical industry

    The medical industry is a critical sector that should be controlled for optimization to be a part of the global trade mechanism[9].In that regard,it is essential to mobilize the resource to make sure that the predominant economic sector can be controlled for optimization [10,11].Even though the drug distribution method has considerably improved over the last few years,it is still necessary to increase the availability of tablets,authentication,and market dynamics of real-time price management.The system allows loopholes to become structural inefficiencies and market failures.This inefficiency creates credibility issues,drug shortages,etc.[12].This problem is the major cause of market failures and macro instability.As technology progresses,the present social structure of society does not support the technological pace.Consequently,a new measure needs to be taken to readapt the dynamics.The presented architecture is driven by the motivation to resolve those automation problems [13].The healthcare field regularizes itself and receives benefits from blockchain technology (BCT).BC was created initially to serve as the transaction log for Bitcoin[14].It gives a distributed ledger for storing data records arranged in various“blocks.”The collected data involves the participants,time,date,and price included in all the transactions[15].Once employed in the medical supply chain,BC provides an electronic ledger where everyone in the network can see and validate data.

    Existing deep learning(DL)enabled drug supply chain(DSC)management and recommendation systems have made significant progress in improving the efficiency and safety of DSCs.However,several limitations still need to be addressed to fully realize the potential of these systems.Some of the limitations are discussed here.The pharmaceutical industry is highly regulated,and each country or region may have different regulations for DSCs.The lack of standardization can make it challenging to develop DL models that can be applied globally.In addition,implementing DL-enabled DSC management and recommendation systems can be expensive and require significant computing resources.Scaling the system to handle large volumes of data can also be challenging.Most existing systems focus on optimizing specific aspects of the DSC,such as inventory management or logistics.However,end-to-end SCM requires a holistic approach that considers all aspects of the SCM,from manufacturing to delivery to the end customer.

    This study develops a new BC with optimal DL-enabled drug supply chain management and recommendation scheme (BCODL-DSCMRS) for Pharmaceutical Industries.The proposed BCODLDSCMRS technique mainly focuses on the incessant observation and tracing of the drug supply for addressing forging problems.The BCODL-DSCMRS technique comprises two significant modules:BC-enabled DSC management and a DL-based consumer recommendation system.Firstly,Hyperledger fabric is used for DSC management,enabling effective tracking processes in the smart medical industry.In addition,a hybrid deep belief network (HDBN) model is used to suggest the best or top-rated drugs to the medical industry customer.The spotted hyena optimizer (SHO) algorithm is exploited to optimize the performance of the HDBN model.The presented method is tested on the UCI repository’s open-access drug reviews database.The key contribution of the paper is summarized below:

    ? An intelligent BCODL-DSCMRS method encompassing BC-enabled DSC management,HDBN-based drug recommendation,and SHO-based parameter tuning is provided for pharmaceutical industries.To our knowledge,the BC-enabled DSC method has never been presented in the literature.

    ? A Hyperledger fabric approach is designed for addressing forging problems and DSC management in the pharmaceutical industry.

    ? Hyperparameter optimization of the HDBN approach using the SHO technique with crossvalidation assists to increase the prediction outcome of the BCODL-DSCMRS approach for hidden data.

    The rest of the paper is organized as follows.Section 2 gives the related works,Section 3 provides the presented method,Section 4 provides the result analysis,and Section 5 concludes the paper.

    2 Literature Review

    In [16],the authors presented and executed a new BC and ML-based DSC management and recommendation(DSCMR)method.The presented method comprises the BC-based DSCM and MLbased medicine recommendation model for users.During the primary element,the DSCM method used Hyperledger fabrics to constantly monitor and track the medicine delivery procedure from the smart medicine companies.However,the N-gram and Light Gradient Boosting Machine(LightGBM)techniques are utilized in the ML element for recommending the popular or optimum prescription to users of medicine companies.Musamih et al.[17]examined an Ethereum BC-based system leveraging smart contracts and decentralizing off-chain storing to effectively trace the product from the medical field.The smart contract assurance data source removes the necessity for mediators and offers every stakeholder a secured,immutable transaction history.

    Ahmadi et al.[18] inspected the novel medical governance dependent upon the Internet of Things(IoTs)and BCT.IoT-based BC is a form of distributed ledger(DLT)which keeps immutable records of the transaction,which is inefficient of existence fabricated and is noticeable to every participant.Executing an IoT-based BC technique offers the tools for the medical sector to optimize medicine governance along the SCM,which makes healthcare further reliable and effectual.Huang et al.[19]introduced a scenario-related BC technique for medicine traceability and regulation named Drugledger that recreates the entire service infrastructure with separate service providers as three independent service elements and ensures the authenticity and confidentiality of information.Additionally,Drugledger is effectually pruning their storing,attaining a stable and suitable BC storing.Jamil et al.[20] examined a new DSCM utilizing Hyperledger Fabric dependent upon BCT for handling secure DSC records.The presented technique resolves these challenges by carrying out drug record transactions on BC to construct a smart healthcare ecosystem with DSC.

    Agrawal et al.[21] proposed a BC-enabled network that permits manufacturers to monitor medicines efficiently but the SCM with enhanced safety and transparency over the procedure.This analysis also attempts to minimise the cost and time reliant on the manufacturing company to transfer the medicine to consumers by offering forward and backward SCM mathematical methods.In detail,the forward chain method maintains medicine delivery in the company to consumers in the shortest time with consistent transport mode.Uddin [22] presented a novel and new tracking and tracing BC-enabled Medledger method that leverages the Hyperledger Fabric BC environment utilizing chain codes (smart contracts).The presented Medledger method supports securely and efficiently applying DSC transactions from fabric,allowing a private permissioned,distributed network of distinct medicine stakeholders.The chain code can be planned,coded,and executed utilizing sequence diagrams for governing and controlling the interaction betwixt the contributing stakeholder from the DSC system.

    In[23],the authors developed a secure blockchain-based Proposed Application(PA)to generate,maintain,and validate healthcare certificates.Peng et al.[24] devised VFChain,an auditable and verifiable federated learning structure that depends on the BC system.Firstly,to offer verifiability,a committee was chosen using the BC to aggregate methods and record verifiable proof in the BC.After,a new authenticated data structure was introduced for BC’s auditability to augment the search efficacy of verifiable proof and supported a secure rotation of committees.Peng et al.[25]devised a method based on BC,a privacy-preserving verifiable data-sharing system.With a novel authenticated data structure method,the author designed a new BC-related structure to verify proficiently any part of the data record shared in a decentralized way.Wu et al.[26] devised a Verifiable Query Layer(VQL) deployed on the cloud to render verifiable and efficient data query services for BC systems.The middleware layer extracted data from basic BC technology and proficiently reorganize them in databases.A cryptographic fingerprint can be computed depending on all constructed databases to avoid fake datasets from being saved in the middleware.

    Although numerous ML and DL approaches for DSC management are available in this study,but still,it is essential to improve the overall performance.The amount of parameters of DL approaches also quickly increases,leading to overfitting the model because of continuous deepening.The metaheuristic algorithm can be employed since the trial and error model for hyperparameter tuning is a difficult process.Thus,the SHO algorithm is exploited for the parameter selection of DBN.

    3 The Proposed Model

    This article introduced a new BCODL-DSCMRS technique for automated DSC management and recommendation processes in the smart pharmaceutical industry.The presented BCODL-DSCMRS technique intends to the incessant observing and tracing of the drug supply for addressing forging problems.The BCODL-DSCMRS technique comprises two significant modules: BC-enabled DSC management and a DL-based consumer recommendation system.Fig.2 represents the overall workflow of the BCODL-DSCMRS method.

    3.1 BC-Based Distributed Ledger

    This work uses the Hyperledger fabric for DSC management,enabling an effective tracking process in the smart medical industry.The Hyperledger Fabric is established on the source of DLT technologies containing two parts: BC and world state parts [27].Hyperledger Fabric configures several world state datasets for maintaining the group of present values or states of procedures to provide the utility for accessing the present ledger states at some phase.The world state dataset part was capable of storing the states of the ledger effectively and recovering the applications or requirements of the users.Therefore,it stores the present state automatically,and the method developer verifies it,never seeing the complete transaction log.The data from the key-value pair can be kept inside the world state dataset.The database(DB)upgrades the state value automatically once the state has been altered or executed any transactions have.

    Figure 2:Overall workflow of BCODL-DSCMRS algorithm

    Two suitable choices of Level DB and Couch DB are accessible.A primary choice means level DB has a default state DB that maintains data of smart contracts from the key-value pair and occurs in all the pair nodes of networks.The outcomes of queries from Couch DB provide real data content.It also assists each type of query for accessing data content with the REST Application Programming Interface (API).Because of these features,couch DB can be utilized in the presented method for storing the data connected to our network.But the second part is BC which is the capability of storing the group of functions and alters that take place in the world state DB from the procedure of the transaction log.Next,this transaction has been saved in the procedure of blocks and is related to chain-like infrastructure.The transaction is saved in order from the BC network.The BC offers a data immutability feature;nobody alters or deletes the data once saved.

    3.2 Drug Recommendation Module

    Before proceeding to the recommendation process,the drug review dataset comprises noisy data initially pre-processed to improve its quality.Next,the Term Frequency-Inverse Document Frequency(TF-IDF)model is utilized for the feature extraction.TF-IDF is a statistical measure used to determine the mathematical impact of words in a document[28].The vectorization method is related to One Hot Encoding.On the other hand,the value equivalent to the word has been allocated a TF-IDF value rather than 1.The TF-IDF value has been attained by multiplying the TF and IDF values.In this work,the DBN model is applied to recommending medicines.Restricted Boltzmann Machine(RBM)comprises the hidden layer(HL)and visible layer(VL).The VL is accountable for input,and the HL also learn higher-level semantic feature from the input dataset.

    In Eq.(1),θ=(wmn,an,bm) represents the variable of RBM,wmnshows the weight between hidden unithnand visible unitvmandanandbmdefines the bias vector of hidden and visible units,correspondingly.Thevandhjoint likelihood distribution is computed by:

    whereg(x)=1/(1+exp(x))indicates the logistic function,andncharacterizes the number of layers in the network.

    The RBM mechanism can be trained by iteration,and the variableθ=(wmn,an,bm)is attained by the subsequent GD method:

    In Eq.(5),ηdenotes the learning rate.With a higher dimensional dataset,the GD algorithm is hard to resolve the model expectation.But the training efficacy of RBM could be considerably enhanced through the CD method as follows:

    In Eq.(6),(·)datarepresents the calculated expectation of the training dataset,and(·)recindicates the expectation of the reconstruction model.Next,the upgraded condition to obtain the weight and bias of DBN is as follows:

    Next,the variables of RBM are attuned to the suitable value to prevent the local optima solution.RBM has a stronger feature learning capability and is utilized for extracting data.But the RBM efficiency for FE is constrained once used for complex non-linear data.Therefore,the DBN explores a deep hierarchical depiction of the training sample.Both nearby layers of DBN are regarded as a single RBM.

    3.3 Hyperparameter Tuning Module

    The SHO technique is a hyperparameter optimizer to improve the DBN model’s performance.A spotted hyena (SH),or a laughing hyena,is considered the biggest among every hyena species[29].This hyena is a larger carnivore currently innate to Africa and originated in Asia.This species demonstrates higher societal attachment,complicated performance,competitive social patterns,and the most enormous clan size.While they lived major in number from the clan,it can be assumed that they were a great prosperous species because of their adaptability and cunning nature.It chases its chosen prey with a pack for long distances.The entire performance design of SHs is mathematically mapped to overcome various optimized complications.In the SHO implementation,prey location can be considered an instantaneous best for nearer to optimum as the searching area was unexplored earlier.After setting the best searching agent over the optimum solution,the rest of the searching agents change the location.An arithmetical illustration of performance was formulated by Eqs.(10)and(11).

    Mathematically,the track and hunt patterns are outlined as follows.Victim location was detected to a superlative agent(hyena)that is preserved as optimal.Eqs.(12)-(14)are liable for transforming the hyena’s position.

    whereasTPshallows the size of the population of SHs,RV is a vector measured arbitrarily,within limits 0 and 1,andgrsindicates a pool of candidate results.The optimal result is calculated by Eq.(15).

    4 Performance Validation

    The presented method is simulated by Python 3.6.5 tool on PC i5-8600k,16 GB RAM,GeForce 1050Ti 4 GB,1 TB HDD,and 250 GB SSD.The parameter settings are as follows: dropout: 0.5,learning rate:0.01,epoch count 50,activation:ReLU,and batch size:5.

    In this section,the experimental analysis of the BCODL-DSCMRS method on DSC management is investigated in detail.Table 1 and Fig.3 report the BCODL-DSCMRS method’s overall results with other existing DSC management approaches.The experimental results specified that the DSC-Gcoin model had reported lower performance than other techniques.Along with that,a slightly improvised outcome is obtained by the DSCIM-SH technique.Moreover,the RDRSCM-Hyperledger technique has accomplished reasonable outcomes over other models.However,the BCODL-DSCMRS model surpassed other models and attained maximum performance under all users.

    Table 1: Overall outcome of BCODL-DSCMRS approach under DSC management

    Figure 3:Latency analysis(a)latency in query transaction(b)total latency of different users(c)latency in invoking transaction(d)throughput analysis of different users

    The drug recommendation results of the BCODL-DSCMRS model are examined on the drug review dataset from the UCI repository (https://www.kaggle.com/datasets/jessicali9530/kuchackathon-winter-2018).The dataset includes 20000 samples with two classes,as given in Table 2.

    Table 2: Details of the dataset

    The confusion matrix of the BCODL-DSCMRS model under the drug recommendation process is depicted in Fig.4.With 80%of TRD;the BCODL-DSCMRS model has recognized 7808 samples as negative and 7886 samples as positive.Eventually,with 20%of TSD,the BCODL-DSCMRS technique recognized 1950 samples as negative and 1993 as positive.Meanwhile,with 30%of TSD,the BCODLDSCMRS technique has recognized 3030 samples as negative and 2885 as positive.

    Figure 4:Confusion matrices of BCODL-DSCMRS system(a and b)TRD/TSD of 80:20 and(c and d)TRD/TSD of 70:30

    In Table 3,the overall outcomes of the BCODL-DSCMRS method are investigated under different sizes of the training dataset(TRD)and testing dataset(TSD).The experimental values stated that the BCODL-DSCMRS model has properly recommended the drugs.With 80% of TRD,the BCODL-DSCMRS model reaches an averageaccubalof 98.09%,precnof 9 8.09%,recalof 98.09%,Fscoreof 98.09%,AUCscoreof 98.09%,and Matthews’s correlation coefficient(MCC)of 96.18%.Concurrently,with 20% of TSD,the BCODL-DSCMRS technique attains an averageaccubalof 98.57%,precnof 98.59%,recalof 98.57%,Fscoreof 98.57%,AUCscoreof 98.57%,and MCC of 97.16%.

    Table 3: Classifier outcome of BCODL-DSCMRS method with varying TRD/TSD

    Simultaneously,with 70%of TRD,the BCODL-DSCMRS method obtains an averageaccubalof 98.60%,precnof 98.60%,recalof 98.60%,Fscoreof 98.60%,AUCscoreof 98.60%,and MCC of 97.20%.Finally,with 30%of TSD,the BCODL-DSCMRS method obtains averageaccubalof 98.57%,precnof 98.59%,recalof 98.57%,Fscoreof 98.58%,AUCscoreof 98.57%,and MCC of 97.17%.

    The training accuracy (TAY) and validation accuracy (VAY) of the BCODL-DSCMRS system are performed in Fig.5.The figure implies that the BCODL-DSCMRS method had shown superior outcomes with the highest values of TAY and VAY.It is visible that the BCODL-DSCMRS technique has attained the maximum TAY outcomes.

    The training loss(TLSS)and validation loss(VLSS)of the BCODL-DSCMRS method are tested in Fig.6.The figure shows that the BCODL-DSCMRS system demonstrated superior performance with the lowest values of TLSS and VLSS.The BCODL-DSCMRS technique has resulted in the lowest VLSS outcomes.

    Figure 5:TAY and VAY outcome of BCODL-DSCMRS method

    Figure 6:TLSS and VLSS outcome of BCODL-DSCMRS method

    Table 4 represents the overall drug recommendation results of the BCODL-DSCMRS model[30].In Fig.7,a comparativeaccuyandAUCscoreexamination of the BCODL-DSCMRS model is investigated briefly.The results implied that the logistic regression (LR) and stochastic gradient descent(SGD)models have attained lower values ofaccuyandAUCscore.In line with this,the perceptron and multinomial Na?ve Bayes (NB) models have obtained slightly increasingaccuyandAUCscore.At the same time,the linear-Support Vector Machine (SVM) and ridge classifier models have resulted in closeraccuyandAUCscore.However,the BCODL-DSCMRS technique reached higheraccuyandAUCscoreof 98.57%and 98.57%,respectively.

    Table 4: Comparative analysis of the BCODL-DSCMRS method with other existing methods

    Figure 7:Accuy and AUCscore analysis of BCODL-DSCMRS method with other existing systems

    In Fig.8,a comparativePrecn,RecalandFscoreanalysis of the BCODL-DSCMRS technique is studied briefly.The outcomes implied that the LR and SGD models have attained lowerPrecn,RecalandFscorevalues.In line with this,the perceptron and multinomial NB models have obtained slightly increasingPrecn,RecalandFscore.Simultaneously,the linear-SVM and ridge classifier techniques have resulted in closerPrecn,Recal,andFscore.However,the BCODL-DSCMRS method reached higherPrecn,RecalandFscoreof 98.59%,98.57%,and 98.58%,correspondingly.These results demonstrated that the BCODL-DSCMRS technique reaches maximum performance.

    Figure 8:Comparative analysis of BCODL-DSCMRS approach with other existing systems

    5 Conclusion

    This article introduced a new BCODL-DSCMRS method for automated DSC management and recommendation processes in the smart pharmaceutical industry.The presented BCODL-DSCMRS technique intends to the incessant observing and tracing of the drug supply for addressing forging problems.The BCODL-DSCMRS technique comprises two significant modules: BC-enabled DSC management and a DL-based consumer recommendation system.Firstly,Hyperledger fabric is used for DSC management,enabling effective tracking processes in the smart medical industry.In addition,a hybrid DBN model is used to suggest the best or top-rated medicines to the pharmaceutical industry customer.The SHO algorithm can be used to improve the performance of the HDBN method.The proposed method is tested on the UCI repository’s open-access drug reviews database.The simulation results of the BCODL-DSCMRS technique show promising performance.In future,the performance of the proposed model can be improved by a hybrid metaheuristic algorithm.Besides,the results of the proposed model can be investigated on a large scale real time database.

    Acknowledgement:Not applicable.

    Funding Statement:The authors received no specific funding for this study.

    Author Contributions:Study conception and design: Shanthi Perumalsamy;data collection: Shanthi Perumalsamy;analysis and interpretation of results:Shanthi Perumalsamy,Venkatesh Kaliyamurthy;draft manuscript preparation:Shanthi Perumalsamy,Venkatesh Kaliyamurthy.All authors reviewed the results and approved the final version of the manuscript.

    Availability of Data and Materials:Not applicable.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    国产又黄又爽又无遮挡在线| 国产av一区在线观看免费| 免费看十八禁软件| 最近最新免费中文字幕在线| 成人午夜高清在线视频| 性色av乱码一区二区三区2| 免费搜索国产男女视频| 久久亚洲真实| 最后的刺客免费高清国语| 国产精品女同一区二区软件 | 久9热在线精品视频| 精品熟女少妇八av免费久了| 无人区码免费观看不卡| 亚洲人成伊人成综合网2020| 一级黄片播放器| 蜜桃亚洲精品一区二区三区| 亚洲久久久久久中文字幕| 亚洲国产精品久久男人天堂| 国产在线精品亚洲第一网站| 可以在线观看毛片的网站| 亚洲av中文字字幕乱码综合| 中文字幕高清在线视频| 国产激情偷乱视频一区二区| netflix在线观看网站| 欧美乱码精品一区二区三区| 久久久久久久亚洲中文字幕 | 亚洲avbb在线观看| 成熟少妇高潮喷水视频| 亚洲第一电影网av| 99热这里只有是精品50| 少妇的逼水好多| 欧美乱色亚洲激情| 波野结衣二区三区在线 | 女生性感内裤真人,穿戴方法视频| 国产黄a三级三级三级人| 久久久久久久午夜电影| 国产精品精品国产色婷婷| 亚洲国产精品成人综合色| 中国美女看黄片| 男人和女人高潮做爰伦理| 国产成人av教育| 国产精品亚洲av一区麻豆| 日本三级黄在线观看| 国产探花在线观看一区二区| 久久久久免费精品人妻一区二区| www日本在线高清视频| 一级黄色大片毛片| 1000部很黄的大片| 国产野战对白在线观看| 国产免费av片在线观看野外av| 丰满人妻一区二区三区视频av | 中国美女看黄片| 一级作爱视频免费观看| 少妇人妻精品综合一区二区 | 国内久久婷婷六月综合欲色啪| 99热这里只有是精品50| 真人做人爱边吃奶动态| 久久久久久久久中文| 老司机深夜福利视频在线观看| 欧美日韩瑟瑟在线播放| 欧美区成人在线视频| 12—13女人毛片做爰片一| 午夜福利18| 一区福利在线观看| 亚洲av免费在线观看| 国产精品爽爽va在线观看网站| 午夜亚洲福利在线播放| 性色avwww在线观看| 国产淫片久久久久久久久 | 国产黄色小视频在线观看| 99国产精品一区二区蜜桃av| 男人的好看免费观看在线视频| 操出白浆在线播放| 欧美一级毛片孕妇| 精品人妻一区二区三区麻豆 | 九色国产91popny在线| 少妇的逼水好多| 欧美不卡视频在线免费观看| 麻豆久久精品国产亚洲av| 午夜影院日韩av| 亚洲美女视频黄频| 欧美一区二区国产精品久久精品| 91在线精品国自产拍蜜月 | 日本熟妇午夜| 99视频精品全部免费 在线| 国产爱豆传媒在线观看| 啦啦啦免费观看视频1| 国产精品,欧美在线| 中文字幕熟女人妻在线| а√天堂www在线а√下载| 毛片女人毛片| 亚洲成a人片在线一区二区| 中文字幕人妻熟人妻熟丝袜美 | 女生性感内裤真人,穿戴方法视频| 69av精品久久久久久| 午夜老司机福利剧场| 无人区码免费观看不卡| 欧美日韩亚洲国产一区二区在线观看| 精品一区二区三区av网在线观看| 亚洲国产欧美网| 亚洲午夜理论影院| 在线观看66精品国产| 日韩人妻高清精品专区| 国产主播在线观看一区二区| 免费高清视频大片| 亚洲av第一区精品v没综合| 真人一进一出gif抽搐免费| 国产单亲对白刺激| 久久伊人香网站| 国产探花在线观看一区二区| 欧美绝顶高潮抽搐喷水| 亚洲专区国产一区二区| 又粗又爽又猛毛片免费看| 婷婷六月久久综合丁香| АⅤ资源中文在线天堂| 一个人免费在线观看电影| 黄片大片在线免费观看| 在线免费观看不下载黄p国产 | 欧美日韩中文字幕国产精品一区二区三区| 欧美zozozo另类| 欧美日韩一级在线毛片| av片东京热男人的天堂| 久久草成人影院| 淫妇啪啪啪对白视频| 国产熟女xx| 国产精品久久久久久久电影 | 在线免费观看不下载黄p国产 | 亚洲精品粉嫩美女一区| 免费看美女性在线毛片视频| 一边摸一边抽搐一进一小说| 在线免费观看不下载黄p国产 | 亚洲内射少妇av| 99久久无色码亚洲精品果冻| 一进一出抽搐动态| 成年女人毛片免费观看观看9| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 真人一进一出gif抽搐免费| xxxwww97欧美| 婷婷丁香在线五月| 午夜精品一区二区三区免费看| 757午夜福利合集在线观看| 大型黄色视频在线免费观看| 丁香欧美五月| 日韩欧美三级三区| 亚洲av一区综合| 在线观看日韩欧美| 国产精品永久免费网站| 香蕉久久夜色| 无遮挡黄片免费观看| 色综合站精品国产| 男人和女人高潮做爰伦理| 中出人妻视频一区二区| 亚洲片人在线观看| 色吧在线观看| 欧美在线一区亚洲| 操出白浆在线播放| 成人18禁在线播放| 99久久99久久久精品蜜桃| 成人特级黄色片久久久久久久| 亚洲自拍偷在线| 变态另类丝袜制服| 亚洲成人久久爱视频| 日韩欧美在线二视频| 99久久99久久久精品蜜桃| 亚洲成人免费电影在线观看| 亚洲精品一区av在线观看| 日本精品一区二区三区蜜桃| 日韩av在线大香蕉| 亚洲欧美激情综合另类| 内地一区二区视频在线| 精品久久久久久久人妻蜜臀av| 麻豆成人av在线观看| 午夜影院日韩av| 国产成人福利小说| 十八禁人妻一区二区| 老司机福利观看| 久久国产精品人妻蜜桃| www日本在线高清视频| 国内少妇人妻偷人精品xxx网站| 男人舔女人下体高潮全视频| 19禁男女啪啪无遮挡网站| 欧美激情在线99| bbb黄色大片| 国内精品久久久久精免费| 精品福利观看| 国产男靠女视频免费网站| 天堂√8在线中文| 欧美zozozo另类| 精品无人区乱码1区二区| 国产又黄又爽又无遮挡在线| 老熟妇乱子伦视频在线观看| 国产爱豆传媒在线观看| www.色视频.com| 18禁在线播放成人免费| 亚洲国产色片| 真实男女啪啪啪动态图| 99久久九九国产精品国产免费| 男女午夜视频在线观看| 亚洲精品国产精品久久久不卡| 性色avwww在线观看| 女人被狂操c到高潮| 一区二区三区国产精品乱码| 不卡一级毛片| 精品国产三级普通话版| 久久精品综合一区二区三区| 美女cb高潮喷水在线观看| 亚洲国产中文字幕在线视频| 欧美乱码精品一区二区三区| 三级国产精品欧美在线观看| 搡女人真爽免费视频火全软件 | 1024手机看黄色片| 有码 亚洲区| 亚洲 欧美 日韩 在线 免费| 人人妻人人看人人澡| 日韩欧美精品v在线| 夜夜看夜夜爽夜夜摸| 啦啦啦免费观看视频1| 天天添夜夜摸| 女警被强在线播放| 九色国产91popny在线| 国产亚洲精品久久久久久毛片| 中文字幕人成人乱码亚洲影| 免费看美女性在线毛片视频| 国产成人aa在线观看| 99精品在免费线老司机午夜| 在线天堂最新版资源| 久久亚洲精品不卡| 亚洲欧美日韩卡通动漫| 1024手机看黄色片| 国产精品一区二区免费欧美| 在线a可以看的网站| 草草在线视频免费看| 亚洲国产精品成人综合色| 最新在线观看一区二区三区| 人人妻人人看人人澡| 日本免费一区二区三区高清不卡| 丰满人妻一区二区三区视频av | 成人亚洲精品av一区二区| 国产伦一二天堂av在线观看| 久久欧美精品欧美久久欧美| 长腿黑丝高跟| 国产精品嫩草影院av在线观看 | 亚洲中文字幕日韩| 久久婷婷人人爽人人干人人爱| 亚洲性夜色夜夜综合| 老司机午夜十八禁免费视频| 日日摸夜夜添夜夜添小说| 不卡一级毛片| 国产高清视频在线观看网站| 亚洲最大成人手机在线| 久久久久久久亚洲中文字幕 | 午夜福利在线观看免费完整高清在 | 88av欧美| 给我免费播放毛片高清在线观看| 午夜久久久久精精品| 国产精品国产高清国产av| 熟女少妇亚洲综合色aaa.| 欧美一区二区精品小视频在线| 亚洲,欧美精品.| 黄片大片在线免费观看| 国产又黄又爽又无遮挡在线| 麻豆成人av在线观看| 国产精品av视频在线免费观看| 免费搜索国产男女视频| 99热这里只有精品一区| 手机成人av网站| 亚洲乱码一区二区免费版| а√天堂www在线а√下载| 亚洲精品乱码久久久v下载方式 | 日本与韩国留学比较| 性色av乱码一区二区三区2| 女人被狂操c到高潮| 无限看片的www在线观看| 久久国产乱子伦精品免费另类| 18禁美女被吸乳视频| 久99久视频精品免费| 欧美日韩国产亚洲二区| 精华霜和精华液先用哪个| 两个人视频免费观看高清| 国产单亲对白刺激| 天天一区二区日本电影三级| 精华霜和精华液先用哪个| 亚洲欧美日韩卡通动漫| xxx96com| 欧美一区二区精品小视频在线| 久久久久久大精品| 日本撒尿小便嘘嘘汇集6| 欧美绝顶高潮抽搐喷水| 男人舔女人下体高潮全视频| 在线观看午夜福利视频| 淫妇啪啪啪对白视频| 日韩免费av在线播放| 99国产综合亚洲精品| 久久草成人影院| 日韩精品中文字幕看吧| 久久久成人免费电影| 国产亚洲精品久久久com| 日日夜夜操网爽| 麻豆久久精品国产亚洲av| 90打野战视频偷拍视频| 97超级碰碰碰精品色视频在线观看| 日韩国内少妇激情av| 婷婷六月久久综合丁香| 男插女下体视频免费在线播放| 脱女人内裤的视频| 日韩欧美国产一区二区入口| 少妇裸体淫交视频免费看高清| 久久草成人影院| 免费av不卡在线播放| 亚洲18禁久久av| 99热6这里只有精品| 岛国在线观看网站| 久久精品国产清高在天天线| 给我免费播放毛片高清在线观看| 亚洲在线观看片| 国产高潮美女av| 我要搜黄色片| 黄色丝袜av网址大全| 国产高潮美女av| 叶爱在线成人免费视频播放| 人妻久久中文字幕网| 成人特级黄色片久久久久久久| 一级a爱片免费观看的视频| 久久亚洲真实| 日日夜夜操网爽| 在线视频色国产色| 亚洲国产精品成人综合色| 日韩欧美国产在线观看| 我的老师免费观看完整版| 免费看美女性在线毛片视频| 亚洲精品乱码久久久v下载方式 | 嫩草影院入口| 99热这里只有是精品50| 久久精品人妻少妇| 两个人视频免费观看高清| 国产精品 欧美亚洲| 1000部很黄的大片| 国产精品女同一区二区软件 | 欧美区成人在线视频| 中文字幕高清在线视频| 成年版毛片免费区| 怎么达到女性高潮| 两性午夜刺激爽爽歪歪视频在线观看| 内射极品少妇av片p| 亚洲色图av天堂| 国产精品亚洲美女久久久| 激情在线观看视频在线高清| 夜夜看夜夜爽夜夜摸| 亚洲国产精品999在线| 99国产综合亚洲精品| 无人区码免费观看不卡| av专区在线播放| ponron亚洲| 少妇的逼好多水| 俺也久久电影网| 国产成人啪精品午夜网站| 亚洲最大成人中文| 国产精品爽爽va在线观看网站| 天堂网av新在线| 国产91精品成人一区二区三区| 亚洲久久久久久中文字幕| 日韩精品青青久久久久久| 一本一本综合久久| 国产精品久久久久久久电影 | 亚洲无线观看免费| 国产一区二区亚洲精品在线观看| 日日摸夜夜添夜夜添小说| 国产成年人精品一区二区| 精品久久久久久久久久久久久| 3wmmmm亚洲av在线观看| 99久久综合精品五月天人人| 欧美在线黄色| 亚洲avbb在线观看| 久久精品夜夜夜夜夜久久蜜豆| 狂野欧美激情性xxxx| 欧美日本亚洲视频在线播放| 成人鲁丝片一二三区免费| 婷婷精品国产亚洲av在线| 可以在线观看的亚洲视频| 夜夜看夜夜爽夜夜摸| 男插女下体视频免费在线播放| av天堂中文字幕网| www.www免费av| 国产毛片a区久久久久| 18禁美女被吸乳视频| 国产伦在线观看视频一区| 午夜福利18| 国产蜜桃级精品一区二区三区| 国产伦精品一区二区三区视频9 | 一本久久中文字幕| av专区在线播放| 免费看a级黄色片| 观看美女的网站| 99久国产av精品| 亚洲专区国产一区二区| 免费高清视频大片| 99久久精品国产亚洲精品| 搞女人的毛片| 国产蜜桃级精品一区二区三区| 最近最新免费中文字幕在线| 精品久久久久久成人av| 欧美区成人在线视频| 一区福利在线观看| 色精品久久人妻99蜜桃| 一级黄色大片毛片| 桃红色精品国产亚洲av| 人妻夜夜爽99麻豆av| 麻豆国产av国片精品| 老汉色∧v一级毛片| 黄片大片在线免费观看| 我的老师免费观看完整版| 午夜精品久久久久久毛片777| 一区二区三区高清视频在线| 国产成人av教育| 欧美又色又爽又黄视频| xxxwww97欧美| 91av网一区二区| 欧美一级毛片孕妇| 久久精品国产亚洲av香蕉五月| svipshipincom国产片| 九九久久精品国产亚洲av麻豆| 99久久成人亚洲精品观看| 欧美午夜高清在线| 国产在线精品亚洲第一网站| 少妇的逼好多水| 亚洲中文日韩欧美视频| 偷拍熟女少妇极品色| 特级一级黄色大片| 男女视频在线观看网站免费| 九九在线视频观看精品| 1024手机看黄色片| 亚洲精品亚洲一区二区| 国产成人欧美在线观看| 久久亚洲精品不卡| xxx96com| 成年女人永久免费观看视频| 欧美+日韩+精品| 最近最新中文字幕大全免费视频| 波野结衣二区三区在线 | 中文资源天堂在线| 亚洲av第一区精品v没综合| 少妇高潮的动态图| 最后的刺客免费高清国语| 成年女人看的毛片在线观看| 国产美女午夜福利| 99国产极品粉嫩在线观看| 亚洲一区高清亚洲精品| 亚洲国产精品sss在线观看| 亚洲av不卡在线观看| 国产主播在线观看一区二区| 精品久久久久久久久久免费视频| 国产三级黄色录像| 欧美乱色亚洲激情| 亚洲五月天丁香| 成人特级黄色片久久久久久久| 又爽又黄a免费视频| 亚洲av.av天堂| 天堂网av新在线| 久久久久久久午夜电影| 99re6热这里在线精品视频| 亚洲国产精品成人综合色| 色网站视频免费| 国内精品宾馆在线| freevideosex欧美| 亚洲不卡免费看| 亚州av有码| 日韩欧美一区视频在线观看 | 亚洲色图av天堂| 免费观看的影片在线观看| 国产爱豆传媒在线观看| 国产单亲对白刺激| 菩萨蛮人人尽说江南好唐韦庄| 成人美女网站在线观看视频| 淫秽高清视频在线观看| 国产精品.久久久| 毛片女人毛片| freevideosex欧美| 亚洲精品乱码久久久v下载方式| 在线免费观看的www视频| 国产伦精品一区二区三区四那| 一级二级三级毛片免费看| 色综合色国产| 国产片特级美女逼逼视频| 蜜臀久久99精品久久宅男| 蜜桃久久精品国产亚洲av| 亚州av有码| 在线播放无遮挡| 日韩av在线大香蕉| 欧美xxⅹ黑人| 啦啦啦啦在线视频资源| 九九久久精品国产亚洲av麻豆| 青春草视频在线免费观看| 99九九线精品视频在线观看视频| 国产高清不卡午夜福利| 日韩 亚洲 欧美在线| 国产精品无大码| videos熟女内射| 色哟哟·www| 亚洲最大成人中文| 高清欧美精品videossex| 日韩av在线免费看完整版不卡| 嘟嘟电影网在线观看| 我的女老师完整版在线观看| 人人妻人人看人人澡| 成人午夜高清在线视频| 国产一级毛片七仙女欲春2| 免费在线观看成人毛片| 亚洲欧美成人综合另类久久久| 精品国内亚洲2022精品成人| 观看美女的网站| 高清午夜精品一区二区三区| 三级毛片av免费| 日韩伦理黄色片| 午夜精品一区二区三区免费看| 99九九线精品视频在线观看视频| 99视频精品全部免费 在线| 亚洲成人久久爱视频| 哪个播放器可以免费观看大片| 日本一本二区三区精品| 国产综合精华液| 亚洲电影在线观看av| 久久人人爽人人片av| 热99在线观看视频| 午夜视频国产福利| 国产成人a∨麻豆精品| 久久久久久九九精品二区国产| 18禁动态无遮挡网站| 国产精品一及| 日韩在线高清观看一区二区三区| 亚洲国产最新在线播放| 亚洲最大成人中文| 全区人妻精品视频| 国产精品国产三级专区第一集| 亚洲va在线va天堂va国产| 搞女人的毛片| 91久久精品国产一区二区三区| 亚洲国产精品国产精品| 亚洲乱码一区二区免费版| 大香蕉97超碰在线| 女人久久www免费人成看片| 一级毛片我不卡| 久久99精品国语久久久| 久久久a久久爽久久v久久| 国产精品精品国产色婷婷| 成人亚洲欧美一区二区av| 欧美xxxx性猛交bbbb| 久久精品夜夜夜夜夜久久蜜豆| 国产激情偷乱视频一区二区| 久久久久久国产a免费观看| 联通29元200g的流量卡| 爱豆传媒免费全集在线观看| 乱码一卡2卡4卡精品| 七月丁香在线播放| 久久久久久久久久久丰满| 国产伦精品一区二区三区视频9| 赤兔流量卡办理| 一区二区三区免费毛片| 人人妻人人澡欧美一区二区| 最近最新中文字幕大全电影3| 中国国产av一级| 亚洲国产高清在线一区二区三| 建设人人有责人人尽责人人享有的 | 国产成年人精品一区二区| 欧美+日韩+精品| 五月天丁香电影| 精品久久久久久久久亚洲| 成年女人在线观看亚洲视频 | 亚洲av在线观看美女高潮| 成人特级av手机在线观看| 精品不卡国产一区二区三区| a级毛色黄片| 亚洲自偷自拍三级| 日韩,欧美,国产一区二区三区| 精品欧美国产一区二区三| 亚洲成人中文字幕在线播放| 国产探花在线观看一区二区| 国产免费视频播放在线视频 | 精品99又大又爽又粗少妇毛片| 国产黄a三级三级三级人| 伦理电影大哥的女人| 狂野欧美白嫩少妇大欣赏| 色吧在线观看| 国产探花极品一区二区| 国产精品一区www在线观看| 3wmmmm亚洲av在线观看| 国产在线男女| 午夜老司机福利剧场| 日本与韩国留学比较| 大又大粗又爽又黄少妇毛片口| 久久韩国三级中文字幕| 午夜福利在线在线| 国产日韩欧美在线精品| 亚洲欧美日韩卡通动漫| 亚洲精品日韩在线中文字幕| 亚洲成人一二三区av| 国内揄拍国产精品人妻在线| 观看免费一级毛片| 尾随美女入室| 久久99热这里只频精品6学生| 亚洲成人av在线免费| 亚洲国产色片| 91aial.com中文字幕在线观看| 欧美日韩亚洲高清精品| 亚洲一级一片aⅴ在线观看| 国产色婷婷99| 国产精品女同一区二区软件| 国产男女超爽视频在线观看| 亚洲国产精品成人久久小说| 街头女战士在线观看网站| 亚洲精品国产av蜜桃| 日本wwww免费看| 久久久久久久久久久丰满| 高清av免费在线| 久久精品国产亚洲av涩爱| 2021少妇久久久久久久久久久|