• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    P-type cold-source field-effect transistors with TcX2 and ReX2(X =S,Se)cold source electrodes: A computational study

    2023-12-15 11:48:20QianwenWang汪倩文JixuanWu武繼璇XuepengZhan詹學(xué)鵬PengpengSang桑鵬鵬andJiezhiChen陳杰智
    Chinese Physics B 2023年12期

    Qianwen Wang(汪倩文), Jixuan Wu(武繼璇), Xuepeng Zhan(詹學(xué)鵬),Pengpeng Sang(桑鵬鵬),?, and Jiezhi Chen(陳杰智),?

    1School of Information Science&Technology,Qingdao University of Science&Technology,Qingdao 266000,China

    2School of Information Science and Engineering,Shandong University,Qingdao 266000,China

    Keywords: cold metal,steep-slope transistor,subthreshold swing,quantum device simulations

    1.Introduction

    With the intensely increasing demands for miniaturization and integration of field-effect transistors (FETs), power dissipation has been one of the major challenges limiting the performance of modern nanoelectronics circuits.[1,2]Power consumption mainly includes dynamic switching dissipation and static leakage consumption.[3]Both dynamic and static power consumption are related to the supply voltage.[4,5]Consequently, reducing the supply voltage, while simultaneously ensuring a low off-state current(Ioff),is an effective way to relieve the consumption issue.Therefore, it is highly desired for the steep-slope from off-state to on-state.Researchers have made tremendous efforts on the aspects of materials and device principles.On the one hand, numerous twodimensional (2D) materials have emerged as promising candidates because of their atomically thin thickness and smooth surface, such as transition metal dichalcogenides (TMD),[6,7]group-VA semiconductors,[8,9]and recent emerging MA2Z4family.[10-13]On the other hand, many novel device models have been proposed to achieve steep-slope FETs with the ultra-steep subthreshold swing (SS).SS is the key parameter to evaluate the switching slope of devices and plays a crucial role in power optimization.However, there is a limitation for the SS in conventional MOSFETs, which cannot be lower than 60 mV/dec at room temperature because of the Boltzmann thermal distribution of carriers.Steep-slope devices with sub-60 mV/dec SS have attracted much attention.Tunneling FETs (T-FETs)[14-20]and negative capacitance FETs(NC-FETs)[21-24]have been proposed to break the SS limitation.However,T-FETs and NC-FETs usually suffer from some issues of small drive currents and large hysteresis,respectively.By modulating the density of states (DOS) of the source electrode, the recently proposed cold source FETs(CS-FETs) can realize the steep switching and high on-state current(Ion)simultaneously.[25-28]Structures including Dirac semimetals,[25]semiconductors,[29]isolated states,[30,31]and tunneling junctions[32]have been proposed as the source electrodes of CS-FETs.However,these structures have to be artificially doped,which is challenging for two-dimensional semiconductors.

    Recently, a type of cold metal material was discovered,[33,34]which is intrinsic metal but possesses a gap in the conduction band(CB)or valence band(VB)around the Fermi level(EF).It can effectively filter out the carriers’thermal tails(high-energy electrons or holes)and thereby achieve the sub-60 mV/dec SS.Cold metals can directly serve as injection electrodes without artificial doping.Typical cold metals NbX2and TaX2(X=S, Se, Te) feature an energy gap aboveEFdue to one fewer electron than semiconducting MoX2and WX2,and are similar to p-type doped semiconductors.Hence,NbX2and TaX2can filter the high-energy electrons aboveEFand are suited for n-type CS-FETs(CS-nFETs).[33]Our prior research has revealed that the energy gap belowEFor the decreasing DOS with lower energy is necessary to cut-off or suppress hole tails and realizes p-type CS-FETs(CS-pFETs).[29]Hence,it is important to explore and design the potential cold metals for CS-pFETs.

    In this work, regarding the CS-pFETs, we theoretically propose TcX2and ReX2(X=S,Se)as cold metals aiming at the steeper switching for hole transports.Different from prior NbX2(TaX2),TcX2and ReX2possess one more electron than that of the typical MoX2and WX2semiconductors.The desired energy gap for CS-pFETs can be expected in TcX2and ReX2, which can effectively filter out the high-energy holes and achieve sub-60 mV/dec SS.Based on the first-principles calculations, the electronic properties of TcX2and ReX2are systemically analyzed and their cold-metal characteristics are revealed.Moreover, taking WSe2pFET as an example, the steep switching performance is demonstrated by using TcX2and ReX2as injection sources,systemically verifying the coldmetal effects in device switching.Besides,the thickness influences of cold metals on the switching properties of CS-FETs are also discussed.

    2.Methodology

    The geometric and electronic properties were computed in the framework of density functional theory (DFT) implemented in the QuantumATK package.[35]The ion-electron interactions were treated by using the PseudoDojo normconserving pseudopotential.[36]The exchange-correlation functional was treated by the Perdew Burke Ernzerhof within generalized gradient approximation (GGA).[37]Geometric structures were fully relaxed with a force tolerance of less than 0.01 eV/?A.The Brillouin zone sampling of 12×12×1 Monkhorst-Packk-points was employed.The vacuum space was set to be 20 ?A to avoid the interactions between material and its periodic images.

    The device transport performance was simulated by using DFT coupled with the nonequilibrium Green’s function(NEGF)method.Thek-points were chosen as 1×1×150 for device self-consistent calculations.The current was calculated by using the Landauer-B¨uttiker formula[38]

    wheref(E) is the Fermi-Dirac distribution function;μs/dis the Fermi level of the source/drain electrode;andT(E)is the transmission coefficient from the source to drain.The electrode temperature was set to 300 K.

    3.Results and discussion

    Fig.1.Band structures and DOSs of monolayer TcX2 and ReX2 (X =S,Se,Te).The Fermi level is set to zero.

    As shown in Fig.1,the calculated band structures of TcX2and ReX2present similar shapes to those of NbX2and TaX2.However,the Fermi level crosses through the CB of TcX2and ReX2,which is different from NbX2and TaX2with the Fermi level crossing through the VB.This is related to the electron numbers in the outmost shells of transition metal atoms.In comparison to semiconducting MoX2and WX2, TcX2and ReX2can be seen as naturally n-doped semiconductors.There is an energy gap below the Fermi level,which is referred to as the sub-gap as marked in Fig.1.It is the sub-gap that breaks up the continuous DOS distributions aroundEFand can filter out the holes with energies in the sub-gap.The energy difference betweenEFand the conduction band minimum (CBM)is denoted by ?E.It should be pointed out that the ?Edetermines the number of carrier thermal tails involved in device transport,whereas the sub-gap determines the number of thermal tails that are cut off.Hence, the larger sub-gap and smaller ?Eare desired for effectively cut off thermal tails.As shown in Fig.1, the ?E(sub-gaps) are calculated to be 1.08(0.63 eV),0.79(0.68 eV),0.46(1.35 eV),0.59(1.01 eV),0.46(0.80 eV) and 0.55 (0.65 eV) for ReS2, TcS2, ReSe2, TcSe2,ReTe2and TcTe2, respectively.It is found that the Se- and Te-series possess smaller ?Ethan the S-series, besides, the Se-series possesses larger sub-gaps than the S-and Te-series.Hence, the Se-series exhibits more advantages in cutting off the hole tails.Although the ?Eof 0.79-1.08 eV is slightly too large for ReS2and TcS2to directly cut off thermal tails, the significantly decreasing DOS below the Fermi level can also effectively suppress the spread of hole tails.Given the coldmetal characteristics with a sub-gap or decreasing DOS below the Fermi level, TcX2and ReX2are expected to serve as the injection source of p-type FETs (pFETs)and realize the cold source effects.Moreover,the calculated band structures in the presence of spin-orbital coupling(SOC)are shown in Fig.S1 of the supporting information.The SOC impacts can be ignored for TcX2.Although the SOC induces obvious splitting at thek-point of valence bands for ReX2, the critical sub-gap and ?Eare slightly affected for ReS2and ReSe2.Hence, the SOC is predicted to be free of influence on transport properties when TcX2,ReS2,and ReSe2serve as the injection source.Although ?Eis going to vanish,ReTe2shows cold-metal characteristics with a decreasing DOS.

    Fig.2.(a)Schematic device structure of ReSe2-WSe2 heterojunction CSFETs with ReSe2 acting as injection source.(b) Comparisons of transfer characteristics between ReSe2-WSe2 CS-FET (red lines) and WSe2 MOSFET(black lines);the solid and open points represent the ReS2 electrode and WSe2 channel undergoing the mismatch strain,respectively.

    To verify the role of cold metals (TcX2and ReX2) for p-type CS-FETs, we construct heterojunction FETs with monolayer ReSe2acting as the injection source, as shown in Fig.2(a).The lateral heterostructures are experimentally feasible and can be obtained by edge-epitaxial growth in experiments.[39]The intrinsic and p-type doped WSe2monolayer serves as the channel and drain electrode, respectively.The intrinsic WSe2channel is sandwiched between two 0.41 nm SiO2(with a dielectric constant of 3.9) layers,with a gate length (Lg) of 6.6 nm.The drain electrode is doped with a hole concentration of 0.02 per atom to ensure the Fermi level aligns with or down to the valence band maximum(VBM) of WSe2.Due to the lattice mismatch, two different contact models are considered: (i) the biaxial compressive strain of-1.1% is applied on monolayer ReSe2, while the contacted WSe2is free of strain to preserve its intrinsic transport properties for comparison; (ii) the tensile strain of 1.1%is applied on WSe2channel, while the ReS2metal is free of strain to verify its intrinsic cold-metal characteristic.The ballistic transports of the ReSe2-WSe2FET are simulated under the drain-source voltageVdsof-0.5 V.The results are presented in Fig.2(b)(see the red lines).For comparisons,the conventional WSe2MOSFET is also simulated with the p-doped WSe2serving as the injection source, and the results are also listed in Fig.2(b) (see the black lines).The solid points represent the pristine WSe2channel (contacting the strained ReS2electrode), while the open points represent the strained WSe2channel(contacting the pristine ReS2electrode).It is found that the SS as steep as 32-44 mV/dec is achieved for ReSe2-WSe2FET with ReSe2cold source,which breaks the thermal limitation of 60 mV/dec and is much lower than the result of WSe2MOSFET with p-doped WSe2source(62-64 mV/dec).The sub-60 mV/dec SS is obtained over eight decades of currents from 10-6μA/μm to 102μA/μm.Moreover, the off-state currents (Ioff) are defined around 10-6μA/μm and extracted at the gate voltageVg=0 V, and then the on-state currents (Ion) are obtained atVon=Voff-Vds.By using the constant current definition, the steeper SS results in a largerIonat a finite gate voltage range.However, the largerIondoes not mean larger saturation currents.By employing the cold metal ReSe2as the injection source, theIonof the WSe2FET is improved by one order of magnitude from 3-6μA/μm to 32-75μA/μm.It is found that the tensile strain degenerates WSe2transport properties and the slight compressive strain can promote the cold-source effects of ReS2metal.

    To uncover the physical mechanism of cold metal injection,we further present the source DOS and calculate the corresponding hole densityn(h)distribution by using the Fermi-Dirac functionf(E),n(h)=f(E)×DOS(E).The spectrum currents dIand energy-resolved current density, are also calculated at the on-/off-state.The results are shown in Fig.3,where the source Fermi level (EFS) was set to 0 eV.Benefitting from the sub-gap belowEFin ReSe2, the hole tails with energy lower than 0.35 eV are effectively cut off (see Fig.3(a)).Consequently, the transmission currents from offstate to on-state are mainly from the holes located around theEFS.The thermal leakage currents are abruptly cut off at the energy range lower than 0.35 eV, which is the origin of the sub-60 mV/dec SS.While for the p-doped WSe2source, the continuous DOS belowEFresults in the continuous hole tails spreading to-0.75 eV and below(see Fig.3(b)).The spread tails usually lead to hole leakages from the source to the drain and are not conducive to gate modulation.As a result, the transmission currents from off-state to on-state possess a wide range spreading to-0.61 eV and below,which is quite different from the results of cold-metal sources.

    We proceed to study the other cold metals when applied to an injection source for WSe2pFETs.The ReTe2and TcTe2metals are not further considered as the source because of the large lattice mismatch of over 11% with the WSe2channel.The device structure shown in Fig.2(a)is employed with the ReSe2monolayer replaced by ReS2, TcS2, and TcSe2monolayers,respectively.To avoid the strain influences on the WSe2channel and facilitate direct comparison between the results,we mainly discuss the contact model where the lattice mismatch at the interface is entirely applied on cold metals with a biaxial strain of-0.3%, 0.4%, and-3.4%for ReS2, TcS2,and TcSe2monolayers,respectively.It notes that experimental measurements have shown that 2D TMDs can withstand very large deformations of about 10%effective in-plane strain.[40]The simulatedId-Vgcurves are shown in Fig.4(a).The studied ReX2and TcX2(X=S,Se)injection sources all enable steeper slopes than the p-doped WSe2source and lift the currents from~10-6μA/μm approaching 102μA/μm withinVgof-0.5 V.We further extract the current on/off ratio(Ion/Ioff)and the SS,as listed in Fig.4(b).It is found that the sub-thermal switches were all achieved with the SS of 38 mV/dec, 33 mV/dec,32 mV/dec,and 29 mV/dec for ReS2,TcS2,ReSe2,and TcSe2monolayer source, respectively.Benefitting from the steep slope, theIon/Ioffas large as 2.3×107, 2.5×107, 5.6×107,and 5.1×107are obtained for WSe2pFETs with ReS2,TcS2,ReSe2, and TcSe2monolayer source, respectively.The results are five or ten times higher than that of the normal WSe2MOSFET (4.1×106).Moreover, we also simulate the contact model where the interfacial mismatch is entirely applied on the WSe2channel,and the results can be found in Fig.S1 of the supporting information.The strain-free ReX2and TcX2both can break the thermal limitation and promote the steep SS with values of 33-44 mV/dec.The correspondingIon/Ioffis as high as(2-8)×107.

    Fig.3.Comparisons of injection mechanism between (a) ReSe2 coldsource and(b)p-type doped WSe2 source.The panels from left to right are respectively the DOS of the injection source,corresponding hole density n(h),and the spectral current dI at the on/off state.

    The DOSs and hole distributionsn(h) of the ReX2and TcX2monolayers are presented in Fig.4(c).The exponentially decaying hole density in traditional metals is plotted in blue lines for comparison.For TcSe2(ReSe2)monolayer,the hole tails with energy lower than 0.24(0.35)eV are effectively cut off by the sub-gap below the Fermi level,exhibiting a typical cold metal characteristic like the role of NbTe2in CSnFETs.[33]While for the TcS2(ReS2) monolayer, the overall decaying DOSs with energy result in the superexponentially decreasingn(h) and further the suppression of thermal tail contribution to the off-state, exhibiting a Dirac source characteristic similar to n-doped graphene.[25]It is the suppression or cut-off of the hole tails that breaks the SS limitation in traditional MOSFETs and obtains the sub-thermal switches in CSFETs.

    To benchmark the studied device performance against the international technology roadmap for semiconductors(ITRS),[41]we set off-state currents around 5×10-5μA/μm according to the low-power applications in ITRS requirements.We re-extracted the on-state currents and current on/off ratio.Moreover,we calculated the intrinsic delay time(τ), and power dissipation (PDP), which reflect the switching speed and energy consumption, respectively.τis calculated byτ=(Qon-Qoff)/Ion, and PDP is defined by PDP=(Qon-Qoff)·Vds/W,in whichQon/offis the charges at on/offstate andWis channel width.The calculated results are all listed in Table 1.When employing ReX2and TcX2as sources, the WSe2-CSFETs exhibit higherIon/Ioff, smallerτ,and lower PDP than the normal WSe2-FET.Although theIonof WSe2-CSFETs cannot reach the ITRS requirements, theτand PDP both can fulfill the ITRS standard, exhibiting fast speed and lower consumption.Besides, we further compare the WSe2-CSFETs with some other 2D p-type FETs reported in the paper,including silicane,[42]Bi2O2Se,[43]InSe,[44]and MoSi2N4[45]monolayers.It is found that the studied WSe2-CSFETs possess much higherIon, smallerτ, and lower PDP than the silicane- and Bi2O2Se-based pFETs.Although the ions of WSe2-CSFETs are smaller than the reported MoSi2N4-and InSe-based pFETs, theτand PDP are lower than the MoSi2N4FET and the PDP is comparable with the InSe FET.In conclusion, the ReX2and TcX2metals can effectively improve the WSe2FET performance and enhance the competitiveness of the emerging 2D FETs in future low-power transistor applications.

    Table 1.Performance comparisons of the WSe2 MOSFET and CS-FETs against ITRS requirements for the low-power transistors and with other 2D p-type FETs.

    Fig.4.Transfer characteristics of WSe2 FETs with different cold metals and p-doped WSe2 as the injection source.(b)Switching performance(Ion/Ioff and SS)comparisons of WSe2 FETs with different injection sources.(c)The cold metal DOS and corresponding hole density n(h),EF is set to 0 eV.The exponentially decaying hole distribution nexp is shown in the blue line.

    Fig.5.(a)and(b)Transfer characteristics of WSe2 FETs with different thicknesses ReS2 layers(1L-4L)as injection sources: (a)logarithm and(b)linear coordinates.Inset is the FET schematic structure.(c)DOS of ReS2 layers with different thicknesses(1L-4L).

    We have revealed the cold source effects of the monolayer ReX2and TcX2.However, accessing singlelayer TMDs remains challenging in practical 2D device fabrications.Taking ReS2as an example,we proceed to study the FET’s performance based on multilayer 2D cold metals.The single-layered(1L),bi-layered(2L),tri-layered(3L),and quad-layered(4L)ReS2are respectively used as the injection source of WSe2pFETs (see the inset of Fig.5(b)).The simulated switching performances are shown in Figs.5(a)-5(b).It is found that for the 1L-4L ReS2injection sources,the WSe2pFETs show similarId-Vgcurves, which all can break the thermal limitation and achieve the steep SS with values of 29-33 mV/dec.The correspondingIon/Ioffis as high as (4-5)×107.Besides,as shown in the linear coordinate(Fig.5(b)),theIonincreases gradually from 38 μA/μm to 60 μA/μm with the increasing layers of the ReS2source.This relates to the carrier concentration in the source electrode.Figure 5(c) further presents the calculated DOS of the 1L-4L ReS2injection sources.The DOS decreasing tendency is preserved for various ReS2layers,which leads to the localization of hole distribution around theEFand is conducive to obtaining the steep switches.Besides,we further analyze the DOS of the other three cold metals with different thicknesses (see Fig.S3 of the supporting information).The multilayer ReX2and TcX2all preserve their cold-metal characteristics,and are anticipated to break the SS limitations while serving as the injection source.

    4.Conclusion

    The TcX2and ReX2cold metals were proposed as the injection sources in p-type CS-FETs to achieve sub-thermal switches.First-principles calculations revealed the cold metal characteristics of TcX2and ReX2with a sub-gap below the Fermi level, which can effectively suppress or cut off the thermal tails of holes.Comprehensive transport simulations demonstrated that the steep SS (29-38 mV/dec) and highIon/Ioff((2.3-5.6)×107) were achieved in WSe2CS-pFETs with TcX2and ReX2injection sources, significantly super to those of WSe2MOSFET(64 mV/dec and 4.1×106).Depending on their DOS features,the super-exponential decay of hole tails and direct cutting-off occurred for TcS2(ReS2)and TcSe2(ReSe2)injection sources,respectively.Moreover,by varying the thickness of cold metal from 1L to 4L,the steep switching properties could be obtained in ReS2-WSe2FETs.

    Acknowledgments

    Project was supported by the National Natural Science Foundation of China (Grant Nos.62034006, 92264201, and 62104134) and the Natural Science Foundation of Shandong Province of China (Grant Nos.ZR2023QF076 and ZR2023QF054).

    日本撒尿小便嘘嘘汇集6| 亚洲av美国av| 久久中文看片网| 亚洲国产欧洲综合997久久,| 中文字幕人妻丝袜一区二区| 色综合站精品国产| 18禁美女被吸乳视频| 免费看十八禁软件| 精品一区二区三区视频在线 | av片东京热男人的天堂| 91麻豆av在线| 国产 一区 欧美 日韩| 啦啦啦观看免费观看视频高清| 少妇的逼水好多| 日本熟妇午夜| 在线a可以看的网站| 国产高潮美女av| 在线观看一区二区三区| 床上黄色一级片| 成在线人永久免费视频| 69av精品久久久久久| 男人和女人高潮做爰伦理| 国产69精品久久久久777片 | 亚洲美女黄片视频| 99久久精品热视频| 变态另类丝袜制服| 51午夜福利影视在线观看| 在线观看午夜福利视频| 操出白浆在线播放| 又爽又黄无遮挡网站| 午夜久久久久精精品| 在线国产一区二区在线| 亚洲午夜精品一区,二区,三区| 午夜福利在线观看免费完整高清在 | a级毛片在线看网站| 午夜精品在线福利| 亚洲av电影不卡..在线观看| 国产av麻豆久久久久久久| 亚洲成av人片在线播放无| 精品久久久久久久人妻蜜臀av| 可以在线观看毛片的网站| 91老司机精品| 高潮久久久久久久久久久不卡| 亚洲在线观看片| 观看免费一级毛片| 啦啦啦观看免费观看视频高清| 真人做人爱边吃奶动态| 国产午夜精品论理片| 免费在线观看日本一区| 最新美女视频免费是黄的| 免费在线观看日本一区| 欧美又色又爽又黄视频| 免费大片18禁| 亚洲一区高清亚洲精品| 欧美激情久久久久久爽电影| 国产精品久久久人人做人人爽| 久久天躁狠狠躁夜夜2o2o| 国产成人啪精品午夜网站| 国产精品一区二区三区四区免费观看 | 99久久久亚洲精品蜜臀av| 国产高清视频在线观看网站| 国产麻豆成人av免费视频| 一级毛片精品| 欧美日本亚洲视频在线播放| 国产成人精品无人区| 精品日产1卡2卡| 手机成人av网站| 亚洲成人中文字幕在线播放| 亚洲精华国产精华精| 国产久久久一区二区三区| 婷婷亚洲欧美| 午夜免费观看网址| 麻豆成人午夜福利视频| 可以在线观看毛片的网站| 国产乱人视频| 色综合站精品国产| 婷婷丁香在线五月| 免费av不卡在线播放| 草草在线视频免费看| 麻豆av在线久日| 国产激情久久老熟女| 老司机在亚洲福利影院| 午夜免费观看网址| 女警被强在线播放| 中文资源天堂在线| 一级a爱片免费观看的视频| 亚洲av第一区精品v没综合| 精品日产1卡2卡| 国产精品一区二区精品视频观看| 深夜精品福利| 免费在线观看成人毛片| 亚洲av五月六月丁香网| 十八禁网站免费在线| 别揉我奶头~嗯~啊~动态视频| 日日夜夜操网爽| 国内少妇人妻偷人精品xxx网站 | 精品国产亚洲在线| 九色成人免费人妻av| 国产精品美女特级片免费视频播放器 | 久久精品人妻少妇| 国产伦人伦偷精品视频| 亚洲第一电影网av| 老汉色∧v一级毛片| 国产午夜精品久久久久久| 久99久视频精品免费| 小蜜桃在线观看免费完整版高清| 色噜噜av男人的天堂激情| a级毛片在线看网站| 观看免费一级毛片| 精品人妻1区二区| 制服丝袜大香蕉在线| 亚洲avbb在线观看| 99久久久亚洲精品蜜臀av| 综合色av麻豆| 亚洲男人的天堂狠狠| 变态另类成人亚洲欧美熟女| 久久久久久久久久黄片| 一个人观看的视频www高清免费观看 | 亚洲av熟女| a在线观看视频网站| 亚洲av电影不卡..在线观看| 人人妻人人看人人澡| 国产爱豆传媒在线观看| 十八禁网站免费在线| 中文字幕熟女人妻在线| av视频在线观看入口| 男插女下体视频免费在线播放| 国产精品美女特级片免费视频播放器 | 无限看片的www在线观看| 女同久久另类99精品国产91| 午夜视频精品福利| 中文字幕人成人乱码亚洲影| 琪琪午夜伦伦电影理论片6080| 久久精品91无色码中文字幕| 很黄的视频免费| 国产美女午夜福利| x7x7x7水蜜桃| 亚洲国产中文字幕在线视频| 国产1区2区3区精品| 网址你懂的国产日韩在线| 欧美+亚洲+日韩+国产| 一进一出好大好爽视频| 日本免费a在线| 国产淫片久久久久久久久 | 97人妻精品一区二区三区麻豆| 99精品欧美一区二区三区四区| 亚洲国产精品成人综合色| 99久久成人亚洲精品观看| 悠悠久久av| 成在线人永久免费视频| xxx96com| 国产成人系列免费观看| 男人和女人高潮做爰伦理| 亚洲午夜理论影院| 日韩欧美三级三区| 久久久久性生活片| 午夜两性在线视频| 九九热线精品视视频播放| 特大巨黑吊av在线直播| 一进一出抽搐gif免费好疼| 偷拍熟女少妇极品色| 国产成人啪精品午夜网站| 三级国产精品欧美在线观看 | 网址你懂的国产日韩在线| 国产高清视频在线观看网站| 老司机福利观看| 国产午夜福利久久久久久| 最近视频中文字幕2019在线8| 校园春色视频在线观看| www.自偷自拍.com| 亚洲五月婷婷丁香| 又黄又爽又免费观看的视频| 久久久久久久午夜电影| 99久久成人亚洲精品观看| 欧美色视频一区免费| 一级毛片精品| 久久精品国产清高在天天线| 欧美3d第一页| 每晚都被弄得嗷嗷叫到高潮| 一个人观看的视频www高清免费观看 | 麻豆成人av在线观看| 免费高清视频大片| 亚洲男人的天堂狠狠| 午夜视频精品福利| 最近最新中文字幕大全免费视频| 国产aⅴ精品一区二区三区波| 嫩草影视91久久| 99久久无色码亚洲精品果冻| 亚洲av成人一区二区三| 中文字幕人妻丝袜一区二区| 欧美中文综合在线视频| 欧美又色又爽又黄视频| 久久天躁狠狠躁夜夜2o2o| 看片在线看免费视频| 国产一区二区在线观看日韩 | 桃色一区二区三区在线观看| 两个人的视频大全免费| 老鸭窝网址在线观看| 国产激情欧美一区二区| 国产三级在线视频| 在线观看免费午夜福利视频| 黑人巨大精品欧美一区二区mp4| 国产精品九九99| 99久国产av精品| 我的老师免费观看完整版| 精品国产乱码久久久久久男人| 国产av一区在线观看免费| 国产三级中文精品| 禁无遮挡网站| 国产乱人伦免费视频| 国产精品日韩av在线免费观看| 成人三级做爰电影| 人人妻,人人澡人人爽秒播| 色精品久久人妻99蜜桃| 中文字幕高清在线视频| 五月玫瑰六月丁香| 午夜成年电影在线免费观看| 国产三级在线视频| 熟女人妻精品中文字幕| 中文亚洲av片在线观看爽| 成在线人永久免费视频| 啦啦啦韩国在线观看视频| av国产免费在线观看| 麻豆国产av国片精品| 免费看光身美女| 国产精品一区二区三区四区久久| 国内久久婷婷六月综合欲色啪| 国产三级中文精品| 性色avwww在线观看| 国产亚洲精品一区二区www| 88av欧美| 欧美日韩亚洲国产一区二区在线观看| 久久人人精品亚洲av| 国产精华一区二区三区| 国产乱人伦免费视频| a级毛片a级免费在线| 伦理电影免费视频| 五月伊人婷婷丁香| 免费在线观看成人毛片| 午夜福利高清视频| 久久久久国内视频| 国产乱人伦免费视频| 天天添夜夜摸| 99国产精品99久久久久| 国产欧美日韩精品亚洲av| 人妻久久中文字幕网| 97碰自拍视频| 午夜精品久久久久久毛片777| 成人高潮视频无遮挡免费网站| 成年女人永久免费观看视频| 级片在线观看| 久久精品aⅴ一区二区三区四区| 一进一出抽搐动态| 亚洲成人久久性| 99久久无色码亚洲精品果冻| 在线十欧美十亚洲十日本专区| 国产亚洲欧美在线一区二区| 久久久精品大字幕| 色综合亚洲欧美另类图片| 色视频www国产| 不卡一级毛片| 日本一二三区视频观看| 亚洲精品一卡2卡三卡4卡5卡| a级毛片a级免费在线| 国产精品一区二区免费欧美| 免费av毛片视频| 亚洲成a人片在线一区二区| 精品国产超薄肉色丝袜足j| 成人午夜高清在线视频| 91在线观看av| 久久久久久国产a免费观看| 级片在线观看| 国产免费av片在线观看野外av| 99久久精品国产亚洲精品| 亚洲精品在线美女| 成人无遮挡网站| 国产精品99久久久久久久久| 国产精品自产拍在线观看55亚洲| 日日摸夜夜添夜夜添小说| 1024香蕉在线观看| 国产av一区在线观看免费| 搡老岳熟女国产| 国内精品久久久久久久电影| 久久精品人妻少妇| 国产成人aa在线观看| 九九在线视频观看精品| 久久天躁狠狠躁夜夜2o2o| 欧美绝顶高潮抽搐喷水| 日韩欧美免费精品| 波多野结衣巨乳人妻| 国产主播在线观看一区二区| 久久性视频一级片| 国产av一区在线观看免费| h日本视频在线播放| 一区福利在线观看| 久久性视频一级片| 中文字幕高清在线视频| 一级a爱片免费观看的视频| 国模一区二区三区四区视频 | 99热只有精品国产| 18禁黄网站禁片午夜丰满| 久久精品亚洲精品国产色婷小说| 免费av毛片视频| 国产成人aa在线观看| 国产精品乱码一区二三区的特点| 国产精品久久久人人做人人爽| 午夜精品久久久久久毛片777| 无限看片的www在线观看| 亚洲激情在线av| 18禁黄网站禁片午夜丰满| 国产极品精品免费视频能看的| 午夜福利在线观看吧| 又黄又爽又免费观看的视频| 欧美激情在线99| 熟妇人妻久久中文字幕3abv| 一个人免费在线观看电影 | 免费人成视频x8x8入口观看| 成人国产综合亚洲| 欧美在线一区亚洲| 色老头精品视频在线观看| 亚洲性夜色夜夜综合| 真人做人爱边吃奶动态| 午夜福利免费观看在线| 欧美高清成人免费视频www| 麻豆国产97在线/欧美| 亚洲av成人精品一区久久| 丰满的人妻完整版| 国产人伦9x9x在线观看| 香蕉av资源在线| 欧美日韩亚洲国产一区二区在线观看| 少妇丰满av| 久久精品国产99精品国产亚洲性色| 亚洲 国产 在线| 欧美日韩福利视频一区二区| 日本免费一区二区三区高清不卡| 久久久国产成人免费| 亚洲精品在线美女| 国产欧美日韩一区二区精品| 1000部很黄的大片| 可以在线观看的亚洲视频| 精品国产超薄肉色丝袜足j| 丝袜人妻中文字幕| 无遮挡黄片免费观看| 午夜激情福利司机影院| 国产av在哪里看| 亚洲人与动物交配视频| 久久久久亚洲av毛片大全| 国产成人av教育| 亚洲专区中文字幕在线| 欧美日韩福利视频一区二区| 成人国产一区最新在线观看| 日本撒尿小便嘘嘘汇集6| 波多野结衣高清无吗| 99久久国产精品久久久| 亚洲av成人不卡在线观看播放网| 两人在一起打扑克的视频| 日本五十路高清| 日本撒尿小便嘘嘘汇集6| 婷婷精品国产亚洲av在线| 久久这里只有精品19| 又粗又爽又猛毛片免费看| 99精品久久久久人妻精品| 日本黄大片高清| 给我免费播放毛片高清在线观看| av在线蜜桃| 麻豆国产av国片精品| 12—13女人毛片做爰片一| 久久久国产成人免费| 12—13女人毛片做爰片一| 亚洲国产色片| 亚洲 国产 在线| 国产成人一区二区三区免费视频网站| 日本与韩国留学比较| 欧美黄色淫秽网站| 一a级毛片在线观看| 熟女少妇亚洲综合色aaa.| 美女午夜性视频免费| 久久久久国产一级毛片高清牌| 亚洲成人精品中文字幕电影| 亚洲av电影不卡..在线观看| 色综合亚洲欧美另类图片| 中文字幕最新亚洲高清| 亚洲精品色激情综合| 黑人欧美特级aaaaaa片| 九色成人免费人妻av| 可以在线观看毛片的网站| 成年女人永久免费观看视频| 国产熟女xx| 制服丝袜大香蕉在线| 日本熟妇午夜| 午夜福利在线观看吧| 国产精品亚洲一级av第二区| 最近在线观看免费完整版| ponron亚洲| 99热6这里只有精品| 最好的美女福利视频网| 欧美3d第一页| 亚洲片人在线观看| 亚洲第一电影网av| 国产精品一区二区三区四区久久| 99国产精品99久久久久| 精品国产乱码久久久久久男人| 日本熟妇午夜| 免费看十八禁软件| 两个人的视频大全免费| 免费在线观看亚洲国产| 日韩成人在线观看一区二区三区| 蜜桃久久精品国产亚洲av| 精品国产美女av久久久久小说| 九色国产91popny在线| 岛国视频午夜一区免费看| 国产成人av激情在线播放| 免费高清视频大片| 黑人操中国人逼视频| 免费观看人在逋| 成人国产综合亚洲| 黄片大片在线免费观看| 999久久久国产精品视频| aaaaa片日本免费| 丁香欧美五月| 中文字幕最新亚洲高清| 亚洲精品粉嫩美女一区| 国产亚洲精品一区二区www| av视频在线观看入口| av天堂中文字幕网| 麻豆成人午夜福利视频| 欧美日本亚洲视频在线播放| 欧美丝袜亚洲另类 | 国产一区二区三区在线臀色熟女| 搞女人的毛片| 欧美成人一区二区免费高清观看 | 很黄的视频免费| 亚洲乱码一区二区免费版| 成人亚洲精品av一区二区| 久久精品aⅴ一区二区三区四区| 欧美大码av| 国产精品一区二区三区四区久久| 色综合婷婷激情| 黄频高清免费视频| 日本成人三级电影网站| 欧美日韩一级在线毛片| 日韩精品青青久久久久久| 国产单亲对白刺激| 午夜免费观看网址| 真人做人爱边吃奶动态| 日本a在线网址| 国产精品1区2区在线观看.| 毛片女人毛片| 国产精品影院久久| 蜜桃久久精品国产亚洲av| 在线免费观看的www视频| 99热精品在线国产| 免费观看人在逋| 国产精品99久久99久久久不卡| 国产亚洲精品久久久com| 亚洲自偷自拍图片 自拍| 亚洲国产欧美一区二区综合| 我的老师免费观看完整版| aaaaa片日本免费| 午夜福利欧美成人| 国产高清三级在线| 久久久精品欧美日韩精品| 亚洲va日本ⅴa欧美va伊人久久| 母亲3免费完整高清在线观看| 国产午夜福利久久久久久| 美女 人体艺术 gogo| 亚洲国产精品999在线| 欧美国产日韩亚洲一区| 国产黄a三级三级三级人| 亚洲成av人片在线播放无| 亚洲av熟女| 欧美三级亚洲精品| 97超级碰碰碰精品色视频在线观看| 18禁黄网站禁片免费观看直播| 亚洲欧洲精品一区二区精品久久久| 久久久水蜜桃国产精品网| 91九色精品人成在线观看| 亚洲国产欧洲综合997久久,| www.熟女人妻精品国产| 天天躁狠狠躁夜夜躁狠狠躁| 成年人黄色毛片网站| 国产乱人伦免费视频| 天天添夜夜摸| 成人欧美大片| 国产av不卡久久| 怎么达到女性高潮| 亚洲18禁久久av| 亚洲人成网站高清观看| 久久天堂一区二区三区四区| 美女扒开内裤让男人捅视频| 亚洲国产精品sss在线观看| 亚洲一区高清亚洲精品| 免费看a级黄色片| 亚洲成a人片在线一区二区| 波多野结衣高清无吗| 国产成人av教育| 一进一出抽搐gif免费好疼| 青草久久国产| 日本黄色视频三级网站网址| 亚洲av熟女| 色老头精品视频在线观看| 最近最新中文字幕大全免费视频| 999久久久精品免费观看国产| 国产日本99.免费观看| 国产不卡一卡二| 日韩大尺度精品在线看网址| 在线观看美女被高潮喷水网站 | 欧美一级毛片孕妇| 日韩欧美三级三区| 国产亚洲精品av在线| 亚洲欧美日韩卡通动漫| 午夜福利在线观看免费完整高清在 | 最好的美女福利视频网| av黄色大香蕉| 久久精品综合一区二区三区| 国产乱人伦免费视频| 操出白浆在线播放| 午夜a级毛片| 日日夜夜操网爽| 欧美zozozo另类| 12—13女人毛片做爰片一| 国产v大片淫在线免费观看| 99精品欧美一区二区三区四区| 一本综合久久免费| 两性夫妻黄色片| 色在线成人网| 日本一本二区三区精品| 最近视频中文字幕2019在线8| 在线观看66精品国产| 别揉我奶头~嗯~啊~动态视频| 啦啦啦免费观看视频1| 怎么达到女性高潮| 99国产精品一区二区蜜桃av| 午夜福利高清视频| 亚洲精品乱码久久久v下载方式 | aaaaa片日本免费| 久久天堂一区二区三区四区| 综合色av麻豆| 成年版毛片免费区| 国产成人一区二区三区免费视频网站| 国产蜜桃级精品一区二区三区| 色综合婷婷激情| 国模一区二区三区四区视频 | 成人18禁在线播放| 中文字幕熟女人妻在线| 全区人妻精品视频| 国产亚洲欧美98| 深夜精品福利| 超碰成人久久| 久久久国产成人免费| 少妇丰满av| 99国产精品99久久久久| 中国美女看黄片| 2021天堂中文幕一二区在线观| 国产精品久久电影中文字幕| 久久香蕉国产精品| av福利片在线观看| 夜夜夜夜夜久久久久| 亚洲精品色激情综合| 国产精品乱码一区二三区的特点| 国产真实乱freesex| 亚洲国产看品久久| 波多野结衣巨乳人妻| 国模一区二区三区四区视频 | 国产人伦9x9x在线观看| 久久中文字幕人妻熟女| 亚洲中文字幕一区二区三区有码在线看 | 成人国产综合亚洲| 18禁黄网站禁片午夜丰满| 九九久久精品国产亚洲av麻豆 | 九色成人免费人妻av| 国产乱人伦免费视频| 国内精品久久久久久久电影| 97超视频在线观看视频| www日本在线高清视频| 可以在线观看的亚洲视频| 在线永久观看黄色视频| 国产伦一二天堂av在线观看| 成年人黄色毛片网站| 国产又色又爽无遮挡免费看| 一区二区三区国产精品乱码| 俺也久久电影网| 91av网一区二区| 国产1区2区3区精品| 99riav亚洲国产免费| 成人三级黄色视频| 国产av麻豆久久久久久久| 欧美xxxx黑人xx丫x性爽| 色在线成人网| 成人一区二区视频在线观看| 精品久久久久久久末码| 色在线成人网| 可以在线观看毛片的网站| 国模一区二区三区四区视频 | 男女那种视频在线观看| 两个人视频免费观看高清| 97碰自拍视频| 日本一本二区三区精品| 69av精品久久久久久| 人人妻,人人澡人人爽秒播| 精品一区二区三区av网在线观看| 日韩av在线大香蕉| 国产av在哪里看| 看免费av毛片| 一边摸一边抽搐一进一小说| 村上凉子中文字幕在线| 欧美最黄视频在线播放免费| 嫩草影院入口| 天天躁狠狠躁夜夜躁狠狠躁| 真人做人爱边吃奶动态| 禁无遮挡网站| 国产主播在线观看一区二区| 成人永久免费在线观看视频| 日本一二三区视频观看| 国内揄拍国产精品人妻在线|