• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    β-Ga2O3 junction barrier Schottky diode with NiO p-well floating field rings

    2023-12-15 11:48:26QimingHe何啟鳴WeibingHao郝偉兵QiuyanLi李秋艷ZhaoHan韓照SongHe賀松QiLiu劉琦XuanzeZhou周選擇GuangweiXu徐光偉andShibingLong龍世兵
    Chinese Physics B 2023年12期

    Qiming He(何啟鳴), Weibing Hao(郝偉兵), Qiuyan Li(李秋艷), Zhao Han(韓照), Song He(賀松),Qi Liu(劉琦), Xuanze Zhou(周選擇), Guangwei Xu(徐光偉), and Shibing Long(龍世兵),?

    1School of Electronic and Information Engineering,Beihang University,Beijing 100191,China

    2School of Microelectronics,University of Science and Technology,Hefei 230026,China

    Keywords: gallium oxide,Schottky barrier diode,nickel oxide,floating field rings

    1.Introduction

    The evolution of power electronic devices has largely relied on advanced semiconductor materials to meet the continuous needs for lower power loss, higher power density, and higher withstand voltage devices.Over the past decade,betaphase gallium oxide (β-Ga2O3) has gained increasing attention due to its unique material properties and cost-effective melt growth methods.[1]The theoretical critical field strength ofβ-Ga2O3is several times higher than that of other power device materials such as Si, SiC, and GaN, reaching up to 8 MV/cm, mainly attributed to its ultra-wide bandgap of 4.5 eV-4.9 eV.[2-5]In particular,the Baliga figure of merit exceeding 3000 implies the potential ofβ-Ga2O3for power device application.Additionally,even more exciting news is that the donor concentration ofβ-Ga2O3epitaxial films can potentially be controlled at even lower levels thanks to new growth methods[6]and carrier compensating technology.[7]This could further enhance the voltage rating ofβ-Ga2O3devices.

    Power Schottky barrier diode(SBD),one of the most anticipated device types forβ-Ga2O3,always faces the challenge of electric field management.Localized high electric fields in SBD can lead to additional power loss and even catastrophic breakdown, leading to its performance much lower than the projected theoretical limit of the semiconductor.This issue is particularly severe forβ-Ga2O3SBD due to its higher critical breakdown field.In detail, the crowding electric field at the anode edge of the SBD results in a lower average electric field when the device breakdown.Not only that, even if the edge effect is ignored,the high electric field in the central anode region ofβ-Ga2O3SBD can cause a great barrier lowering,and the Schottky barrier, usually with lower energy, will lose its ability to block carriers, eventually leading to the soft breakdown of the device.

    In response to the aforementioned challenges, numerous edge termination and reduced surface field (RESURF)structures have been developed forβ-Ga2O3SBD.The main edge termination structures include field plate(FP),[8-11]resistive termination,[7,12-16]guard ring,[17,18]high barrier anode edge,[19]mesa termination,[20-22]junction termination extension(JTE),[23-26]and floating field rings(FFRs).[27-29]As for the surface field control of the main Schottky junction, there are feasible solutions such as metal-oxide-semiconductor(MOS)type trench fin,[30-32]and heterojunction barrier Schottky diode.[28,33-35]Unfortunately, the performance ofβ-Ga2O3SBD still falls short of the predicted level.In order to fully leverage the advantages ofβ-Ga2O3,it is necessary to improve the material quality and develop electric field modulate structures.

    In commercial power diodes, junction barrier Schottky(JBS) diodes combined with JTE and FFRs, which bring a low leakage current and high avalanche ruggedness, have been generally recognized.However,the difficulty in achieving conductive p-typeβ-Ga2O3has, to some extent, limited the structural diversity ofβ-Ga2O3SBDs.Currently, p-type wide bandgap semiconductors represented by NiO have been proven to form heterojunctions withβ-Ga2O3, serving as a viable alternative.[36-41]In this work, we developβ-Ga2O3junction barrier Schottky diodes with NiO p-well floating field rings (JBS-FFRs), providing a feasible electric field management solution.We experimentally demonstrated the electrical performance advantages of the device, and furthermore,identified the optimization direction of the designed structure through TCAD simulation methods.

    Figures 1(a) and 1(b) illustrate the schematic crosssectional image and plan-view optical micrograph of the JBSFFRs.The anode of the device is mainly composed of the JBS of the central electrode and the FFRs at the edge of the electrode.Below the central electrode lies a circular NiO p-well array with a depth of 0.4μm,in which the gap of the p-wells(GT)in the array is designed to be 3μm,4μm,and 5μm for comparative studies.The gap between the p-well FFRs (GR)is 2μm,with the same depth as JBS.Additionally,each p-well is equipped with NiO p-type field plate with a length(LFP)of 2 μm.Figures 1(c)-1(d) illustrate the operating mechanism of each structure in the JBS-FFRs under reverse bias.First,the NiO/β-Ga2O3circular p-well array under the anode can pinch-off the current path under the metal/β-Ga2O3Schottky diode between them,thereby reducing the surface field of the Schottky junction,[42]as shown in Fig.1(c).In addition, the fabricated NiO p-well FFRs surrounding the anode can spread the edge depletion region,[43]resulting in a reduced electric field, as shown in Fig.1(d).More importantly, the horizontal NiO p-type FP interacts with the trench sidewall lateral PN junction reduces the electric field at the trench corners and FP edges of the p-wells,as shown in Fig.1(e).Thanks to the lateral hetero p-n junction and p-type FP structure, the trench FFRs design may have greater potential spreading and edge field modulation capabilities than the planar structure.

    Fig.1.(a)The schematic cross-sectional image and(b)plan-view optical micrograph of the JBS-FFRs.The operating mechanism(reverse bias)of(c)p-well array,(d)floating field rings,and(e)NiO p-type field plate.The dashed lines and red point(or line)indicate the depletion region boundary and mainly electric field modulated position,respectively.

    2.Device fabrication

    The wafer used in this work,commercially available from Novel Crystal Technology, Inc., consists of a~10 μm epitaxial layer grown on 640 μm high net doping concentration(Nd-Na,~5×1018cm-3)β-Ga2O3substrate by halide vapor phase epitaxy.The epitaxial layer serves as a drift layer withNd-Naof~1.3×1016cm-3.The device fabrication started with solvent, and piranha solution cleaning, followed by Pt metal alignment mask deposition.Next,the trench rings and circle trench array with 400 nm depth were formed by dry etching and immediately followed by soaked in piranha solution for 15 min to remove the dry etch damage.Afterward,the wafer was soaked sequentially in a piranha solution for 15 min and then in a buffered oxide etch(BOE)solution for 30 min to repair etching damage.Then,Ti/Al/Ni/Au(20/160/40/80 nm)cathode metal was evaporated by electron beam, followed by a 470?C,1-min annealing process to form an ohmic contact.

    After completing the above process,p-wells were formed by depositing 270 nm thick p-type NiO on the anode side,which filled the circular trench array and trench rings.This depositing process used a high-purity NiO target and was performed in a mixture of Ar/O2(2:3)room temperature ambient to achieve a relatively high hole concentration of NiO.The RF power used during the experiment was 200 W,and the growth pressure was maintained at a fixed level of 3.7 mtorr.Based on the O 1s XPS spectrum,the NiO film exhibited p-type conductivity and demonstrated non-stoichiometric characteristics,with a Ni3+/Ni2+ratio of about 1.5.[39]To create the p-type FP structure, the edge of the NiO film was extended over 2 μm beyond the trench edge.Finally, Ni/Au (100/150 nm) anode metal with a 100 μm radius was evaporated by the electron beam.It is theoretical to form Schottky contact withβ-Ga2O3and form ohmic contact with NiO.

    The inset graph of Fig.2(a)shows the optical micrograph of a transfer length method(TLM)structure fabricated on the same wafer as the devices.This TLM test structure consists of a NiO film strip and several 100×70μm Ni/Au square electrodes, the distance between the two electrodes ranges from 5 μm to 45 μm with a step of 5 μm.Figure 2(a) displays the scanning current-voltage (I-V) results of the TLM structure, ranging from-10 V to 10 V.It can be found that all curves exhibit approximately linear behavior, indicating the ohmic contact between Ni/NiO.Figure 2(b) shows the total resistance between electrodes as a function of electrode gaps.The output resistance has shown strong linear dependence on electrode spacing,and the TLM data was fitted to extract contact resistance(RC=1.0 k?·mm), specific contact resistance(ρC=16.8 m?·cm2),and sheet resistance(Rsh=705.2 k?/?)of NiO film.Although theI-Vresults of TLM exhibit Ohmic contact characteristics, the values ofRCandRsh, as an active region total resistance component,are still relatively high,which could potentially impact the on-state performance of the device.In addition,the Ni/NiO may still be a Schottky contact with low barrier height, which will be discussed later in this article.

    In addition to devices shown in Fig.1(a), SBD without edge termination (regular SBD), NiO/β-Ga2O3heterojunction PN diode (PND), and JBS diode without FFRs (JBSD)were also fabricated as comparison devices.The low-voltage(≤200 V)I-Vcharacteristics of the devices under dark conditions were measured using the Keysight B1500A Semiconductor Device Analyzer, while the breakdown voltage (Vbr) was measured using the Keysight B1505A power device analyzer.To avoid premature breakdown caused by surface flashover,the devices were submerged in Fluorinert FC-770 during the measurement.

    3.Forward characteristics

    Figures 3(a) and 3(b) present the room temperature forward current density-voltage(J-V)characteristics of the fabricated devices in liner and semi-log scale,respectively.It can be observed that the turn-on voltage of SBD is significantly smaller than that of PND, while all JBS-FFRs exhibit an apparent two-stage turn-on characteristic.The voltage at the first turn-on is the same as SBD, about 1.1 V.And the voltage at the second turn-on is consistent with that of PND,about 2 V.Moreover, figure 3(b) demonstrates that the ideality factor of the PND is approximately 2,indicating that the current is contributed by both majority and minority carriers,while the SBD has an ideality factor of nearly 1, indicating that the current is mainly contributed by majority carriers.In contrast, the JBS-FFRs diode shows consistency with the SBD, implying that the current before its second turn-on primarily originates from its SBD component.Furthermore, we find that the current prior to the second turn-on is correlated with the ratio of the NiO p-well area(GT=3μm,~50%;GT=4μm,~45%;GT=5 μm,~40%) in the central anode.A greater proportion of the p-well area leads to a smaller current, which features similar to the merged PiN Schottky diode.The Schottky barrier diode(SBD)has a barrier height of 1.27 eV,while the JBS-FFRs withGTof 3μm,4μm,and 5μm have higher barrier heights of 1.41 eV,1.40 eV,and 1.34 eV,respectively.The increase in barrier height observed in JBS-FFRs compared to SBDs can be attributed to the lateral PN junctions and sidewall surface states induced by the etching process of the pwells,which can deplete the carriers ofβ-Ga2O3between the p-wells.

    The relationship between the specific resistance (Ron,sp)and applied voltage was further compared, as shown in Fig.3(c).The PND has lowerRon,spafter turn-on than the SBD, which may be caused by the carrier recombined at NiO/βGa2O3interface.[38]In addition,theRon,spof JBS-FFRs diodes decreases as the proportion of the p-well area beneath the electrode increases, and eventually becomes consistent with PND.The results above indicate that JBS-FFRs diodes are capable of not only maintaining the low turn-on voltage as SBD,but also achieving an even lower on-state resistance.Unfortunately,neither the JBS-FFRs diodes nor the PND measured a current higher than that of the SBD, which is mainly limited by the thermal effect of small size devices.Largersized NiO/βGa2O3PNDs have been reported to show significant conductance modulation effects.[44,45]Another issue is that the Ni/NiO ohmic contact resistance shown in Fig.2 is higher than theRon,spof PND and JBS-FFRs diodes.The mechanism under this measurement result is not understood at present,one possible reason is that the Ni/NiO contact fabricated in this work is not an ohmic contact but rather a Schottky contact with a relatively low barrier.This non-ideal contact will also limit the conductivity modulation performance of the devices.

    To verify the impact of the FFRs on theI-Vcharacteristics, figure 3(d) compares the forward characteristics of JBS diode with(solid line)and without(dash line)FFRs.It can be found that adding FFRs hardly affects the forward characteristics of the device.This is also one of the advantages of the FFRs as an electric field modulate structure.

    4.Reverse characteristics

    The reverse characteristics of the devices are shown in Fig.4.By examining theJ-Vcharacteristic under a reverse bias voltage of 0 V-200 V displayed in Fig.4(a), we can observe that the leakage current of the JBS-FFRs diodes falls between that of PND and SBD.In addition,it also reveals that the smallerGRunder central anode, the smaller the device’s leakage current.This trend is anticipated, smaller gaps facilitate the pinch-off of the current path between p-wells,which in turn reduces the electric field of the Schottky junction.The principle behind this phenomenon is akin to the previously reported trench-fin structure.[31,46]However,limited by the process in this work,the gaps can hard be controlled below 2μm.Even if the used circular p-well array is expected to have a relaxed size requirement due to the 3-D nature of its RESURF effect.[47]To fully leverage the advantages of this structure,further narrowing of the gaps and deepening of the p-wells is required, while also identifying the optimal balance between them.

    In Fig.4(b), the measured breakdown voltage of the devices is plotted.The JBS-FFRs diodes exhibited a higher breakdown voltage, reaching 1356 V, compared to SBD and PND.This was primarily attributed to the FFRs’ function to transfer potential and spread the depletion region at the edge of central anode.The optical micrographs of the JBS-FFRs diode experiencing catastrophic breakdown are shown in the inset image of Fig.4(b).It can be observed that the damaged region extends to the outermost edge of the FFRs, providing evidence that the FFRs are effectively functional.However,there is still a gap in the leakage current suppression capability between JBS-FFRs and PND,which is likely due to defects induced by the device fabrication process.

    To determine the effectiveness of FFRs,we took into account the hole concentration and gap design between them,and both experiments and TCAD simulations were carried out.The hole concentration in NiO is related to its oxygen vacancy concentration.[39]Therefore, to reduce the carrier concentration of NiO,a 300?C,5 min nitrogen annealing process was performed on the device.After annealing,theJ-Vtest results of the TLM structure showed a significant decrease in current as shown in Fig.4(c).Additionally, the breakdown points of all JBS-FFRs were found only at the edge of the central anode as shown in the inset image in Fig.4(c), indicating that the FFRs are nonfunctional.This result suggests that high hole concentration of the p-wells is conducive to potential transmission.

    Figure 4(d)shows the results of TCAD simulations of the electric field distribution at the FFRs region when the device is under 1000 V reverse bias.The top image illustrates the electric field distribution when the net hole concentration(Na-Nd)of the p-well rings is 1×1019cm-3, theLFPand theGRare both 2μm.While the structural parameter mentioned can reduce the electric field at the edge of the central anode, it is only able to transfer the potential to a maximum of the third ring.By maintaining the hole concentration of the p-well rings and shortening both theLFPandGRto 1μm(as shown in the middle image), the last ring is still able to obtain potential,while also achieving a more uniform distribution of the electric field.Not only that,the electric field crowding at the main junction edge can be further reduced.Moreover, If the hole concentration of the p-well rings is reduced to 1×1016cm-3(bottom image),the highest electric field position shifts to the edge of the metal electrode,and the FFRs lose their function.This experiment encountered process limitations that made it difficult to further reduce the size of the FFRs while maintaining process accuracy.Nevertheless,the simulation results demonstrate that significant improvements in the performance of JBS-FFR diodes can be achieved through deeply optimizing doping concentration and size parameters.

    Fig.4.(a) High resolution reverse J-V characteristics and (b) breakdown characteristics of the fabricated devices, the inset image shows the optical micrographs of the JBS-FFRs diode after catastrophic breakdown.(c) The I-V results of the TLM structure were obtained after a nitrogen annealing process at 300?C for 5 min.The inset image displays optical micrographs of the annealed JBS-FFRs diode after experiencing catastrophic breakdown.(d)The TCAD simulation results for the electric field in a JBS-FFRs diode with varying structural parameters of the pwell rings under 1000 V reverse bias.Na-Nd=1×1019 cm-3,GR=2μm,and LFP=2μm(top image);Na-Nd=1×1019 cm-3,GR=1μm,and LFP=1μm(middle image);Na-Nd=1×1016 cm-3,GR=1μm,and LFP=1μm(bottom image).

    5.NiO field plate simulation

    The NiO p-type FP designed in this work can be a good choice for modulating the electric field at every p-wells’edge.Figure 5(a) shows the TCAD simulation results of the electric field profiles at the central anode edge under a reverse bias voltage of 1000 V,demonstrating the function of the field plate.It can be observed that after adding a 2 μm FP, the highest electric field point has shifted from the trench bottom edge to the edge of the FP,and the value decreased.This phenomenon is mainly attributed to the interaction of the FP and the lateral PN junction on the sidewall of the trench, which causes the depletion region to expand.Due to the finite depletion region width of the NiO/β-Ga2O3junction under a specific bias voltage, it means that the performance of this edge structure is related to both the trench depth(DT)and the length of the field plate (LFP) when the material parameters and applied voltage are determined.

    To determine the optimal size parameters of the structure,we simulated the relationship amongLFP,DT,and the highest electric field.TheNa-Ndof NiO was set to 1×1019cm-3with a thickness of 250 nm in this simulation.TheLFPandDTare range from 0μm-2μm with a step of 0.25μm.Figure 5(b)illustrates the highest electric field map when a reverse bias of 1000 V is applied to the anode.The dark blue area is the best structural parameter forLFPandDT.Unfortunately, the devices fabricated in this work were not at the optimal positions due to process limitations,we are still finding a way to address the process issue.

    It should be noted that this simulation did not consider the additional impacts of interface states at the trench sidewall,which may be caused by the etching process,as well as variations in the concentration of holes in NiO, on the electric field.A more comprehensive analysis that takes these factors into account may provide a more accurate representation of the structure’s behavior.Moreover, when applying the FP structure to FFRs,a better distribution of electric field is necessary to further clarify the design formulas for the structure and material parameters of each level of the FFRs.Therefore,there is still a lot of room for optimization of JBS-FFRs diode.

    Fig.5.(a)Simulated electric field profiles of the device with and without p-type NiO FP.(b)The highest electric field versus LFP and DT under reverse bias of 1000 V.

    6.Conclusion and perspectives

    In conclusion, in order to address the high electric field issue ofβ-Ga2O3SBDs,we have developed aβ-Ga2O3JBSFFRs diode, and its electrical characteristics have been studied.Experimental results indicate that with the joint support of the p-well array, p-well FFRs, and NiO FP, the device’s breakdown voltage and leakage suppression capability were improved.In addition,we further combined TCAD simulation tools to clarify the optimization direction of the JBS-FFRs.This work demonstrated that the designed device has a positive effect on the electric field uniformity inβ-Ga2O3SBDs,which is beneficial for further advancing the performance of gallium oxide devices.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos.61925110, U20A20207,62004184,62004186,and 62234007),the Key-Area Research and Development Program of Guangdong Province (Grant No.2020B010174002), the funding support from University of Science and Technology of China (USTC) (Grant Nos.YD2100002009 and YD2100002010), the Fundamental Research Plan (Grant No.JCKY2020110B010), Collaborative Innovation Program of Hefei Science Center, Chinese Academy of Sciences(Grant No.2022HSC-CIP024),and the Opening Project of and the Key Laboratory of Nanodevices and Applications in Suzhou Institute of Nano-Tech and Nano-Bionics of CAS.This work was partially carried out at the Center for Micro and Nanoscale Research and Fabrication of USTC.The author would like to express gratitude to those who assisted and encouraged during research work, with special appreciation to Prof.Xiaojun Wu and Prof.Liu Ming.

    精品视频人人做人人爽| 久久国产精品男人的天堂亚洲 | 熟女av电影| 亚洲成人av在线免费| 日韩av在线免费看完整版不卡| 亚洲国产精品专区欧美| 亚洲色图综合在线观看| 在线观看www视频免费| 美女中出高潮动态图| 午夜福利,免费看| 欧美精品一区二区大全| av又黄又爽大尺度在线免费看| 综合色丁香网| 超碰97精品在线观看| av专区在线播放| 高清午夜精品一区二区三区| 少妇人妻 视频| 高清av免费在线| 好男人视频免费观看在线| 婷婷色综合www| 少妇人妻精品综合一区二区| 另类亚洲欧美激情| 亚洲精品自拍成人| 成人影院久久| 丰满饥渴人妻一区二区三| 在线观看免费视频网站a站| 国产精品久久久久久久电影| 一本色道久久久久久精品综合| 久久国产亚洲av麻豆专区| 天堂俺去俺来也www色官网| 亚洲精品久久成人aⅴ小说 | 18禁在线无遮挡免费观看视频| 国产无遮挡羞羞视频在线观看| 日韩一区二区视频免费看| 肉色欧美久久久久久久蜜桃| 黑人高潮一二区| 久久久精品区二区三区| a级片在线免费高清观看视频| 人成视频在线观看免费观看| 一边亲一边摸免费视频| 精品一区二区三区视频在线| av专区在线播放| 寂寞人妻少妇视频99o| 日本wwww免费看| 久久精品久久精品一区二区三区| 18禁动态无遮挡网站| 欧美老熟妇乱子伦牲交| 国产精品无大码| 免费久久久久久久精品成人欧美视频 | 欧美精品一区二区大全| 久久人人爽人人爽人人片va| 久久久久网色| 国产色爽女视频免费观看| 久久精品人人爽人人爽视色| 美女国产视频在线观看| 91精品国产国语对白视频| 亚洲av综合色区一区| 蜜桃在线观看..| a级毛片在线看网站| 啦啦啦在线观看免费高清www| 精品久久久精品久久久| 久久久a久久爽久久v久久| 久久久久久久久久人人人人人人| 99久久中文字幕三级久久日本| 美女内射精品一级片tv| 乱码一卡2卡4卡精品| 夫妻性生交免费视频一级片| 亚州av有码| 毛片一级片免费看久久久久| 精品人妻一区二区三区麻豆| 成年美女黄网站色视频大全免费 | 精品人妻在线不人妻| 亚洲欧美一区二区三区黑人 | 日日摸夜夜添夜夜添av毛片| .国产精品久久| 亚洲第一区二区三区不卡| 纵有疾风起免费观看全集完整版| 久久99蜜桃精品久久| 看非洲黑人一级黄片| 国产成人91sexporn| av又黄又爽大尺度在线免费看| √禁漫天堂资源中文www| 狂野欧美激情性xxxx在线观看| 黄片播放在线免费| 久久 成人 亚洲| videossex国产| 国内精品宾馆在线| 韩国高清视频一区二区三区| 亚洲人成网站在线播| av在线app专区| 夜夜爽夜夜爽视频| 成人午夜精彩视频在线观看| 成年人免费黄色播放视频| videosex国产| 国产精品无大码| 观看美女的网站| 日本黄色片子视频| 女人久久www免费人成看片| 最黄视频免费看| 国产av国产精品国产| 嘟嘟电影网在线观看| 国产探花极品一区二区| 欧美bdsm另类| av电影中文网址| 乱码一卡2卡4卡精品| 一级毛片黄色毛片免费观看视频| 桃花免费在线播放| 水蜜桃什么品种好| 日韩在线高清观看一区二区三区| 91aial.com中文字幕在线观看| 黄片播放在线免费| 亚洲国产精品国产精品| 成年美女黄网站色视频大全免费 | 尾随美女入室| 蜜臀久久99精品久久宅男| 国产日韩一区二区三区精品不卡 | 制服丝袜香蕉在线| 制服人妻中文乱码| 18禁观看日本| 免费观看av网站的网址| 国产亚洲午夜精品一区二区久久| 久久久久国产精品人妻一区二区| 久久久久国产网址| 日韩大片免费观看网站| 少妇人妻精品综合一区二区| 看免费成人av毛片| 亚洲一级一片aⅴ在线观看| 中文字幕精品免费在线观看视频 | 亚洲第一区二区三区不卡| 啦啦啦在线观看免费高清www| 亚洲欧美中文字幕日韩二区| 久热这里只有精品99| 22中文网久久字幕| 观看美女的网站| 国产欧美日韩一区二区三区在线 | 亚洲国产色片| 免费看光身美女| 亚洲欧洲国产日韩| 美女国产高潮福利片在线看| 久久精品国产亚洲av涩爱| 日产精品乱码卡一卡2卡三| 日韩精品有码人妻一区| 久久综合国产亚洲精品| 亚洲精品乱码久久久v下载方式| 国产男女超爽视频在线观看| 国国产精品蜜臀av免费| 丰满饥渴人妻一区二区三| 日韩,欧美,国产一区二区三区| 精品国产乱码久久久久久小说| 亚洲高清免费不卡视频| 在线观看免费视频网站a站| 汤姆久久久久久久影院中文字幕| 国产成人av激情在线播放 | 日韩av在线免费看完整版不卡| 青春草亚洲视频在线观看| 三级国产精品片| 伊人久久精品亚洲午夜| 精品久久蜜臀av无| 亚洲精品第二区| 日韩,欧美,国产一区二区三区| av线在线观看网站| 成人毛片60女人毛片免费| 一级毛片电影观看| 成年av动漫网址| 亚洲av二区三区四区| 国产精品国产三级国产av玫瑰| 男人爽女人下面视频在线观看| 欧美变态另类bdsm刘玥| 亚洲欧美成人综合另类久久久| 插阴视频在线观看视频| 欧美激情 高清一区二区三区| 亚洲精品日韩av片在线观看| 国产亚洲精品久久久com| 人妻 亚洲 视频| 18在线观看网站| av一本久久久久| 欧美日韩国产mv在线观看视频| 国产视频内射| 青春草视频在线免费观看| 欧美激情 高清一区二区三区| av.在线天堂| 日韩中字成人| 搡老乐熟女国产| 2021少妇久久久久久久久久久| 超碰97精品在线观看| 国产色婷婷99| 午夜福利在线观看免费完整高清在| 国产精品一国产av| 9色porny在线观看| 在线 av 中文字幕| 一级爰片在线观看| 欧美xxⅹ黑人| 成人国产麻豆网| 成人18禁高潮啪啪吃奶动态图 | 国产色婷婷99| 天天操日日干夜夜撸| 少妇人妻 视频| 91精品伊人久久大香线蕉| 国产免费又黄又爽又色| 26uuu在线亚洲综合色| 免费日韩欧美在线观看| 亚洲国产精品999| 亚洲国产精品专区欧美| 欧美丝袜亚洲另类| 熟女电影av网| 国产高清国产精品国产三级| 少妇精品久久久久久久| 日韩中字成人| 亚洲五月色婷婷综合| 黄色配什么色好看| 激情五月婷婷亚洲| 高清在线视频一区二区三区| 99国产综合亚洲精品| 精品国产一区二区久久| 18禁在线播放成人免费| 欧美成人精品欧美一级黄| 亚洲欧美精品自产自拍| 国产精品久久久久久av不卡| 美女中出高潮动态图| 欧美日韩在线观看h| videossex国产| 国产精品国产av在线观看| 26uuu在线亚洲综合色| 久久久久网色| 免费av不卡在线播放| √禁漫天堂资源中文www| 久久久久久人妻| 大话2 男鬼变身卡| 99久久综合免费| 欧美变态另类bdsm刘玥| 久久久久视频综合| 18禁观看日本| 街头女战士在线观看网站| 能在线免费看毛片的网站| 在线播放无遮挡| 国产精品秋霞免费鲁丝片| 少妇人妻精品综合一区二区| 亚洲欧美精品自产自拍| 美女福利国产在线| 考比视频在线观看| 最近最新中文字幕免费大全7| 一边摸一边做爽爽视频免费| 免费观看在线日韩| av卡一久久| 80岁老熟妇乱子伦牲交| 亚洲精品乱久久久久久| 嘟嘟电影网在线观看| 成人毛片60女人毛片免费| 亚洲,一卡二卡三卡| 成年女人在线观看亚洲视频| 最新中文字幕久久久久| 少妇熟女欧美另类| 日本黄大片高清| 最近中文字幕高清免费大全6| 日韩视频在线欧美| 又大又黄又爽视频免费| 亚洲av免费高清在线观看| 欧美+日韩+精品| 777米奇影视久久| 欧美日韩亚洲高清精品| 久久久午夜欧美精品| av国产久精品久网站免费入址| 国产成人午夜福利电影在线观看| xxx大片免费视频| 久久99热6这里只有精品| 中文字幕人妻丝袜制服| 亚洲高清免费不卡视频| 免费大片黄手机在线观看| 国产国拍精品亚洲av在线观看| 亚洲精品中文字幕在线视频| 日韩av不卡免费在线播放| 在线观看免费高清a一片| 赤兔流量卡办理| 亚洲av.av天堂| 亚洲精品456在线播放app| 国产免费一级a男人的天堂| 国产黄片视频在线免费观看| 免费看不卡的av| 久久久久视频综合| 国产日韩欧美亚洲二区| 国产国语露脸激情在线看| 午夜激情福利司机影院| 三级国产精品欧美在线观看| av卡一久久| 麻豆成人av视频| 又粗又硬又长又爽又黄的视频| 亚洲精品国产av蜜桃| 18在线观看网站| 在现免费观看毛片| 夜夜看夜夜爽夜夜摸| 最近中文字幕高清免费大全6| 精品人妻在线不人妻| 女人精品久久久久毛片| 亚洲精品乱码久久久v下载方式| 在线观看免费日韩欧美大片 | 只有这里有精品99| 最近的中文字幕免费完整| 国产av码专区亚洲av| xxxhd国产人妻xxx| 人妻一区二区av| 97在线视频观看| 一级爰片在线观看| 亚洲精品乱久久久久久| 极品少妇高潮喷水抽搐| 3wmmmm亚洲av在线观看| 亚洲成人一二三区av| 亚洲激情五月婷婷啪啪| 丝袜脚勾引网站| 插逼视频在线观看| 亚洲高清免费不卡视频| 性高湖久久久久久久久免费观看| 久久99热这里只频精品6学生| 精品人妻在线不人妻| 亚州av有码| 久久精品国产亚洲av天美| 亚洲美女黄色视频免费看| xxxhd国产人妻xxx| 国产又色又爽无遮挡免| 亚洲综合色网址| 精品亚洲成a人片在线观看| 看非洲黑人一级黄片| 秋霞在线观看毛片| 日韩av在线免费看完整版不卡| 毛片一级片免费看久久久久| 亚洲国产精品国产精品| 22中文网久久字幕| 国精品久久久久久国模美| 久久久国产欧美日韩av| 男女啪啪激烈高潮av片| 天美传媒精品一区二区| 丝袜喷水一区| 国产精品国产三级专区第一集| 黄色毛片三级朝国网站| 国产淫语在线视频| 免费人妻精品一区二区三区视频| av电影中文网址| 国产伦理片在线播放av一区| 国产成人91sexporn| 高清欧美精品videossex| 亚洲丝袜综合中文字幕| 最黄视频免费看| 美女cb高潮喷水在线观看| 少妇的逼水好多| 又大又黄又爽视频免费| 夜夜骑夜夜射夜夜干| 亚洲欧美成人精品一区二区| 99热网站在线观看| 国产视频内射| 成人午夜精彩视频在线观看| 一区二区av电影网| 熟女人妻精品中文字幕| 91精品三级在线观看| 亚洲综合色惰| 在线 av 中文字幕| 亚洲,欧美,日韩| 搡女人真爽免费视频火全软件| 国内精品宾馆在线| 人妻一区二区av| 18禁裸乳无遮挡动漫免费视频| 日日摸夜夜添夜夜爱| 亚洲第一av免费看| 黄片无遮挡物在线观看| 日日摸夜夜添夜夜爱| 欧美一级a爱片免费观看看| 日产精品乱码卡一卡2卡三| 伦理电影免费视频| 99热这里只有精品一区| 大话2 男鬼变身卡| 黑人欧美特级aaaaaa片| 国产欧美日韩一区二区三区在线 | 国产国拍精品亚洲av在线观看| 国产视频内射| 99精国产麻豆久久婷婷| 午夜久久久在线观看| 18禁观看日本| 满18在线观看网站| 亚洲高清免费不卡视频| 中国美白少妇内射xxxbb| 99久久中文字幕三级久久日本| 九色亚洲精品在线播放| 夫妻性生交免费视频一级片| 中国国产av一级| 国产成人午夜福利电影在线观看| 一级二级三级毛片免费看| 国产成人午夜福利电影在线观看| 一级二级三级毛片免费看| 欧美激情 高清一区二区三区| 久久久久人妻精品一区果冻| 国产成人午夜福利电影在线观看| 黑人欧美特级aaaaaa片| 日韩,欧美,国产一区二区三区| 国产黄片视频在线免费观看| 性高湖久久久久久久久免费观看| 成人无遮挡网站| 人体艺术视频欧美日本| 国产精品嫩草影院av在线观看| 你懂的网址亚洲精品在线观看| 卡戴珊不雅视频在线播放| 80岁老熟妇乱子伦牲交| 99热网站在线观看| 久热久热在线精品观看| 国产黄色免费在线视频| 美女福利国产在线| 久久精品国产亚洲av涩爱| 多毛熟女@视频| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲精品乱码久久久v下载方式| 久久99精品国语久久久| 日韩亚洲欧美综合| 午夜视频国产福利| 国产一区二区在线观看av| 麻豆精品久久久久久蜜桃| 高清午夜精品一区二区三区| 视频中文字幕在线观看| 伊人久久国产一区二区| 国产精品.久久久| 男女高潮啪啪啪动态图| 亚洲不卡免费看| 午夜福利网站1000一区二区三区| 久久青草综合色| 亚洲三级黄色毛片| 大香蕉久久成人网| 2021少妇久久久久久久久久久| 91精品一卡2卡3卡4卡| 亚洲国产av影院在线观看| 日本欧美国产在线视频| 日日摸夜夜添夜夜添av毛片| 日韩三级伦理在线观看| 超碰97精品在线观看| 肉色欧美久久久久久久蜜桃| 久久精品久久精品一区二区三区| 夜夜爽夜夜爽视频| 亚洲av.av天堂| 中文字幕制服av| 免费人妻精品一区二区三区视频| 亚洲精品日本国产第一区| .国产精品久久| 久久久久久久精品精品| 男女无遮挡免费网站观看| a级毛片在线看网站| 制服诱惑二区| 亚洲精品,欧美精品| 51国产日韩欧美| 满18在线观看网站| 日韩欧美精品免费久久| 九草在线视频观看| 丰满迷人的少妇在线观看| av在线老鸭窝| 欧美人与性动交α欧美精品济南到 | 一级片'在线观看视频| 纯流量卡能插随身wifi吗| 男女啪啪激烈高潮av片| 一区二区三区免费毛片| 国产精品人妻久久久久久| 18禁裸乳无遮挡动漫免费视频| 久久久久国产精品人妻一区二区| 美女脱内裤让男人舔精品视频| 黑人欧美特级aaaaaa片| 亚洲国产欧美日韩在线播放| 亚洲不卡免费看| 久久久久久久久久久久大奶| 亚洲av欧美aⅴ国产| 在线观看三级黄色| 久久人人爽人人片av| 国产毛片在线视频| 中文精品一卡2卡3卡4更新| 国产精品麻豆人妻色哟哟久久| 成人手机av| 三级国产精品片| 最新的欧美精品一区二区| 97精品久久久久久久久久精品| 边亲边吃奶的免费视频| 精品卡一卡二卡四卡免费| 人妻 亚洲 视频| 国产精品三级大全| 亚洲国产毛片av蜜桃av| 这个男人来自地球电影免费观看 | 嫩草影院入口| 国产成人精品福利久久| 搡老乐熟女国产| 91精品一卡2卡3卡4卡| 国产精品人妻久久久影院| 国产成人精品一,二区| 日韩三级伦理在线观看| av黄色大香蕉| 日韩不卡一区二区三区视频在线| 日韩 亚洲 欧美在线| 母亲3免费完整高清在线观看 | 国产女主播在线喷水免费视频网站| av不卡在线播放| 三级国产精品欧美在线观看| 人妻少妇偷人精品九色| 男的添女的下面高潮视频| 亚洲人与动物交配视频| 亚洲av国产av综合av卡| 久久99热6这里只有精品| freevideosex欧美| 日本欧美国产在线视频| 纵有疾风起免费观看全集完整版| 大香蕉97超碰在线| 性高湖久久久久久久久免费观看| 精品国产国语对白av| 黑丝袜美女国产一区| 亚洲高清免费不卡视频| 国产成人精品在线电影| 国产成人a∨麻豆精品| 国产av精品麻豆| 国内精品宾馆在线| 高清黄色对白视频在线免费看| 一本久久精品| 伦理电影大哥的女人| 多毛熟女@视频| 久久狼人影院| 亚洲av福利一区| 涩涩av久久男人的天堂| 国产精品人妻久久久影院| 精品一品国产午夜福利视频| 日本wwww免费看| 新久久久久国产一级毛片| 搡女人真爽免费视频火全软件| 久久久久久人妻| 极品人妻少妇av视频| 国产成人精品一,二区| 九色成人免费人妻av| 18+在线观看网站| 国产高清有码在线观看视频| 国产免费现黄频在线看| 亚洲,一卡二卡三卡| 久久av网站| 亚洲欧美日韩卡通动漫| 国产欧美亚洲国产| 少妇猛男粗大的猛烈进出视频| 精品国产露脸久久av麻豆| 色婷婷久久久亚洲欧美| 久久久久久久久久久久大奶| 狂野欧美白嫩少妇大欣赏| 亚洲精品亚洲一区二区| 狂野欧美激情性bbbbbb| 精品国产露脸久久av麻豆| 亚洲欧美中文字幕日韩二区| 91午夜精品亚洲一区二区三区| 亚洲精品成人av观看孕妇| 亚洲天堂av无毛| 97在线人人人人妻| 日韩大片免费观看网站| 在线观看一区二区三区激情| 国产欧美另类精品又又久久亚洲欧美| 夜夜爽夜夜爽视频| √禁漫天堂资源中文www| 久久这里有精品视频免费| 男女国产视频网站| 热99久久久久精品小说推荐| 国产日韩一区二区三区精品不卡 | av网站免费在线观看视频| 欧美xxxx性猛交bbbb| 如日韩欧美国产精品一区二区三区 | 亚洲国产欧美日韩在线播放| 草草在线视频免费看| 精品人妻一区二区三区麻豆| 五月玫瑰六月丁香| 精品人妻在线不人妻| 久久午夜综合久久蜜桃| 亚洲在久久综合| 美女福利国产在线| 国产成人精品久久久久久| 一级黄片播放器| 婷婷色综合大香蕉| 亚洲不卡免费看| 777米奇影视久久| 国产又色又爽无遮挡免| 午夜免费鲁丝| 成人亚洲精品一区在线观看| 日韩免费高清中文字幕av| 色94色欧美一区二区| 免费观看的影片在线观看| 欧美三级亚洲精品| 国语对白做爰xxxⅹ性视频网站| 免费高清在线观看日韩| av不卡在线播放| 人妻夜夜爽99麻豆av| 下体分泌物呈黄色| 2022亚洲国产成人精品| 国产69精品久久久久777片| 3wmmmm亚洲av在线观看| 伊人久久国产一区二区| 五月玫瑰六月丁香| 亚洲人成网站在线观看播放| 国产成人av激情在线播放 | 精品国产乱码久久久久久小说| 久久久久久久国产电影| 国产成人免费观看mmmm| 精品久久久噜噜| 国产精品欧美亚洲77777| 国产伦理片在线播放av一区| 日日爽夜夜爽网站| 全区人妻精品视频| 久久国内精品自在自线图片| 国产精品 国内视频| 亚洲成人一二三区av| 国产一区二区在线观看av| 男女无遮挡免费网站观看| 欧美性感艳星| 国产免费现黄频在线看| 五月天丁香电影| 国产精品国产三级专区第一集| 丝袜喷水一区| 免费观看无遮挡的男女| 最新的欧美精品一区二区| 国产一区有黄有色的免费视频| 日日摸夜夜添夜夜爱| 蜜臀久久99精品久久宅男| 欧美一级a爱片免费观看看| 男男h啪啪无遮挡| 久久99蜜桃精品久久| 成年女人在线观看亚洲视频|