• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Tensile stress regulated microstructures and ferroelectric properties of Hf0.5Zr0.5O2 films

    2023-12-15 11:48:26SiyingHuo霍思穎JunfengZheng鄭俊鋒YuanyangLiu劉遠洋YushanLi李育姍RuiqiangTao陶瑞強XubingLu陸旭兵andJunmingLiu劉俊明
    Chinese Physics B 2023年12期
    關(guān)鍵詞:遠洋

    Siying Huo(霍思穎), Junfeng Zheng(鄭俊鋒), Yuanyang Liu(劉遠洋), Yushan Li(李育姍),Ruiqiang Tao(陶瑞強), Xubing Lu(陸旭兵),?, and Junming Liu(劉俊明)

    1Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials,South China Academy of Advanced Optoelectronics,South China Normal University,Guangzhou 510006,China

    2Laboratory of Solid State Microstructures and Innovation Center of Advanced Microstructures,Nanjing University,Nanjing 210093,China

    Keywords: HfO2,ferroelectric materials,tension stress,annealing

    1.Introduction

    In recent years, ferroelectric (FE) HfO2thin films have garnered increasing attention owing to their exceptional advantages.[1-4]They exhibit excellent compatibility with the standard CMOS process and possess the ability to maintain robust ferroelectric properties even at the nanoscale,distinguishing them from traditional perovskite ferroelectrics.[5-9]Prior theoretical and experimental research has conclusively demonstrated that the noncentrosymmetric orthorhombic phase (ophase,Pca21)is widely recognized as the fundamental source of ferroelectricity in HfO2thin films.[10-12]It has been widely acknowledged that rapid cooling during the annealing process plays a crucial role in the formation of the ferroelectric polar o-phase in FE-HfO2films.[13,14]During this annealing process, the doped HfO2film is initially heated to a high temperature (usually above 500?C) to achieve crystallization.Subsequently,the crystalline HfO2undergoes a transition from tetragonal phase(t-phase)to o-phase via rapid thermal annealing.[15]However,if a prolonged annealing process is employed,the crystalline film usually experiences a transition from the t-phase to the m-phase,resulting in the absence of polar o-phase in doped HfO2film upon cooling down to room temperature.[16,17]The influence of cooling rate during the annealing process on the microstructures and ferroelectric properties of doped HfO2films still remains ambiguous.Gaining insight into this aspect would be valuable for a deeper understanding of the origin of the ferroelectricity in doped HfO2film.

    In this study,we fabricated Zr-doped HfO2(Hf0.5Zr0.5O2:HZO) thin films using atomic layer deposition (ALD).The HZO thin films were subjected to annealing with different cooling rates through rapid thermal annealing.The microstructure and electric properties of these HZO films were systematically investigated.The results clearly demonstrated that the cooling rate during the annealing process significantly influences the phase ratio(m/t/o)and stress values in the HZO thin films.We discovered that the variations in phase ratio can be attributed to the intrinsic change in stress within the HZO film,ultimately resulting in distinct ferroelectric properties.

    2.Experiments

    Figure 1(a) depicts the schematic representation of a W/HZO/W structure fabricated through the following steps.Initially, a W bottom electrode was sputtered onto a Si substrate.Subsequently, HZO thin films were deposited by ALD at 280?C on the W bottom electrode.Hf[N(CH3)2]4,Zr[N(CH3)2]4, and O3were employed as Hf-precursor, Zrprecursor, and oxygen source, respectively.The Hf:Zr ratio in the HZO film was estimated to be 1:1.Finally, a W top electrode with a diameter of 100 μm was deposited by sputtering through a shadow mask.The samples then underwent a rapid thermal annealing in a high-purity N2atmosphere.The rate of temperature increase during rapid thermal annealing was 30?C/s.After reaching the desired temperature, the annealing process was maintained at 550?C for 30 s, followed by cooling at various rates through program control.For the sake of simplicity, the cooling rate during the annealing procedure would be referred to as the annealing rate in the subsequent discussion.The annealing rate without program control (approximately 15?C/s-18?C/s), and the sample with programmed annealing rates of 5?C/s, 3.3?C/s, 1?C/s, and 0.5?C/s were nominated as natural rate, 5?C/s, 3.3?C/s,1?C/s, and 0.5?C/s, respectively.The thickness of the HZO thin films was determined by x-ray reflectivity (XRR) measurements.Atomic force microscopy (AFM) was employed to examine the surface morphology of the HZO thin films.The microstructures of HZO thin films were analyzed using grazing incidence x-ray diffraction(GIXRD)and transmission electron microscopy(TEM).Especially,the stress in the HZO thin films was quantitatively determined by the GIXRD sin2ψmethod.[18-20]The ferroelectric properties and leakage current of the HZO thin films were investigated using a ferroelectric test station(Radiant Precision)and a high-precision semiconductor analyzer(Agilent B1500A).

    3.Results and discussion

    Figure 1(b) presents the cross-sectional TEM image of the W/HZO/W capacitor structure, showcasing the excellent thickness uniformity of the HZO film deposited via ALD.Notably,the interface between the HZO film and the top/bottom W electrode is distinct, signifying the absence of noticeable interface diffusion.The W top and bottom electrodes exhibit a thickness of approximately 50 nm,while the HZO thin film measures around 15 nm,both closely aligned with the desired thickness control during film growth.XRR measurements are performed to ascertain the thicknesses of the HZO thin films at various annealing rates.Figure 1(c) illustrates a representative XRR curve, from which the thickness of the HZO thin film was determined to be approximately 15 nm,demonstrating an excellent consistency with the TEM result.Figures 1(d)and 1(e)depict the results of the AFM surface topography test for samples annealed at a natural rate and 0.5?C/s.Upon careful observation, it is found that the sample annealed at the natural rate exhibits a smaller grain size compared to the sample annealed at 0.5?C/s.Additionally, their RMS values are 732.1 pm and 912.8 pm, respectively.Figure 1(f) summarizes the RMS values of the HZO thin films annealed at various rates, clearly indicating the impact of the annealing rate on the surface morphology of the HZO thin films.As the annealing rate decreases, the surface roughness of the sample progressively increases, reaching its maximum value at 0.5?C/s.A prolonged annealing process,particularly with an extended cooling time,should be favorable for the nucleation of the grains.Consequently, samples subjected to longer annealing time exhibit bigger grain sizes and, correspondingly,larger RMS values.

    Fig.1.(a)The schematic diagram of a W/HZO/W capacitor.(b)TEM cross-sectional images of W/HZO/W capacitor.(c)A representative XRR curve of the HZO thin film.(d)AFM measurement result of natural rate HZO thin film.(e)AFM measurement result of 0.5 ?C/s HZO thin films.(f)Root of mean square(RMS)values of sample surface morphology with different annealing rates.

    Fig.2.(a)GIXRD patterns of natural rate,5 ?C/s,3.3 ?C/s,1 ?C/s,and 0.5 ?C/s samples.(b)A summary of relative o/t-phase fraction ratio in HZO thin films.(c)Deconvolution results of GIXRD spectra extracted from panel(a).

    Figure 2(a)illustrates the GIXRD test results for the samples of natural rate, 5?C/s, 3.3?C/s, 1?C/s, and 0.5?C/s.The peaks observed at 28.5?, 31.5?, and 30.5?correspond to the m(-111)phase, the m(111)phase, and the mixed peak of ferroelectric o(111)phase and t(011)phase,respectively.Figure 2(b)presents a summary of the phase ratios as a function of the annealing rate, obtained through the deconvolution of the GIXRD patterns illustrated in Fig.2(a).The detailed deconvolution results are shown in Fig.2(c).By calculating the area of each deconvoluted phase graph,the relative fractions of the o(111)/t(011)phase and m(-111)/(111)phase for samples with various annealing rates are determined.It is observed that the ratio of the o(111)/t(011) phase decreases as the annealing rate decreases.Specifically,the o(111)/t(011)phase ratios are found to be 78.1% (natural rate), 70.3% (5?C/s), 68.6%(3.3?C/s),55.5%(1?C/s),and 45.9%(0.5?C/s),respectively.Conversely, the ratio of m(-111)phase and m(111)phase increases with the decrease in annealing rate.These GIXRD results demonstrate that the polar o-phase and nonpolar m-phase of HZO films can be precisely modulated by adjusting the annealing rate.

    Figures 3(a)-3(e) depict the polarization-voltage (P-V)curves of the HZO thin films with various annealing rates.The curves are obtained by sweeping voltages from 1 V to 6 V at a test frequency of 10 kHz.Upon reaching a scanning voltage of 3 V,ferroelectric hysteresis loops start to emerge,while theP-Vloop tends to become saturated at a scanning voltage of 6 V.Notably, the sample annealed at the natural rate exhibits exceptional ferroelectric properties, with a 2Prvalue as high as 62.8μC/cm2.Figure 3(f)presents a comparison of thePVcurves for samples annealed at different rates(natural rate,5?C/s, 3.3?C/s, 1?C/s, and 0.5?C/s) at a scanning voltage of 6 V(4 MV/cm).As the annealing rate increases,the polarization characteristic curve of the sample gradually contracts and becomes more saturated,exhibiting enhanced ferroelectric properties.

    Figure 4(a) presents the 2Prvalues plotted against the sweeping voltages for all samples with various annealing rates,enabling a direct comparison of their ferroelectric properties.Notably,the 2Prvalue demonstrates a pronounced voltage dependence,exhibiting an increase with the rise in the scanning voltage.Additionally, at the same scanning voltages, the 2Prvalue of the HZO thin film exhibits a significant enhancement with increasing annealing rate.TheseP-Vtest results show a good consistency with the GIXRD findings.It is worth highlighting that the sample annealed at the natural rate,with the highest proportion of the o(111)/t(011) phase characterized by GIXRD,possesses the highest 2Prvalue.Conversely,the sample annealed at 0.5?C/s, with the lowest ratio of the o(111)/t(011) phase, shows the smallest 2Prvalue.These results align well with the notion that the polar o-phase contributes to the ferroelectric behavior of the HfO2-based ferroelectric films.

    Figure 4(b) presents theεr-Vcurves of the HZO thin films annealed at various rates, measured at a scanning voltage of 5 V and a frequency of 1.0 MHz.All of theεr-Vcurves exhibit the characteristic butterfly shape typical of ferroelectric materials,implying excellent ferroelectric properties of the prepared HZO thin films.Additionally,with a decrease in the annealing rate, there is a corresponding reduction in relative permittivity.According to literature reports,the dielectric constant of the t-phase falls within the range of 40 to 50,while that of the ferroelectric o-phase is between 30 and 40, and the mphase shows a range of 16 to 22.Consequently,we conclude that the slower annealing rate leads to a decrease in the o-phase and an increase in the m-phase in the thin film.This observation aligns with the findings from the GIXRD measurement,providing mutual confirmation of the results.

    The fatigue properties of the HZO thin films were investigated using a bipolar triangular pulse wave with a 100 kHz frequency, a 2.5 V polarization reversal voltage, and a 3 V PUND reading voltage.As depicted in Fig.4(c),samples annealed at the natural rate, 5?C/s, and 3.3?C/s exhibited fatigue cycles exceeding 108cycles,whereas samples annealed at 1?C/s and 0.5?C/s showed fatigue cycles below 108cycles.The improved fatigue performance of the sample with a faster annealing rate can be attributed to the following mechanisms.Previous studies highlighted the strong correlation between the fatigue properties of HZO thin films and both leakage current and domain pinning effect caused by defects.[21,22]Samples subjected to a faster annealing rate show a smaller grain size and smoother surface roughness,as confirmed by AFM results demonstrated in Figs.1(d)-1(f).Consequently,the presence of smaller grains and fewer grain boundaries in the film favored lower leakage current.Furthermore,the sample with reduced surface roughness should exhibit better electrode/HZO interface quality, resulting in fewer interface defects and reduced interface domain pinning effects.

    Figure 4(d)displays the polarization retention characteristics with time decay,as measured using write/read pulses of 4 V in magnitude and 1 ms in pulse width.The schematic representation of the measurement cycle details can be observed in the inset of Fig.4(d).Even after a retention time as long as 2×104s,the polarization values of the natural rate,5?C/s,3.3?C/s,1?C/s,and 0.5?C/s samples remain remarkably high at 91.6%,96.4%,97.3%,84.7%,and 93.7%,respectively.Extrapolating the polarization retention of samples with various annealing rates over a period of 10 years demonstrates the outstanding reliability and retention performance of this HZO thin film.Fig.4.Comparison of electric properties of HZO thin film samples with different annealing rates.(a)2Prvalues under scanning voltage from 1 V to 6 V.(b)Dielectric constant variation with sweeping voltage.(c)Endurance measurement results.(d)Retention properties results.The inset shows pulse details from a single cycle measurement taken during the retention analysis,wherePTandPBdenote the recorded top and bottom polarizations obtained from the read pulses,respectively.

    Fig.3.The P-V hysteresis loops of samples with various annealing rates: (a)natural rate,(b)5 ?C/s,(c)3.3 ?C/s,(d)1 ?C/s,(e)0.5 ?C/s samples.(f)A comparison of P-V hysteresis loops of HZO samples with various annealing rates at a sweeping voltage of±6 V.

    Figures 5(a)-5(e) present the results of GIXRD sin2ψmethod stress tests conducted on HZO at various annealing rates.In this research, CuKαrays were used as the ray source,with a 2θscanning range of 25?-35?,an incident angle of 2?, and a rotation setting range of 0?-50?.As the rotation angle increased from 0?to 50?, a significant reduction in the diffraction peaks of the samples was observed.In addition, the diffraction peak positions displayed a distinct tendency to shift to the left, indicating the presence of tensile stress within the film.Based on the GIXRD sin2ψresults,the residual stress values of HZO thin films annealed at different rates were calculated using the method proposed by Zhuet al.,[23]as depicted in Fig.5(f).The residual stresses of the samples annealed at natural rate, 5?C/s, 3.3?C/s, 1?C/s,and 0.5?C/s were determined to be 4.63 GPa, 4.236 GPa,3.6715 GPa, 3.4205 GPa, and 2.524 GPa, respectively.All residual stress values fall within the range of 2.5 GPa to 5 GPa,consistent with reported values for HZO thin films.[24]It is evident that the film’s residual stress decreases with a lower annealing, demonstrating the significant influence of annealing rate on stress.A faster annealing rate induces larger tension stress in the samples.Notably,stress in the HfO2-based ferroelectric materials has been reported to critically affect phase stability.[25,26]In this study, a high stress level in the HZO film is assumed to be favorable for the o-phase stability,while low stress favors the stability of the m-phase.Consequently,samples subjected to a faster annealing rate and higher stress have a high ratio of o-phase.Conversely,decreasing stress in the film leads to a reduced o-phase ratio and an increased mphase ratio.These stress measurement findings provide a reasonable explanation for the distinct microstructure and ferroelectric properties observed in samples with various annealing rates.

    4.Conclusion

    We explored the influence of tension stress,regulated by the annealing rate during the rapid thermal annealing process,on the microstructure and ferroelectric properties of the HZO thin films.AFM measurements revealed that samples with a faster annealing rate exhibited smaller grain sizes and improved surface roughness.GIXRD measurements indicated precise modulation of the polar o-phase and nonpolar m-phase of HZO films by adjusting the annealing rate,with faster rates leading to a higher o-phase ratio within the film.Electrical measurements indicated that samples with faster annealing rate showed enhanced ferroelectric properties, including higher polarization values and better fatigue cycles.GIXRD stress measurements showed that a faster annealing rate induced larger tension stress in the samples.These findings highlighted the critical role of stress within the HZO films in impacting their ferroelectric properties of HZO thin films.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China (Grant Nos.62174059 and 52250281), the Science and Technology Projects of Guangzhou Province of China (Grant No.202201000008), the Guangdong Science and Technology Project-International Cooperation (Grant No.2021A0505030064), and the Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials(Grant No.2020B1212060066).

    猜你喜歡
    遠洋
    “和平方舟”,挑戰(zhàn)遠洋救護
    航天遠洋測量船“遠望7號”返回母港
    軍事文摘(2021年22期)2022-01-18 06:21:58
    沈陽遠洋公館
    遠洋“軍需官”901
    國內(nèi)新型遠洋金槍魚圍網(wǎng)漁船首航
    商周刊(2018年19期)2018-12-06 09:49:41
    遠洋東方境世界觀售樓處
    “兩橫一縱”遠洋綜合補給
    兵器知識(2018年5期)2018-05-30 10:23:50
    城市商業(yè)綜合體設(shè)計——以成都遠洋太古里為例
    江西建材(2018年2期)2018-04-14 08:00:13
    中國遠洋海運集團有限公司船期表
    中國遠洋巨虧財務(wù)成因探析
    麻豆成人av视频| 日韩中字成人| 男女国产视频网站| 日韩免费高清中文字幕av| 国产久久久一区二区三区| 尾随美女入室| 在线观看免费日韩欧美大片 | 亚洲av中文av极速乱| 97超视频在线观看视频| 亚洲四区av| 99热这里只有精品一区| 岛国毛片在线播放| 五月伊人婷婷丁香| 91精品伊人久久大香线蕉| 免费看av在线观看网站| 97超碰精品成人国产| 国产爱豆传媒在线观看| 成人特级av手机在线观看| 国产精品嫩草影院av在线观看| 免费黄网站久久成人精品| 久久精品国产亚洲av涩爱| 两个人的视频大全免费| 97在线视频观看| 久久久久网色| 久久久精品免费免费高清| 全区人妻精品视频| 大片电影免费在线观看免费| 国产黄色视频一区二区在线观看| 99久久精品一区二区三区| 在线看a的网站| 一区二区av电影网| 91久久精品国产一区二区成人| 麻豆精品久久久久久蜜桃| 亚洲av中文字字幕乱码综合| 久久热精品热| 亚洲av电影在线观看一区二区三区| a 毛片基地| 美女中出高潮动态图| 九九在线视频观看精品| 日日撸夜夜添| 老司机影院成人| 国产一区有黄有色的免费视频| 免费av不卡在线播放| 亚洲av成人精品一二三区| 女人十人毛片免费观看3o分钟| 国产精品伦人一区二区| 亚洲中文av在线| 亚洲天堂av无毛| 在线观看美女被高潮喷水网站| 麻豆精品久久久久久蜜桃| 国产午夜精品一二区理论片| 亚洲高清免费不卡视频| 精品亚洲成a人片在线观看 | 亚洲欧美日韩另类电影网站 | 国产一区亚洲一区在线观看| 精品人妻熟女av久视频| 国产午夜精品一二区理论片| 日本av免费视频播放| 国产精品一区二区在线不卡| 婷婷色av中文字幕| 国产在线视频一区二区| 日日撸夜夜添| 国产人妻一区二区三区在| 免费人成在线观看视频色| 国产高清不卡午夜福利| 午夜视频国产福利| 最近最新中文字幕免费大全7| 99re6热这里在线精品视频| 成年美女黄网站色视频大全免费 | 一区二区三区乱码不卡18| 美女福利国产在线 | 久久久久性生活片| 亚洲av成人精品一区久久| 国产伦在线观看视频一区| 三级国产精品欧美在线观看| 黄片wwwwww| 夫妻午夜视频| 日本wwww免费看| 中文精品一卡2卡3卡4更新| 爱豆传媒免费全集在线观看| 久久综合国产亚洲精品| 精品一区二区三区视频在线| 色视频www国产| 观看免费一级毛片| 赤兔流量卡办理| 人人妻人人爽人人添夜夜欢视频 | 伊人久久国产一区二区| 国产淫语在线视频| 亚洲中文av在线| 婷婷色麻豆天堂久久| 久久久久久久久大av| 久久精品久久久久久噜噜老黄| 草草在线视频免费看| 麻豆国产97在线/欧美| 高清不卡的av网站| 成人无遮挡网站| 国产精品免费大片| 亚洲av福利一区| 视频中文字幕在线观看| 一二三四中文在线观看免费高清| 久久99热这里只频精品6学生| 免费观看性生交大片5| 少妇 在线观看| 蜜桃久久精品国产亚洲av| 国产高清三级在线| 尾随美女入室| 99国产精品免费福利视频| 美女脱内裤让男人舔精品视频| 成人毛片60女人毛片免费| 国产高潮美女av| 国产极品天堂在线| 久久精品国产自在天天线| 精品国产乱码久久久久久小说| 日韩精品有码人妻一区| 人人妻人人添人人爽欧美一区卜 | av在线app专区| av在线老鸭窝| 美女中出高潮动态图| 97超碰精品成人国产| 国产精品.久久久| 插逼视频在线观看| 精品国产一区二区三区久久久樱花 | 99久久人妻综合| 99久久精品一区二区三区| 伦精品一区二区三区| 成年美女黄网站色视频大全免费 | 久久久久网色| 欧美日韩亚洲高清精品| 新久久久久国产一级毛片| 亚洲丝袜综合中文字幕| 人体艺术视频欧美日本| 亚洲精品视频女| 亚洲怡红院男人天堂| 亚洲av.av天堂| 午夜激情久久久久久久| 国产成人免费无遮挡视频| 久久国内精品自在自线图片| 18禁裸乳无遮挡免费网站照片| 91精品国产九色| 国产无遮挡羞羞视频在线观看| 又爽又黄a免费视频| 一个人看视频在线观看www免费| 国产免费福利视频在线观看| 国产伦精品一区二区三区视频9| 激情五月婷婷亚洲| 国内精品宾馆在线| 久久久久久人妻| 亚洲欧美成人精品一区二区| 国产有黄有色有爽视频| 蜜臀久久99精品久久宅男| 亚洲精品色激情综合| 久久6这里有精品| 亚洲综合精品二区| 久久精品国产亚洲网站| 国产高清三级在线| av福利片在线观看| 国内揄拍国产精品人妻在线| av一本久久久久| 美女内射精品一级片tv| 大香蕉97超碰在线| 亚洲精品国产av蜜桃| 成人一区二区视频在线观看| 日本黄色日本黄色录像| 免费观看av网站的网址| 国产乱人视频| 人妻夜夜爽99麻豆av| 免费人妻精品一区二区三区视频| 国产伦精品一区二区三区视频9| 成人18禁高潮啪啪吃奶动态图 | 人人妻人人爽人人添夜夜欢视频 | 精品视频人人做人人爽| 性高湖久久久久久久久免费观看| 日本黄大片高清| 成人国产麻豆网| 校园人妻丝袜中文字幕| 国产69精品久久久久777片| 国产av一区二区精品久久 | 偷拍熟女少妇极品色| 在现免费观看毛片| 欧美3d第一页| 久久久欧美国产精品| freevideosex欧美| 一边亲一边摸免费视频| 一二三四中文在线观看免费高清| 美女高潮的动态| 国产爽快片一区二区三区| 国产亚洲av片在线观看秒播厂| 国产成人精品福利久久| 日韩一本色道免费dvd| 99热网站在线观看| 精品久久久久久久末码| av在线app专区| 黄色一级大片看看| 三级国产精品欧美在线观看| 成人国产麻豆网| 啦啦啦视频在线资源免费观看| 国产精品久久久久久精品电影小说 | 免费看不卡的av| 日本黄大片高清| 干丝袜人妻中文字幕| 久久精品国产亚洲av天美| 夫妻性生交免费视频一级片| www.色视频.com| 午夜免费鲁丝| 亚洲国产最新在线播放| 中文字幕制服av| 日韩国内少妇激情av| av播播在线观看一区| 在线观看国产h片| 少妇 在线观看| 亚洲精品一二三| 国产高潮美女av| 一级片'在线观看视频| 高清不卡的av网站| 99热6这里只有精品| 97超碰精品成人国产| 纵有疾风起免费观看全集完整版| av免费在线看不卡| 最后的刺客免费高清国语| 又黄又爽又刺激的免费视频.| 亚洲中文av在线| 国产精品秋霞免费鲁丝片| 亚洲av电影在线观看一区二区三区| 少妇人妻精品综合一区二区| 男人添女人高潮全过程视频| 大陆偷拍与自拍| 欧美日韩精品成人综合77777| 伦理电影免费视频| 亚洲国产色片| 狠狠精品人妻久久久久久综合| 国产午夜精品一二区理论片| freevideosex欧美| 国产亚洲午夜精品一区二区久久| 在现免费观看毛片| 中文字幕免费在线视频6| 麻豆成人av视频| 国产亚洲5aaaaa淫片| 亚洲精品国产成人久久av| 啦啦啦啦在线视频资源| 久久精品国产亚洲av涩爱| 26uuu在线亚洲综合色| 青春草亚洲视频在线观看| 最近的中文字幕免费完整| 成人综合一区亚洲| 夜夜看夜夜爽夜夜摸| 18禁裸乳无遮挡动漫免费视频| 国产免费一区二区三区四区乱码| 欧美高清性xxxxhd video| 久久久久国产网址| freevideosex欧美| 噜噜噜噜噜久久久久久91| 午夜精品国产一区二区电影| 亚洲久久久国产精品| 欧美日韩精品成人综合77777| 亚洲精品久久午夜乱码| 妹子高潮喷水视频| 国产伦在线观看视频一区| 久久久久精品久久久久真实原创| 天天躁日日操中文字幕| 熟妇人妻不卡中文字幕| 精品少妇黑人巨大在线播放| 国产精品福利在线免费观看| 天美传媒精品一区二区| 免费看日本二区| 国产精品一区二区在线观看99| 亚洲国产精品专区欧美| 最后的刺客免费高清国语| 夜夜爽夜夜爽视频| 亚洲精品亚洲一区二区| 欧美一区二区亚洲| 香蕉精品网在线| 免费av不卡在线播放| 国产精品人妻久久久影院| 亚洲欧美一区二区三区国产| 尾随美女入室| 亚洲欧洲国产日韩| 日本一二三区视频观看| 99久久精品一区二区三区| 中文欧美无线码| 亚洲,一卡二卡三卡| 99久久人妻综合| 国产av码专区亚洲av| 九色成人免费人妻av| 女的被弄到高潮叫床怎么办| 99精国产麻豆久久婷婷| 久久99热这里只有精品18| 国产亚洲精品久久久com| 人妻 亚洲 视频| 国内少妇人妻偷人精品xxx网站| 激情五月婷婷亚洲| 美女视频免费永久观看网站| 大陆偷拍与自拍| 国产精品一及| 亚洲国产色片| 中国美白少妇内射xxxbb| 久久精品久久久久久噜噜老黄| 婷婷色综合www| 亚洲精华国产精华液的使用体验| 国产真实伦视频高清在线观看| 91精品国产国语对白视频| 又黄又爽又刺激的免费视频.| 男人舔奶头视频| 国产av国产精品国产| 免费黄频网站在线观看国产| 国产乱人视频| 亚洲,一卡二卡三卡| 精品久久久噜噜| 午夜日本视频在线| 国产精品久久久久久av不卡| 久久精品国产鲁丝片午夜精品| 你懂的网址亚洲精品在线观看| 国产精品人妻久久久影院| 热re99久久精品国产66热6| 免费观看av网站的网址| 欧美另类一区| 色视频www国产| av天堂中文字幕网| 最近最新中文字幕免费大全7| 国产成人aa在线观看| 国产在线男女| 22中文网久久字幕| 99九九线精品视频在线观看视频| 婷婷色av中文字幕| 五月开心婷婷网| 国产精品秋霞免费鲁丝片| 精品久久久久久久末码| 成人综合一区亚洲| 精品人妻视频免费看| 美女福利国产在线 | 人妻制服诱惑在线中文字幕| 成人国产av品久久久| 久久国产乱子免费精品| 国产高清有码在线观看视频| 亚洲精品456在线播放app| 成人亚洲欧美一区二区av| 精品久久久久久久久av| 啦啦啦啦在线视频资源| 人妻制服诱惑在线中文字幕| 亚洲精品乱久久久久久| 欧美xxxx性猛交bbbb| 麻豆成人av视频| 久久久久久伊人网av| 日本黄色片子视频| 纵有疾风起免费观看全集完整版| 欧美成人一区二区免费高清观看| 一个人看视频在线观看www免费| 啦啦啦在线观看免费高清www| 纯流量卡能插随身wifi吗| 国产精品偷伦视频观看了| 国产 精品1| 熟女电影av网| 免费观看无遮挡的男女| 国产毛片在线视频| 亚洲国产欧美人成| 亚洲国产毛片av蜜桃av| 99久久精品热视频| 亚洲国产成人一精品久久久| 蜜臀久久99精品久久宅男| 人妻少妇偷人精品九色| 久久人妻熟女aⅴ| 国模一区二区三区四区视频| 免费大片黄手机在线观看| 深爱激情五月婷婷| 午夜免费观看性视频| 搡女人真爽免费视频火全软件| 最近2019中文字幕mv第一页| 看免费成人av毛片| 一本色道久久久久久精品综合| 女的被弄到高潮叫床怎么办| 黑丝袜美女国产一区| 亚洲精品乱久久久久久| 99热全是精品| 99精国产麻豆久久婷婷| 偷拍熟女少妇极品色| 亚洲av成人精品一区久久| 一区在线观看完整版| 成年人午夜在线观看视频| 亚洲久久久国产精品| 日韩三级伦理在线观看| 免费看av在线观看网站| 寂寞人妻少妇视频99o| 天美传媒精品一区二区| 国产淫语在线视频| 国产精品av视频在线免费观看| 少妇熟女欧美另类| 全区人妻精品视频| 国产成人免费无遮挡视频| 五月开心婷婷网| 天天躁日日操中文字幕| 欧美日韩综合久久久久久| 午夜福利影视在线免费观看| 1000部很黄的大片| 免费黄色在线免费观看| 只有这里有精品99| 91精品国产九色| 久久精品久久久久久噜噜老黄| 欧美成人午夜免费资源| 我的女老师完整版在线观看| 成人美女网站在线观看视频| 色哟哟·www| 人人妻人人看人人澡| 国产精品精品国产色婷婷| 伦精品一区二区三区| 最近中文字幕高清免费大全6| 久久精品国产亚洲av涩爱| 久久97久久精品| 黄色日韩在线| 美女cb高潮喷水在线观看| 在线看a的网站| 国产 精品1| 久久久午夜欧美精品| 韩国高清视频一区二区三区| 最黄视频免费看| 中文字幕亚洲精品专区| 日日撸夜夜添| 久久婷婷青草| 欧美一区二区亚洲| 三级经典国产精品| 国产精品熟女久久久久浪| 大话2 男鬼变身卡| 午夜激情福利司机影院| 免费观看a级毛片全部| 亚洲精品国产av蜜桃| 日韩制服骚丝袜av| 成人综合一区亚洲| 中国国产av一级| 不卡视频在线观看欧美| 亚洲婷婷狠狠爱综合网| 亚洲欧美一区二区三区黑人 | 秋霞伦理黄片| 美女xxoo啪啪120秒动态图| 国产一区二区三区综合在线观看 | 中文天堂在线官网| 久久精品国产亚洲网站| 只有这里有精品99| 黄色视频在线播放观看不卡| 插逼视频在线观看| 精品国产乱码久久久久久小说| 日韩人妻高清精品专区| 国产淫片久久久久久久久| 天堂中文最新版在线下载| 精品久久久精品久久久| 久久女婷五月综合色啪小说| 大片免费播放器 马上看| 精品酒店卫生间| 免费大片18禁| 亚洲国产精品999| 午夜激情久久久久久久| 又黄又爽又刺激的免费视频.| 国产精品国产三级国产av玫瑰| 国产大屁股一区二区在线视频| 色婷婷av一区二区三区视频| 国产日韩欧美亚洲二区| 免费播放大片免费观看视频在线观看| 久热久热在线精品观看| 黄片无遮挡物在线观看| a级毛色黄片| 国产黄频视频在线观看| 人妻系列 视频| 日韩一本色道免费dvd| 色婷婷久久久亚洲欧美| 日韩国内少妇激情av| 激情 狠狠 欧美| 免费人成在线观看视频色| 各种免费的搞黄视频| 精品亚洲乱码少妇综合久久| 国产精品无大码| 欧美xxxx性猛交bbbb| 永久免费av网站大全| 免费观看的影片在线观看| 精品国产一区二区三区久久久樱花 | 精品国产乱码久久久久久小说| 欧美 日韩 精品 国产| 少妇人妻久久综合中文| tube8黄色片| 夫妻午夜视频| 岛国毛片在线播放| 一本一本综合久久| 日产精品乱码卡一卡2卡三| 欧美极品一区二区三区四区| 精品午夜福利在线看| 国产精品不卡视频一区二区| 美女福利国产在线 | 欧美成人一区二区免费高清观看| 国内少妇人妻偷人精品xxx网站| 婷婷色av中文字幕| 18禁裸乳无遮挡动漫免费视频| 久久毛片免费看一区二区三区| 久久97久久精品| 亚洲电影在线观看av| 免费在线观看成人毛片| 精品国产三级普通话版| 精品视频人人做人人爽| av国产精品久久久久影院| 亚洲国产高清在线一区二区三| 狂野欧美白嫩少妇大欣赏| 精品国产乱码久久久久久小说| 国产爱豆传媒在线观看| 晚上一个人看的免费电影| 亚洲精品乱久久久久久| 国产伦在线观看视频一区| 能在线免费看毛片的网站| 亚洲精品乱码久久久久久按摩| 久久久久久久大尺度免费视频| 爱豆传媒免费全集在线观看| 国产毛片在线视频| 春色校园在线视频观看| 久久99蜜桃精品久久| 亚洲av在线观看美女高潮| 亚洲欧洲日产国产| 成人免费观看视频高清| 欧美精品亚洲一区二区| 国内揄拍国产精品人妻在线| 青春草视频在线免费观看| 久久综合国产亚洲精品| 亚洲电影在线观看av| 天堂俺去俺来也www色官网| 久久99热这里只有精品18| 成人午夜精彩视频在线观看| 毛片一级片免费看久久久久| 欧美日韩一区二区视频在线观看视频在线| 国产精品国产三级国产专区5o| 99久久精品热视频| 蜜桃在线观看..| 嫩草影院入口| 国产黄色免费在线视频| 尤物成人国产欧美一区二区三区| 激情 狠狠 欧美| 大陆偷拍与自拍| 99热全是精品| 色吧在线观看| 亚洲久久久国产精品| av不卡在线播放| 久久国产乱子免费精品| 夜夜爽夜夜爽视频| 高清不卡的av网站| 久久热精品热| 亚洲国产精品国产精品| 亚洲国产欧美人成| 亚洲中文av在线| 国产成人aa在线观看| 成人国产麻豆网| 赤兔流量卡办理| 一区二区三区免费毛片| av在线观看视频网站免费| 乱码一卡2卡4卡精品| 美女xxoo啪啪120秒动态图| 欧美日韩一区二区视频在线观看视频在线| 美女高潮的动态| 黑人高潮一二区| 免费看光身美女| 久久久久精品性色| 亚洲欧洲国产日韩| kizo精华| 最近手机中文字幕大全| 成人黄色视频免费在线看| 免费少妇av软件| 国产av国产精品国产| 91久久精品电影网| av线在线观看网站| 一级二级三级毛片免费看| 亚洲电影在线观看av| 91精品国产九色| 精品久久国产蜜桃| av福利片在线观看| 韩国高清视频一区二区三区| 大码成人一级视频| 九草在线视频观看| 国产黄色视频一区二区在线观看| www.色视频.com| 91狼人影院| 国产精品嫩草影院av在线观看| 精品国产乱码久久久久久小说| 人妻 亚洲 视频| 日韩欧美精品免费久久| 深夜a级毛片| 精品视频人人做人人爽| 亚洲成人手机| 国产精品国产三级专区第一集| 丝袜喷水一区| 国产av国产精品国产| 男女啪啪激烈高潮av片| 又爽又黄a免费视频| 在线观看美女被高潮喷水网站| 午夜福利网站1000一区二区三区| 亚洲美女搞黄在线观看| 国产精品一区二区在线不卡| 永久网站在线| 国产欧美日韩一区二区三区在线 | 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲欧美成人综合另类久久久| 亚洲精华国产精华液的使用体验| 国产精品久久久久成人av| 日本色播在线视频| 秋霞伦理黄片| 一区二区三区乱码不卡18| 亚洲美女黄色视频免费看| 精品视频人人做人人爽| 欧美成人一区二区免费高清观看| 欧美日韩在线观看h| 精品视频人人做人人爽| 欧美日韩国产mv在线观看视频 | 又黄又爽又刺激的免费视频.| 免费观看无遮挡的男女| 国产极品天堂在线| 日韩视频在线欧美| 久久午夜福利片| 国产 一区精品| 精品视频人人做人人爽| 亚洲国产最新在线播放| 亚洲成人中文字幕在线播放| 久久毛片免费看一区二区三区| 国产精品久久久久成人av| 亚洲欧洲国产日韩| 伦精品一区二区三区|