• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Machine Learning Design of Aluminum-Lithium Alloys with High Strength

    2023-12-15 03:59:00HongxiaWangZhiqiangDuanQingweiGuoYongmeiZhangandYuhongZhao
    Computers Materials&Continua 2023年11期

    Hongxia Wang,Zhiqiang Duan,Qingwei Guo,Yongmei Zhang,★ and Yuhong Zhao,3,4,★

    1College of Semiconductors and Physics,North University of China,Taiyuan,030051,China

    2School of Materials Science and Engineering,Collaborative Innovation Center of Ministry of Education and Shanxi Province for High-Performance Al/Mg Alloy Materials,North University of China,Taiyuan,030051,China

    3Beijing Advanced Innovation Center for Materials Genome Engineering,University of Science and Technology Beijing,Beijing,100083,China

    4Institute of Materials Intelligent Technology,Liaoning Academy of Materials,Shenyang,110004,China

    ABSTRACT Due to the large unexplored compositional space,long development cycle,and high cost of traditional trial-anderror experiments,designing high strength aluminum-lithium alloys is a great challenge.This work establishes a performance-oriented machine learning design strategy for aluminum-lithium alloys to simplify and shorten the development cycle.The calculation results indicate that radial basis function(RBF) neural networks exhibit better predictive ability than back propagation(BP)neural networks.The RBF neural network predicted tensile and yield strengths with determination coefficients of 0.90 and 0.96,root mean square errors of 30.68 and 25.30,and mean absolute errors of 28.15 and 19.08,respectively.In the validation experiment,the comparison between experimental data and predicted data demonstrated the robustness of the two neural network models.The tensile and yield strengths of Al-2Li-1Cu-3Mg-0.2Zr(wt.%)alloy are 17.8 and 3.5 MPa higher than those of the Al-1Li-4.5Cu-0.2Zr (wt.%) alloy,which has the best overall performance,respectively.It demonstrates the reliability of the neural network model in designing high strength aluminum-lithium alloys,which provides a way to improve research and development efficiency.

    KEYWORDS Aluminum-lithium alloys;neural network;tensile strength;yield strength

    1 Introduction

    The severe situation of rapid reductions in fuel resources has made the demand for lightweight materials increasingly urgent,especially in the aerospace field [1-5].The aluminum-lithium alloy’s excellent properties of low density and high strength make it an ideal material for aircraft and new weapons[6-11].Research has found that every 1 wt.%of lithium added reduces aluminum alloy density by 3%and increases modulus by 6%[12-17].By replacing conventional aluminum alloy components with aluminum-lithium alloys,component mass can be reduced by 10%to 20%,and stiffness can be improved by 10%to 20%[16,18,19].Hence,in aerospace and defense fields,aluminum-lithium alloys are widely used[20-23].Due to the wide range of unexplored components,traditional trial-and-error methods consume time,manpower,and cost,and cannot meet the design requirements of high-end metal materials.Thus,designing high strength aluminum-lithium alloys remains a huge challenge.

    With the increasing computational power of computers,ML can explore the non-linear relationship between material composition,process,and performance by learning and training algorithms on complex datasets [24,25].On materials,ML is seen as a “semi-empirical” method that can be combined with other simulation calculation methods(first-principles calculation[26,27],phase field method [28,29],molecular dynamic [30-32],and high-throughput calculation [33,34]) to explore the physical quantitative relationships between material data and optimize material performance[35-38].Compared with traditional trial-and-error experiments,the ML method can more efficiently and quickly generate new models from material data.Currently,ML has been successfully used for the performance prediction of high-performance aluminum alloys,including tensile strength[39-43],yield strength [39,43,44],elongation [39,41],and hardness [45].Li et al.[39] investigated the relationship between the composition processes of the 7-series aluminum alloys using a genetic algorithm.The ultimate tensile strength (UTS) of the Al-7.5Zn-2Mg-1.8Cu-0.12Zr (wt.%) alloy was 664 MPa,the yield strength (YS) was 609 MPa,and the elongation was 13.5%.Jiang et al.[41] proposed a performance-oriented ML design system that can quickly obtain aluminum alloy composition designs that meet target strength and toughness requirements.The tensile strength of three typical alloys measured through experimental verification is 707-736 MPa.Although the ML method is widely used in the aluminum alloy field,its application in the aluminum-lithium alloy field is limited.Juan et al.[43]quickly designed a high strength aviation aluminum alloy (UTS=812 MPa,YS=792 MPa) using an ML knowledge design perception system.The database used for this study is not exclusively for aluminum-lithium alloys,and the proportion of aluminum-lithium alloy data is very small.Li et al.[46]established an AdaBoost regression prediction model to achieve the design of high-performance aluminum-lithium alloys.However,the non-linear relationship between strength,composition,and process remains unclear because no predictive regression model has been developed in this study.With the in-depth research of Al-Li alloys,some experimental data on the composition,processing,and performance of aluminum-lithium alloys have been accumulated.Therefore,there is hope to achieve accelerated design of high-performance aluminum-lithium alloys through machine learning.

    This study proposes a performance-oriented machine learning strategy for the “compositionprocess-performance”of Al-Li alloys.We have established two neural network models with composition and heat treatment process as input features,UTS and YS as output,and conducted experimental verification.The reliability of the neural network model for designing high strength aluminum-lithium alloys has been confirmed,and this strategy effectively shortens the research and development cycle,reduces costs,and accelerates the discovery and design of new materials.

    2 Machine Learning Model

    This study proposes a performance-oriented design strategy of “composition-heat treatmentmechanical properties”of Al-Li alloys.Fig.1 shows the specific research methodology,which includes data collection,data preprocessing,feature analysis,model construction,model evaluation,and performance prediction.

    2.1 Data Collection

    This study collected the composition,heat treatment process,and performance data of aluminumlithium alloys published in the literature over the past decade for data set construction.Among them,the alloy compositions include the elements Li,Mg,Cu,Si,Fe,Zr,and Sc,the heat treatment processes include solid solution temperature,time,aging temperature,time,and the performance parameters mainly include tensile strength and yield strength.It should be noted that to avoid excessive features caused by complex machining steps and ensure prediction accuracy,only aluminum alloys processed by traditional forming methods are considered,excluding severe plastic deformation techniques[47,48].

    2.2 Data Preprocessing

    Data preprocessing is one of the important steps in developing efficient and accurate ML models.The processing of outliers and missing values,data normalization,and partitioning of training and testing sets are important data preprocessing techniques[49].For data samples with significant missing feature values,we choose to delete them directly.When collecting data,we select data with more complete performance values so there are fewer missing performance values.We use the mean to replace the missing values.In the end,59 sample data were obtained.Table 1 shows the content range of alloy elements.Table 2 shows the range of heat treatment conditions.The target values for UTS and YS are 340 and 200 MPa,respectively.

    Table 1: Alloy elements and the range of element content in the dataset

    Table 2: The range of heat treatment conditions in the dataset

    Afterward,the processed dataset will be normalized.Normalization is a commonly used method for standard data preprocessing of numerical features.The right kind of normalization can not only speed up the training speed but can also improve the predictive ability of the model [50-52].This study used min-max standardization to scale the numerical values to intervals of[0,1],represented by Eq.(1):

    Among them,xrepresents the original data,x′represents the normalized data,maxrepresents the maximum ofx,andminrepresents the minimum ofx.

    2.3 Feature Analysis

    The correlation coefficient matrix graph can intuitively represent the correlation relationship between input data[43,46].The Pearson correlation coefficient between any two features is calculated by Eq.(2):

    Among them,xiandyiare any two feature values,is the average value ofxi,andis the average value ofyi.

    2.4 Model Construction

    2.4.1 Back Propagation Neural Network

    The BP neural network can quickly learn and establish relationships between data without the need to input mathematical equations between data relationships in advance.It is a commonly used error back propagation structure.The BP neural network continuously optimizes the network parameters until the error reaches the set target value[39,53,54].Fig.2 shows the structure of the BP neural network.Each layer of neurons in the BP neural network is connected to each other without feedback links,and there is no connection between neurons within the layer.The layers are connected to form a feed-forward neural network system[55,56].The calculation formula for hidden layer nodes is shown in Eq.(3):

    Among them,n,h,andjare the number of nodes in the input,hidden,and output layers,respectively,andais a constant between 1 and 10.

    Numerical overflow can lead to insufficient computational accuracy in the BP neural network.Therefore,we normalize the characteristic values and target values of the samples using the same method.Fig.3a shows the algorithm steps of the BP neural network.

    2.4.2 Radial Basis Function Neural Network

    The RBF neural network typically has three layers.The hidden layer of the RBF neural network uses RBF as the activation function.The output layer is a linear combination that is combined with the output layer and the hidden layer to form a feed-forward neural network.Fig.3b shows the algorithm steps of the RBF neural networks.The output formula is shown in Eq.(4):

    Figure 2:Topological structure of BP neural network

    Figure 3:Algorithm steps of two neural networks(a)BP neural network;(b)RBF neural network

    Among them,Nis the number of neurons in the hidden layer,φis the radial basis function,ciis the central vector,andwiis the output weight.

    RBF neural network has similar structures to the BP neural network,but its training speed is faster than the BP neural network.RBF neural networks have characteristics that other forward neural networks do not possess,such as global optimization and the ability to approximate any nonlinear function.

    2.5 Model Evaluation

    We selected three evaluation indicators to evaluate the performance of the two neural network models: determination coefficientR2,root mean square error (RMSE),and mean absolute error(MAE).The calculation formula is shown in Eqs.(5)-(7):

    Among them,yiis the experimental value,?yiis the predicted value,is the average value ofyi,andiis the number of samples participating in the evaluation(i=1,2,...,m).

    R2is used to characterize the interpretability between the data in ML regression models.Generally speaking,R2ranges between 0 and 1,with values nearer to 1 indicating input features and output results with better interpretability.However,we cannot measure the performance of the model solely by this standard.Therefore,RMSE and MAE are used together to assess predictive errors.RMSE and MAE can more directly reflect the size of the model’s prediction error,and the closer they are to zero,the more accurate the model’s prediction results will be.

    3 Results and Analysis

    3.1 Feature Correlation Analysis

    Fig.4 shows the Pearson correlation coefficientrvalue.Based on thervalues between -1 and+1,it can be determined whether the two variables are linearly correlated(r=+1 represents positive correlation,r=-1 represents negative correlation)or uncorrelated(r→0).In addition to thervalue,color change corresponds to the correlation between data,with green and red indicating strong positive and negative correlations,respectively.|r|>0.95 indicates a strong linear correlation between these two features,indicating that they have similar effects on alloy properties[43,57,58].There is a certain ratio relationship between the features Mg and Mg/Li,with anrvalue of 0.95.There is a strong positive correlation between the feature heat treatment conditions (solid solution temperature,time,aging temperature,time),withrvalues between 0.8 and 0.98.The weakest correlation was observed between feature Si and the target value UTS,as well as between feature Cu,solid solution time 1,and target value YS,with anrvalue of less than 0.1.Thervalue between UTS and YS is 0.88,indicating a strong correlation.

    Figure 4:Heat map of Pearson correlation coefficient matrix

    3.2 Model Accuracy Analysis

    The pre-processed dataset is randomly divided into training and test datasets in a 4:1 ratio.To better evaluate the robustness of the ML model,the training model uses a training dataset,and the trained model is tested using a testing dataset.The neural network model was established between alloy composition,process,and performance,with alloy composition,process as inputs and UTS,YS as outputs.By repeatedly training two models,the prediction results of the training and prediction sets are obtained.Figs.5 and 6 show the predicted results of the BP neural network.Figs.7 and 8 show the predicted results of the RBF neural network.The fitting curves of the true and predicted values show that the predicted values of the two models are very close to the true values,indicating that the training results of the two neural network models are accurate.

    Fig.9 shows the results of two neural networks predicting UTS and YS,respectively.The results indicate that the R2of UTS and YS predicted using the BP neural network is 0.84,0.95,RMSE is 38.56,26.29,and MAE is 33.04,20.31,respectively.The R2of UTS and YS predicted using the RBF neural network is 0.90 and 0.96,RMSE is 30.68 and 25.30,and MAE is 28.15 and 19.08,respectively.By comparing the calculation results and fitting graphs of the two models,we can see that the fitting degree of the RBF neural network is closer to the diagonal than the BP neural network,indicating that the RBF neural network model exhibits a better ability to predict.

    Figure 5:Comparison of true and predicted values of UTS predicted by BP neural network(a)training set;(b)test set

    Figure 6:Comparison of true and predicted values of YS predicted by BP neural network(a)training set;(b)test set

    4 Discussion

    4.1 Feature Importance Analysis Based on Shapley Values

    The Shapley value is used to describe the contribution of each feature to the predicted target[59-61].This study analyzed the degree of influence of different features on the performance indicators of UTS and YS,as shown in Fig.10.Figs.10a and 10c represent the Shapley values of UTS and YS for a single feature,respectively.The vertical axis sorts features based on the size of the Shapley value on the horizontal axis.Each point on the graph represents a sample,with red and blue corresponding to high and low values,respectively.The sample color maps to the feature values.Figs.10b and 10d represent the absolute values of a single feature for UTS and YS calculations,respectively,with the vertical axis corresponding to the feature term and the horizontal axis representing the mean absolute values of Shapley values,reflecting the importance of each feature in prediction.

    Figure 7: Comparison of true and predicted values of UTS predicted by RBF neural network (a)training set;(b)test set

    Figure 8:Comparison of true and predicted values of YS predicted by RBF neural network(a)training set;(b)test set

    The blue sample is on the negative x-axis,and the red sample is on the positive x-axis,indicating that the feature is positively correlated with the predicted target.Conversely,the feature is negatively correlated with the prediction target.Samples with positive Shapley values and large values indicate that it has a positive impact on the prediction results and will increase the predicted value of UTS or YS.On the contrary,samples with negative Shapley values and small values indicate that it has a negative impact on the prediction results and will decrease the prediction value of UTS or YS.As shown in Fig.10a,the features that are significantly positively correlated with UTS include aging temperature,solid solution temperature 1,Li element content,and aging time,while the features that are significantly negatively correlated with UTS include Mg element content,Mg/Li,and Cu element content.As shown in Fig.10b,the top 5 features that contribute most to the prediction of UTS are Mg element content,aging temperature,solid solution temperature 1,Mg/Li,and Cu element content.As shown in Fig.10c,the features that are significantly positively correlated with YS include aging temperature,aging time,Li element content,and solid solution temperature 1,while the features that are significantly negatively correlated with YS include Mg element content and Mg/Li.As shown in Fig.10d,the top 5 features that contribute the most to the prediction of YS are aging temperature,Mg element content,Mg/Li,aging time,and Cu element content.

    Figure 9:The results of training(a)and(b)BP neural network;(c)and(d)RBF neural network

    Mg and Cu elements are the main strengthening elements of aluminum-lithium alloys,and their addition can play a certain role in solid solution strengthening,while also reducing the solid solubility of Li in the matrix and promoting the precipitation ofδ′(Al3Li)phase and T1(Al2CuLi)phase,thereby improving the strength of the alloy.Therefore,the content of Mg and Cu is an essential feature for predicting UTS and YS.Aluminum-lithium alloys belong to the heat-treatable strengthening alloy.The precipitation sequence and distribution in aluminum-lithium alloys are affected by different solution temperatures,solution times,aging temperatures,and aging times,which in turn affects alloy performance.Fig.10 shows that aging temperature and solution temperature 1 are important features for predicting the UTS of aluminum-lithium alloys,while aging temperature and time are important features for predicting the YS of aluminum-lithium alloys.

    Figure 10: Shapley value analysis of UTS and YS with different features (a) The Shapley value of a single feature on UTS;(b)The absolute value of a single feature after UTS calculation;(c)The Shapley value of a single feature on YS;(d)The absolute value of a single feature after YS calculation

    4.2 Experimental Application

    Three types of alloys(1#,2#,and 3#)and two sets of experimental data of experimental alloys(4#and 5#)(not included in the model training)were selected from the recently published literature[62,63]to ensure the accuracy of the prediction model obtained in this work.The prediction was performed by the trained neural network model.Table 3 lists the composition of the predicted alloy.

    Table 3: Composition of predicted alloy

    Table 4: Experimental data and predicted data of UTS prediction model

    Table 5: Experimental data and predicted data of YS prediction model

    Figs.11a and 11b show the UTS and YS of the alloys predicted using the two models compared with the experimental values,respectively.Through observation,it was found that the RBF neural network model exhibits a higher accuracy in prediction than the BP neural networks,which is consistent with the results obtained from the model training,further verifying the reliability of the two neural network prediction models.Tables 4 and 5 calculate the prediction errors of the two neural network models.The maximum prediction error of the BP neural network model in predicting UTS is-13.8%for alloy 4#,in predicting YS is-12.6%for alloy 1#and 13.5%for alloy 4#;the maximum prediction error of the RBF neural network in predicting YS is 14%of the alloy 5#;all other errors are within 8.5%.This indicates that the neural network model can effectively predict the UTS and YS of new alloys,and the RBF neural network model has better performance than the BP neural network model.

    Figure 11:Validation of two model predictions

    Fig.12 shows the results of this study and the reported UTS and YS of the same type of aluminumlithium alloys.The comparison shows that the UTS of experimental alloy 4#is 358.8 MPa,which is 17.8 MPa higher than the UTS of Al-1Li-4.5Cu-0.2Zr(wt.%)alloy with the best overall performance.The YS of experimental alloy 4#is 211.5 MPa,which is 3.5 MPa higher than the YS of Al-1Li-4.5Cu-0.2Zr(wt.%)alloy with the best overall performance.

    Figure 12:Comparison of UTS and YS of high-strength Al-Li alloy

    5 Conclusion

    In this study,we collected data on Al-Li alloys from literature,including composition,process,and mechanical properties,and established predictive models for the strength of Al-Li alloys using the BP neural network and RBF neural network.The final results indicate that RBF neural networks exhibit better predictive ability than BP neural networks,with R2of 0.90 and 0.96 for UTS and YS,RMSE of 30.68 and 25.30,and MAE of 28.15 and 19.08,respectively.Finally,the accuracy of the two models was verified through experiments,indicating that the models can effectively predict the UTS and YS of new alloys.Compared with the reported properties of Al-Li alloys,the UTS and YS of Al-2Li-1Cu-3Mg-0.2Zr(wt.%)alloy are 17.8 and 3.5 MPa higher than the UTS and YS of the Al-1Li-4.5Cu-0.2Zr(wt.%)alloy with the best overall performance,respectively.The RBF neural network model can provide a reference for the accelerated design of high strength aluminum-lithium alloys.

    Acknowledgement:The authors would like to thank the editors and reviewers for their valuable work,as well as the supervisor and family for their valuable support during the research process.

    Funding Statement:The current work was supported by the National Natural Science Foundation of China (Nos.52074246,52275390,52205429,52201146);National Defense Basic Scientific Research Program of China(JCKY2020408B002);Key Research and Development Program of Shanxi Province(202102050201011,202202050201014).

    Author Contributions:The authors confirm contribution to the paper as follows:Y.H.Zhao:Methodology,Investigation,Software,Writing,Funding.H.X.Wang:Investigation,Writing-Original Draft,Writing-Review and Editing.Z.Q.Duan,Q.W.Guo and Y.M.Zhang:Resources,Validation,Writing-Review and Editing.All authors reviewed the results and approved the final version of the manuscript.

    Availability of Data and Materials:Required all data are presented in the“supplementary material for online publication only section”in the submission process.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    黄色怎么调成土黄色| 99re6热这里在线精品视频| 欧美日韩综合久久久久久| 国产精品.久久久| 亚洲精品久久久久久婷婷小说| 各种免费的搞黄视频| av国产精品久久久久影院| 久久人人爽人人片av| 国产免费又黄又爽又色| 欧美在线一区亚洲| 啦啦啦在线观看免费高清www| 久久精品久久精品一区二区三区| 天天躁日日躁夜夜躁夜夜| av不卡在线播放| 欧美日韩精品网址| 亚洲美女搞黄在线观看| 亚洲成人免费av在线播放| 久久婷婷青草| 两个人免费观看高清视频| 欧美在线黄色| 满18在线观看网站| 欧美国产精品一级二级三级| 麻豆乱淫一区二区| 一区二区日韩欧美中文字幕| 汤姆久久久久久久影院中文字幕| 天堂8中文在线网| 不卡av一区二区三区| 亚洲av在线观看美女高潮| www.av在线官网国产| 黄片无遮挡物在线观看| 久久99热这里只频精品6学生| 亚洲熟女毛片儿| 国产av一区二区精品久久| 亚洲av日韩在线播放| 国产成人欧美在线观看 | 99久久综合免费| 悠悠久久av| 99re6热这里在线精品视频| 成人手机av| 久久ye,这里只有精品| 水蜜桃什么品种好| 亚洲国产精品999| 亚洲一区二区三区欧美精品| 综合色丁香网| 亚洲av成人不卡在线观看播放网 | 黄片小视频在线播放| 男的添女的下面高潮视频| 亚洲综合色网址| 亚洲自偷自拍图片 自拍| 丁香六月天网| 大陆偷拍与自拍| 精品一区二区三区四区五区乱码 | 九色亚洲精品在线播放| 国产伦理片在线播放av一区| 少妇被粗大猛烈的视频| 日日摸夜夜添夜夜爱| 国产欧美日韩一区二区三区在线| 精品国产一区二区三区久久久樱花| 国产成人91sexporn| 精品一区二区三区av网在线观看 | 亚洲精品aⅴ在线观看| 777米奇影视久久| 亚洲四区av| 一级爰片在线观看| 国产精品 国内视频| 国产精品免费大片| 国产黄色视频一区二区在线观看| 久久毛片免费看一区二区三区| 亚洲七黄色美女视频| 一本—道久久a久久精品蜜桃钙片| 日韩欧美精品免费久久| 日韩电影二区| 久久99精品国语久久久| 精品少妇久久久久久888优播| 日韩一区二区三区影片| 成人午夜精彩视频在线观看| 亚洲美女黄色视频免费看| 国产成人av激情在线播放| 亚洲av综合色区一区| 亚洲久久久国产精品| 亚洲熟女精品中文字幕| 精品卡一卡二卡四卡免费| 国产成人精品在线电影| 欧美人与性动交α欧美精品济南到| 伦理电影免费视频| 亚洲精品国产av蜜桃| 看十八女毛片水多多多| 在线观看三级黄色| 丰满饥渴人妻一区二区三| 熟女av电影| 国产精品无大码| 精品少妇久久久久久888优播| 中文字幕制服av| 国产精品.久久久| 极品人妻少妇av视频| 日韩欧美精品免费久久| avwww免费| 色精品久久人妻99蜜桃| 久久97久久精品| 亚洲图色成人| 欧美精品一区二区大全| 观看美女的网站| 欧美日韩亚洲高清精品| 日韩熟女老妇一区二区性免费视频| 国产精品秋霞免费鲁丝片| 亚洲欧美一区二区三区久久| 午夜福利乱码中文字幕| 欧美人与性动交α欧美精品济南到| 国产免费视频播放在线视频| 一级爰片在线观看| 国产一区二区三区av在线| 亚洲 欧美一区二区三区| 久久久久久人妻| 免费高清在线观看日韩| 欧美国产精品一级二级三级| 纯流量卡能插随身wifi吗| 午夜福利免费观看在线| 亚洲国产中文字幕在线视频| 老司机靠b影院| 性高湖久久久久久久久免费观看| 成人国语在线视频| 欧美成人午夜精品| 色94色欧美一区二区| 日韩大片免费观看网站| 麻豆乱淫一区二区| 美女脱内裤让男人舔精品视频| 午夜激情久久久久久久| 亚洲精品美女久久久久99蜜臀 | 看非洲黑人一级黄片| 成人18禁高潮啪啪吃奶动态图| 久久久精品区二区三区| 美女脱内裤让男人舔精品视频| 自拍欧美九色日韩亚洲蝌蚪91| 国产 精品1| 久久亚洲国产成人精品v| 国产熟女午夜一区二区三区| 大片免费播放器 马上看| 亚洲成人免费av在线播放| 美女大奶头黄色视频| 国产精品女同一区二区软件| 中文字幕制服av| 叶爱在线成人免费视频播放| 久久久久人妻精品一区果冻| 新久久久久国产一级毛片| 国产女主播在线喷水免费视频网站| 国产人伦9x9x在线观看| 伊人久久国产一区二区| 亚洲av中文av极速乱| 啦啦啦中文免费视频观看日本| 女的被弄到高潮叫床怎么办| 精品福利永久在线观看| 丁香六月欧美| 久久久精品免费免费高清| 如日韩欧美国产精品一区二区三区| 卡戴珊不雅视频在线播放| videos熟女内射| 在线看a的网站| 国产高清国产精品国产三级| 亚洲国产精品国产精品| 汤姆久久久久久久影院中文字幕| 亚洲欧美清纯卡通| 91精品三级在线观看| 国产成人免费观看mmmm| 亚洲欧美激情在线| 丝袜美腿诱惑在线| 黄片播放在线免费| 一级爰片在线观看| 制服诱惑二区| 亚洲精品日本国产第一区| 国产一卡二卡三卡精品 | 97精品久久久久久久久久精品| 十八禁网站网址无遮挡| 日本猛色少妇xxxxx猛交久久| 一区二区三区激情视频| 成年美女黄网站色视频大全免费| 亚洲精品久久午夜乱码| 青春草视频在线免费观看| 91aial.com中文字幕在线观看| 欧美日韩国产mv在线观看视频| 一区福利在线观看| 日韩精品有码人妻一区| 麻豆精品久久久久久蜜桃| 成人免费观看视频高清| 国产人伦9x9x在线观看| 韩国精品一区二区三区| 18在线观看网站| 毛片一级片免费看久久久久| 国产成人午夜福利电影在线观看| 国产成人免费观看mmmm| 悠悠久久av| 国产免费福利视频在线观看| 黄色毛片三级朝国网站| 亚洲视频免费观看视频| 狂野欧美激情性xxxx| 久久精品久久久久久久性| 天天添夜夜摸| 国产成人av激情在线播放| 波多野结衣av一区二区av| 日韩大码丰满熟妇| 高清不卡的av网站| 女的被弄到高潮叫床怎么办| 巨乳人妻的诱惑在线观看| 亚洲精品美女久久久久99蜜臀 | 中文天堂在线官网| 日日撸夜夜添| 男男h啪啪无遮挡| 国产精品国产三级国产专区5o| 国产精品国产av在线观看| 老鸭窝网址在线观看| 成人三级做爰电影| 夜夜骑夜夜射夜夜干| 亚洲成人免费av在线播放| 香蕉丝袜av| 国产男人的电影天堂91| 国产免费一区二区三区四区乱码| 久久人人97超碰香蕉20202| 19禁男女啪啪无遮挡网站| 国产极品粉嫩免费观看在线| 久久久久网色| 亚洲人成77777在线视频| 免费av中文字幕在线| 免费黄网站久久成人精品| 久久久亚洲精品成人影院| 国产成人免费无遮挡视频| 亚洲国产看品久久| 日本vs欧美在线观看视频| 国产精品国产三级国产专区5o| 国产av码专区亚洲av| 国产精品女同一区二区软件| 80岁老熟妇乱子伦牲交| 中文字幕色久视频| 亚洲国产精品国产精品| 大香蕉久久成人网| 午夜激情av网站| 人人妻人人澡人人爽人人夜夜| 国产片内射在线| 十八禁高潮呻吟视频| av在线观看视频网站免费| av电影中文网址| 男女床上黄色一级片免费看| 欧美少妇被猛烈插入视频| 亚洲精品一区蜜桃| 中文欧美无线码| 不卡av一区二区三区| 久久鲁丝午夜福利片| 久久久国产一区二区| www.自偷自拍.com| 免费观看a级毛片全部| 男人爽女人下面视频在线观看| 美女高潮到喷水免费观看| 国产精品 欧美亚洲| 亚洲精品一区蜜桃| 久久久久精品久久久久真实原创| 亚洲精品第二区| 狠狠婷婷综合久久久久久88av| 观看美女的网站| 在线观看免费视频网站a站| 日本wwww免费看| 丰满饥渴人妻一区二区三| 最近最新中文字幕大全免费视频 | 人人妻,人人澡人人爽秒播 | 国产男女内射视频| 精品亚洲成国产av| 午夜老司机福利片| 女的被弄到高潮叫床怎么办| 国产精品一国产av| 侵犯人妻中文字幕一二三四区| 成人亚洲欧美一区二区av| 久久久久久久精品精品| 亚洲国产精品999| 熟女少妇亚洲综合色aaa.| 嫩草影视91久久| 免费人妻精品一区二区三区视频| 国产精品一区二区精品视频观看| 久久精品国产亚洲av涩爱| 日本一区二区免费在线视频| 男女国产视频网站| 丝袜脚勾引网站| 亚洲图色成人| 欧美日韩视频精品一区| 观看美女的网站| 99久久人妻综合| 成人毛片60女人毛片免费| 成人影院久久| 悠悠久久av| 丝袜美腿诱惑在线| 免费久久久久久久精品成人欧美视频| 丝袜脚勾引网站| 热99久久久久精品小说推荐| 国产极品天堂在线| 成人漫画全彩无遮挡| 亚洲精品国产区一区二| 亚洲,欧美,日韩| 久久久精品国产亚洲av高清涩受| 悠悠久久av| 久久久久久久久久久久大奶| 老司机影院成人| 女性生殖器流出的白浆| 国产99久久九九免费精品| 人妻 亚洲 视频| 色吧在线观看| 熟妇人妻不卡中文字幕| 一区在线观看完整版| 97人妻天天添夜夜摸| 午夜福利免费观看在线| 久久 成人 亚洲| 国产不卡av网站在线观看| 精品午夜福利在线看| 久久久久久人妻| 青草久久国产| 建设人人有责人人尽责人人享有的| 肉色欧美久久久久久久蜜桃| 看免费av毛片| 男女床上黄色一级片免费看| 搡老乐熟女国产| 欧美在线黄色| xxx大片免费视频| 久久久久久人妻| 国产精品偷伦视频观看了| 下体分泌物呈黄色| 亚洲七黄色美女视频| 亚洲国产欧美网| 男女床上黄色一级片免费看| 久久ye,这里只有精品| 男女无遮挡免费网站观看| 一级毛片 在线播放| 亚洲精品国产av蜜桃| 只有这里有精品99| 国产精品国产三级国产专区5o| 午夜福利网站1000一区二区三区| 我要看黄色一级片免费的| 女性生殖器流出的白浆| 美女福利国产在线| 捣出白浆h1v1| 日本爱情动作片www.在线观看| 人妻一区二区av| 亚洲欧洲精品一区二区精品久久久 | 两个人免费观看高清视频| 亚洲综合色网址| 国产日韩欧美在线精品| 国产亚洲欧美精品永久| 日本91视频免费播放| 99热网站在线观看| 国产日韩欧美亚洲二区| 一本色道久久久久久精品综合| 人人妻,人人澡人人爽秒播 | av天堂久久9| av视频免费观看在线观看| 一边亲一边摸免费视频| avwww免费| 欧美日韩亚洲国产一区二区在线观看 | 中文欧美无线码| 久久97久久精品| 免费黄网站久久成人精品| 免费观看人在逋| www.熟女人妻精品国产| 999久久久国产精品视频| 母亲3免费完整高清在线观看| 久久 成人 亚洲| 日韩一区二区视频免费看| 国产欧美日韩综合在线一区二区| 男人爽女人下面视频在线观看| 成年人免费黄色播放视频| 色综合欧美亚洲国产小说| 纯流量卡能插随身wifi吗| 伊人亚洲综合成人网| 日日摸夜夜添夜夜爱| 两个人免费观看高清视频| 一区二区av电影网| 国产精品一区二区精品视频观看| videosex国产| 久久综合国产亚洲精品| 欧美激情 高清一区二区三区| 久久影院123| 国产伦理片在线播放av一区| 校园人妻丝袜中文字幕| 国产成人精品福利久久| 99九九在线精品视频| 99精国产麻豆久久婷婷| 欧美人与性动交α欧美软件| 纵有疾风起免费观看全集完整版| av电影中文网址| 你懂的网址亚洲精品在线观看| 一本大道久久a久久精品| 精品国产乱码久久久久久男人| 丰满少妇做爰视频| 国产伦人伦偷精品视频| a 毛片基地| 久久天躁狠狠躁夜夜2o2o | 两个人免费观看高清视频| 黑人猛操日本美女一级片| 热99久久久久精品小说推荐| 国产成人av激情在线播放| 老汉色av国产亚洲站长工具| av卡一久久| 国产高清不卡午夜福利| 欧美国产精品va在线观看不卡| 国产成人精品久久二区二区91 | 精品国产一区二区三区久久久樱花| 女人爽到高潮嗷嗷叫在线视频| 免费观看人在逋| 五月天丁香电影| 午夜福利网站1000一区二区三区| 一级黄片播放器| 欧美日韩成人在线一区二区| 悠悠久久av| 日韩不卡一区二区三区视频在线| 国产亚洲精品第一综合不卡| 成人三级做爰电影| 亚洲成人国产一区在线观看 | 国产一级毛片在线| 国产麻豆69| av在线老鸭窝| 欧美国产精品一级二级三级| 欧美黑人欧美精品刺激| 国产成人免费无遮挡视频| 午夜福利在线免费观看网站| 欧美 亚洲 国产 日韩一| 亚洲精品aⅴ在线观看| 97精品久久久久久久久久精品| 汤姆久久久久久久影院中文字幕| 黄色 视频免费看| 日韩精品有码人妻一区| 久久久亚洲精品成人影院| 在现免费观看毛片| 又大又爽又粗| 欧美 日韩 精品 国产| 日本wwww免费看| 久久久国产欧美日韩av| 2018国产大陆天天弄谢| 国产伦理片在线播放av一区| 在线观看免费高清a一片| 99国产综合亚洲精品| 人妻人人澡人人爽人人| 欧美精品人与动牲交sv欧美| 国精品久久久久久国模美| 青春草视频在线免费观看| 18在线观看网站| 久久97久久精品| 黄片小视频在线播放| 又大又黄又爽视频免费| 欧美日韩国产mv在线观看视频| 亚洲中文av在线| 9191精品国产免费久久| 久久99一区二区三区| 亚洲五月色婷婷综合| 日本色播在线视频| 人人妻,人人澡人人爽秒播 | 久久ye,这里只有精品| 国产在线视频一区二区| 咕卡用的链子| 男女边摸边吃奶| 热re99久久精品国产66热6| bbb黄色大片| 国产精品久久久av美女十八| av国产久精品久网站免费入址| 国产免费现黄频在线看| 超碰成人久久| av在线观看视频网站免费| 欧美日韩亚洲高清精品| 国产成人欧美在线观看 | 国产女主播在线喷水免费视频网站| 亚洲精品成人av观看孕妇| 亚洲色图 男人天堂 中文字幕| 狠狠精品人妻久久久久久综合| 免费不卡黄色视频| 精品视频人人做人人爽| 色视频在线一区二区三区| 亚洲av电影在线进入| 免费日韩欧美在线观看| 亚洲人成电影观看| 自线自在国产av| 国产男人的电影天堂91| 高清视频免费观看一区二区| 王馨瑶露胸无遮挡在线观看| 国产精品 国内视频| 丝袜在线中文字幕| 成人国产av品久久久| 在线观看三级黄色| 免费在线观看完整版高清| 热re99久久国产66热| 亚洲第一区二区三区不卡| 97精品久久久久久久久久精品| 观看av在线不卡| 一个人免费看片子| 搡老乐熟女国产| 亚洲av日韩精品久久久久久密 | 啦啦啦啦在线视频资源| 极品人妻少妇av视频| 秋霞伦理黄片| 丁香六月欧美| 成人毛片60女人毛片免费| 妹子高潮喷水视频| 一级毛片 在线播放| 国产精品国产av在线观看| 黄色毛片三级朝国网站| 纵有疾风起免费观看全集完整版| 国产成人欧美| 一级毛片 在线播放| 亚洲欧美色中文字幕在线| 精品久久蜜臀av无| 亚洲成人免费av在线播放| 性少妇av在线| 男女午夜视频在线观看| 午夜老司机福利片| 久久久久久久大尺度免费视频| 青草久久国产| 欧美亚洲日本最大视频资源| 男人操女人黄网站| 999精品在线视频| 69精品国产乱码久久久| 欧美亚洲日本最大视频资源| 波多野结衣一区麻豆| 美女视频免费永久观看网站| 制服诱惑二区| 国产精品蜜桃在线观看| 操出白浆在线播放| 九九爱精品视频在线观看| 久久久久精品久久久久真实原创| 男人舔女人的私密视频| 一区二区av电影网| 新久久久久国产一级毛片| 各种免费的搞黄视频| 天天影视国产精品| 自拍欧美九色日韩亚洲蝌蚪91| 精品视频人人做人人爽| 国产成人啪精品午夜网站| 赤兔流量卡办理| 久久影院123| 亚洲成av片中文字幕在线观看| 国产免费一区二区三区四区乱码| 午夜日本视频在线| 国产在线一区二区三区精| 一级毛片电影观看| 亚洲人成77777在线视频| 免费黄色在线免费观看| 性少妇av在线| 亚洲国产精品999| 婷婷色综合www| 两性夫妻黄色片| 一级爰片在线观看| 久久精品久久精品一区二区三区| 国产成人精品久久二区二区91 | 婷婷色麻豆天堂久久| av线在线观看网站| 久久久久精品国产欧美久久久 | 涩涩av久久男人的天堂| 两个人看的免费小视频| 精品国产乱码久久久久久男人| 激情视频va一区二区三区| 最近最新中文字幕免费大全7| 亚洲男人天堂网一区| 亚洲欧美清纯卡通| 国产 一区精品| 午夜影院在线不卡| 国产99久久九九免费精品| 欧美在线一区亚洲| 久久人人97超碰香蕉20202| 男女高潮啪啪啪动态图| 99精国产麻豆久久婷婷| 久久久久久免费高清国产稀缺| 精品午夜福利在线看| 久久精品国产亚洲av涩爱| 在线 av 中文字幕| 成人国产麻豆网| 赤兔流量卡办理| 欧美乱码精品一区二区三区| 91aial.com中文字幕在线观看| 日本欧美视频一区| av天堂久久9| 欧美日本中文国产一区发布| 国产成人a∨麻豆精品| 国产av精品麻豆| 欧美国产精品va在线观看不卡| 久久天躁狠狠躁夜夜2o2o | 国产不卡av网站在线观看| av电影中文网址| 日本色播在线视频| 午夜福利乱码中文字幕| 久久精品国产综合久久久| 在线观看免费日韩欧美大片| 国产成人系列免费观看| 中文字幕av电影在线播放| 1024视频免费在线观看| 久久久国产欧美日韩av| 亚洲 欧美一区二区三区| 久久免费观看电影| 国产亚洲精品第一综合不卡| 日本爱情动作片www.在线观看| 美女大奶头黄色视频| 亚洲少妇的诱惑av| 亚洲国产精品一区三区| 满18在线观看网站| av线在线观看网站| 欧美日韩视频高清一区二区三区二| 51午夜福利影视在线观看| 成年av动漫网址| 成人18禁高潮啪啪吃奶动态图| 国产免费福利视频在线观看| www.自偷自拍.com| 久久久久久久久免费视频了| 中文天堂在线官网| 涩涩av久久男人的天堂| 亚洲色图综合在线观看| 亚洲一区二区三区欧美精品| 亚洲欧美色中文字幕在线| 91精品伊人久久大香线蕉| 久久精品亚洲av国产电影网| 日韩精品免费视频一区二区三区| 丰满少妇做爰视频| 99香蕉大伊视频| 国产精品国产av在线观看| 日本欧美国产在线视频| 一区二区av电影网| 亚洲在久久综合|