• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multi-channel generation of vortex beams with controllable polarization states and orbital angular momentum

    2023-12-15 11:47:30ZiyaoLyu呂子瑤PanWang王潘andChangshunWang王長(zhǎng)順
    Chinese Physics B 2023年12期

    Ziyao Lyu(呂子瑤), Pan Wang(王潘), and Changshun Wang(王長(zhǎng)順),?

    1State Key Laboratory of Advanced Optical Communication Systems and Networks,School of Physics and Astronomy,Shanghai Jiao Tong University,Shanghai 200240,China

    2School of Data Science,The Chinese University of Hong Kong,Shenzhen 518172,China

    Keywords: light field modulation,holography,optical vortex,polarization

    1.Introduction

    In the information era, new services and applications are causing an exponential increase in aggregated data traffic, which motivates the development of innovative optical communication technologies to sustain a required massive increase in the information capacity.[1-3]In terms of the demand for continuously increasing information transmission,conventional communication systems based on wavelength and time division multiplexing, together with amplitude and phase degrees of freedom of light, are approaching a bottleneck.[2,4]Because of the development of research in the field of optics,light can provide another information dimension,namely angular momentum, to solve the problem mentioned above.Generally,propagating light waves possess two distinct forms of angular momentum.[5-8]Firstly, light can carry spin angular momentum (SAM).SAM is inherent in light beams with elliptical polarization states and depends on the field vector rotations that take place at every point of the beam crosssection.[9,10]The SAM degree of freedom of light plays a key role in optical communication systems.[11,12]For example,dual polarization in fiber optic eigenvalue communication has been reported recently in order to overcome the limitation of information transmission in conventional optical communication systems.[13]In addition to SAM,optical vortex,referring to a light beam carrying intrinsic orbital angular momentum(OAM), has attracted extensive attention in modern photonics and optics.[14-16]A vortex beam possesses helical phase front comprising an azimuthal phase term exp(ilφ), wherelrepresents the topological charge andφis the azimuthal angle.There is an isolated point singularity in the optical field of vortex light.This type of vortex is commonly known as phase vortex,characterized by the phase singularity.[17]Optical vortex light is one of the special beams with a complex beam shape linked to the space physical dimension of light waves.Recently,structured light has been widely explored in optical communication systems to facilitate the substantial increase of transmission capacity and efficient usage of limited frequency resources.[17-19]

    In order to further improve the data capacity of angularmomentum-enabled communication systems, the simultaneous formation of multiple optical SAM and OAM modes using a single element with a single-input beam is highly desired.[20]A considerable amount of attention has been directed to the multi-channel generation of polarized optical vortices carrying both SAM and OAM with a single Gaussian beam for adding additional degrees of freedom to optical communication systems, which is greatly helpful to realize tremendous promotion of the information capacity.[21]Therefore,research on polarized optical multi-vortices generators becomes a critical step for the development of multidimensional multiplexing technologies and high-capacity communication.Generally,for vortex beam based optical communications, OAM multiplexing and OAM coding/decoding are two important ways to carry and deliver data information.For OAM multiplexing, multiple collinear vortex beams are used to carry data information, which is known as a subset of the mode division multiplexing technique.[22]In addition,the vortex beams carrying OAM can also be regarded as symbols to realize data coding/decoding transmission.In theory,the OAM states are theoretically infinite, making it feasible to realize highdimensional coding/decoding for data transfer in both traditional and quantum communications.[23]Particularly, diffractive phase gratings are commonly applied for OAM mode generation and coding/decoding.In 2021, a novel design technique for multi-dimensional OAM coding/decoding has been proposed based on a two-dimensional vortex holographic grating.[24]Moreover, optical vortex beams control based on phase fork gratings has also been realized for optical connectors and information transmission.[25]

    However, the works mentioned above mainly focus on optical OAM modes,while the polarization degree of freedom of light cannot be controlled.Moreover, generating multiple light beams with desired amount of optical angular momentum is usually achieved with a series of individual bulky polarization and spatial phase devices, which sharply decreases the configurability of communication systems.[26]In addition,the wavelength of the incident light and generated vortex light is usually strictly limited.The demands of shrinking,broadband and multi-output optical devices call for new approaches.In this regard, recently developed optical components have also been applied to generate optical vortices.[27]Nevertheless, in many cases,the wavelength and polarization of the generated vortex light are restricted, and the use of these optical components as practical devices is often limited by their manufacturing complicity, inflexible SAM adjustability and wavelength sensitivity, which hinders the development of highcapacity communication systems.In recent years, great progresses have been made.For example, Wanget al.proposed combined phase-only holograms to produce sophisticated perfect optical vortex arrays and the contributed scheme enabled dynamically controllable multi-ring, topological charges, eccentricity, size, and the number of optical vortices.[28]Shanget al.proposed an integrated phase-only scheme to generate multiple multiplexed vortex beams simultaneously, constituting a multiplexed vortex state array, where the spatial position, as well as the corresponding orbital angular momentum spectrum, could be manipulated flexibly as desired.[29]Fuet al.demonstrated an approach experimentally to acquire multiple beams on a hybrid Poincare sphere,and the state in each diffraction order was controllable.[30]Besides,orbital angular momentum comb generation,consisting of a series of discrete,equally spaced,and equally weighted orbital angular momentum modes,has also been demonstrated both theoretically and experimentally through azimuthal binary phases.[31]

    In this work,we have designed a polarized optical multivortices generator based on the analysis of Stokes-Mueller formalism and cross-phase modulation.Theoretical discussion shows that multi-output vortex beams with tunable polarization states and OAM can be generated simultaneously through a single-input linearly polarized Gaussian beam.To verify our scheme, the designed multi-vortices generator has also been recorded in an azobenzene liquid-crystalline film experimentally.Four OAM-carrying light beams with anticipated topological charges and actively controllable polarization states are obtained,and there is a good agreement between the theoretical analysis and experimental results.

    2.Principle

    Two pairs of recording beams with different wavelengths are required for one-step holographic recording of the designed polarized optical multi-vortices generator in an azobenzene liquid-crystalline film.Firstly,we consider two coherent monochromatic electromagnetic plane waves with the wavelength ofλ.The holographic interference field isE(r,t)=E1(r,t)+E2(r,t),in which

    wherek=2π/λis the wave vector,ωis the angular frequency,θis the angle betweenkandz-axis,χ1andχ2are two controllable additional phases.The intersection angle between the polarization direction of light and thexzplane isα.?1and?2represent the phase differences between they-axis component and the in-planexzcomponent forE1(r,t) andE2(r,t), respectively.The Stokes vector of the holographic fieldE(r,t)is expressed as

    in which〈〉 is for time average,S0represents the total light intensity andS1-S3are the intensities related to the components of interference light that are linearly polarized alongxy, linearly polarized in the directions of±45?, and circularly polarized,respectively.[32]

    Then, the Mueller matrix of the photoinduced liquidcrystalline structure formed by one-step holographic recording is calculated based on the Stokes vector.LetMdenote a nondepolarizing Mueller matrix and there exists a diattenuatorMDand retarderMRpair such thatM=MRMD.[33]Specific Mueller matrix decomposition into two elementary matrices can be described by

    wheredis the thickness of the material,s1=S1/S0is the normalized Stokes parameter,γxandγyare the attenuation coefficients alongxandydirections, respectively,γ0=(γx+γy)/2 andI(s1)?γ=γy-γxwithI(s1)representing a parameter related tos1because the anisotropic response of the liquidcrystalline film is proportional to light intensity.The form ofI(s1) is determined by the effect of cross-phase modulation discussed below.The diattenuation Jones matrixJxycan be converted to a Mueller matrixMxythrough the transformation

    withm11being the element ofMxyand?indicating direct product.[34]According to Eqs.(4) and (5), the diattenuation vector inx-ydirections isDxy= (tanh[kI(s1)?γd] 0 0)T.Similarly, the Jones matrices of the linear diattenuatorJ±45oriented in the directions of±45?and the circular diattenuatorJLR are

    in whichγ0=(γ45+γ-45)/2 forJ±45andγ0=(γL+γR)/2 forJLRwithγ45,γ-45,γL,γRbeing the attenuation coefficients related to the light with±45?linear polarization and leftand right-handed circular polarization, respectively.Based on Eq.(5), the diattenuation vectors ofM±45andMLRare calculated asD±45= (0 tanh[kI(s2)?γd] 0)TandDLR=(0 0 tanh[kI(s3)?γd])T,respectively.Therefore,the diattenuation vectorDDofMDis related to the Stokes vector and determined by

    Fig.1.(a) Experimental setup for the one-step holographic recording of the proposed polarized optical multi-vortices generator in a liquidcrystalline film. θ1 and θ2 are the incident angles of the resonant pump light and off-resonant pump light,respectively. α1,α2,β1 and β2 are the intersection angles between x-z plane and the polarization directions of four recording beams.(b)Poincar′e sphere is defined in a space spanned by normalized Stokes parameters, representing the degrees of linear polarization (s1), diagonal polarization (s2) and circular polarization (s3),respectively.A vector from the origin to a point (ψ, ε) on the sphere surface defines a Stokes vector and indicates optical SAM.

    To record the proposed polarized optical multi-vortices generator,an optical amplitude pattern and a polarization pattern should both be formed within the dual-color holographic recording field.Firstly, the Mueller matrix of the liquidcrystalline structure induced by the polarization pattern is discussed.In this case,two off-resonant recording beams are required to be orthogonally polarized,and thus the polarization state within the interference light field is modulated periodically in space.For simplification, the polarization directions of the two recording beams are set alongx- andy-axes, respectively.Under the assumption of paraxial approximation,the Stokes vector of the off-resonant holographic optical field is expressed as

    with ?χr=χ1-χ2.According to Eqs.(7) and (8), the diattenuation submatrixmDis

    On the other hand, the photoinduced birefringence in the liquid-crystalline film is also related to the corresponding Stokes parameters.The effect of a retarder upon polarization states is equivalent to a rotation on the Poincar′e sphere in Fig.1(b) and the retardance submatrixmRcan be written as[35]

    whereRr=kr?ndis the retardance with ?nbeing the anisotropic birefringence constant,andεijkis the Levi-Civita permutation symbol (i,j=1, 2, 3).Therefore, the Mueller matrix of the liquid-crystalline structure recorded by the optical polarization pattern is obtained throughMr=MrRMrD.

    Then, the Mueller matrix of the liquid-crystalline structure generated by the optical amplitude pattern is calculated.Under this situation, the light intensity varies periodically in space and the Stokes vector of the interference light field of two resonant beams,G1andG2,is

    In this case,only linear birefringence as well as linear diattenuation exist.The Mueller matrix related to the optical amplitude pattern isMg=MgRMgD.

    Here, the mechanism of cross-phase modulation is discussed in order to store the optical patterns in the liquidcrystalline film and generate structures described by the coupling ofMgandMr.In terms of the photosensitive material in this work, the liquid crystals can exist in two isomeric states: trans and cis.The transition between the two states happens under the illumination of light and thermal influence.At room temperature, trans-isomers are more stable than cis-isomers.As shown in Fig.2(a), most of the absorption bands of trans-isomers lie in the blue-green region of shorter wavelengths.As the activation of shortwavelength resonant pump light transforms the liquid crystals from trans-to cis-isomers,a photoinduced periodic refractiveindex structure described byMg,corresponding to the amplitude pattern of the holographic optical field, is formed in the liquid-crystalline film because of the population change of cisisomers in space.Moreover,the photoinduced trans-to-cis isomerization further causes spectral redshift of the material, as demonstrated in Fig.2(a), and the absorption of off-resonant light with longer wavelength leads to photoexcited cis-to-trans back isomerization.[36]During the photoinduced isomerizations, the reorientation direction of photoaligned liquid crystals is forced to become perpendicular to the spatially distributed polarization direction of recording light.The transcis-trans isomerization processes are illustrated in Fig.2(b),whereσAandσBrepresent the absorption cross sections of trans- and cis-isomers,?Aand?Brepresent the quantum yields of photoinduced isomerizations from trans to cis and from cis to trans, respectively.KTis the process of thermal cis-trans isomerization.Cross-phase modulation induced by photoinduced isomerizations causes spectral changes in longwavelength light through the modulation of short-wavelength light.This effect is described by the coupled waves propagation equation[37]

    withnrandνrbeing the nonlinear refraction and absorption coefficients in terms of the off-resonant light, respectively.During this process,the isomerization rate equation related to the population of trans-(NA)and cis-isomers(NB)is

    whereRi=σi?iIi/(hνi) (i=A, B) are the rates of trans-cis and photoexcited cis-trans isomerizations.RTis a constant representing the rate ofKT.The time-dependent population changes of trans- and cis-isomers induced by the effect of cross-phase modulation are

    withN0being the total number of isomers within the holographic recording area.Based on the optical polarization pattern and photoexcited cis-to-trans isomerization, the photoinduced molecular reorientation of trans-isomers is controlled by spatially rotating optical-axis directions of the longwavelength interference light, and thus the reorientation angles of liquid crystals vary periodically from 0 to 2πalongx-axis, resulting in the formation of a periodic birefringence structure, defined by the polarization dependence of refractive indices, in the film described byMr.After reaching a stable state, the photoinduced anisotropy in the material is proportional to the population of photoexcited trans- and cis-isomers, and thusI(si) in Eq.(7) can be expressed asgASgi/(gASg0+gBSr0+1)forMgandgBSri/(gASg0+gBSr0+1)forMrwithgq=σq?q/(hνqRT) (q= A, B) according to Eq.(14).Through this dual-color modulation transfer method,the designed polarized optical multi-vortices generator can be recorded in the liquid-crystalline film.

    Finally,the complete Mueller matrix of the designed alloptically tunable polarized optical multi-vortices generator is the coupling ofMgandMr,expressed as

    withR(ξ)being the 4×4 rotation matrix alongz-axis.Considering a single-input linearly polarized Gaussian light, simultaneous formation of multi-output optical SAM and OAM modes are calculated throughsn(ψn,εn)=M(ξ)si(ψi)withsiandsnbeing the normalized Stokes vectors of the incident andnth-order diffraction light,respectively.The results of theoretical analysis on spin and spatial degrees of freedom of the generated optical vortices are presented in Fig.3.Through the series expansion ofM(ξ),sncontains the exponential term exp(inlφ), and thus the topological charges of OAM modes equalnl.The output SAM modes are related tos3that is the function ofεncontrolled byξ.In terms of the spatial degree of freedom of the diffraction beams, we control the azimuthdependent phases ?χrand ?χgas ?χr=?χg=lφ,and thus the OAM of the generated vortex beams can be controlled through recording light fields.During this process,the recorded polarized optical multi-vortices generator can be erased through the heating method (~60?C) and another generator with different values oflcan be recorded in the same liquid-crystalline film at the same point.This writing-erasing-writing cycle can be repeated rapidly over a hundred times without fatigue.On the other hand, manipulation of spin degree of freedom is independent of the spatial degree of freedom.The SAMcarrying optical vortices can be modulated continuously from left-handed to right-handed elliptically polarized with various ellipticityεthrough manipulating the rotation angleξof the polarized optical multi-vortices generator(described by the rotation matrix in Eq.(15)),and the modulation depth of SAM,defined as|LSAM/LmaxSAM|withLmaxSAMbeing the maximum magnitude of SAM carried by polarized light, is actively controllable between 0% and 100%.Moreover, the wavelength of the incident light is not fixed and multi-channel generation of vortex beams carrying tunable SAM and OAM is expected to be broadband because the Mueller matrices in Eq.(15)are not related to the wavelength of input light.

    Fig.2.(a) Absorption spectra of trans- and cis-isomers of the photosensitive liquid crystals.(b)Schematic energy-state conversion between the two isomers.σA-?A represents photoinduced trans-to-cis conversion,σB-?B shows photoexcited cis-to-trans back isomerization and KT is the spontaneous thermal induced process.

    Fig.3.Multi-channel generation of vortex beams with controllable polarization states and topological charges based on the theoretical analysis of Muller matrices.

    In the following section, the designed polarized optical multi-vortices generator is demonstrated experimentally to verify our scheme, and a group of vortex beams with desired topological charges of 3nand actively controllable polarization states are generated.

    3.Experimental setup

    The experimental setup for multi-channel generation of polarized vortex beams is presented in Fig.1(a).Two 532 nm beams from a Nd:YAG laser with the same power density of 150 mW/cm2are selected as resonant recording light whose wavelength is located in the absorption spectrum of the sample(thickness~1 μm), as shown in Fig.2(a).The selected resonant laser wavelength plays two roles in this work.Firstly,it effectively leads to photoinduced structures in the liquidcrystalline film; secondly, it is relatively weakly absorbed by the sample, which promotes uniform distribution of light intensity across the whole sample.The two resonant recording beams interfere at the surface of the sample at an angle of 3?(2θ1=3?).On the other hand, two 633 nm beams from a He-Ne laser with an equal power density of 180 mW/cm2are selected as off-resonant recording light.The intersection angle of the two red beams at the surface of the sample is 5?(2θ2=5?).The sample in our experiment is a supermolecule material by ionic self-assembly of poly (ionic liquid) (PIL)and azobenzene dye.The charged polymer poly (1-butylvinylpyridinium bromide) PIL is selected as the main chain segment, and the methyl orange (MO) dye is selected as the building unit due to its capability for photo-induced isomerization.For the preparation of ionic self-assembly complex,a 2 mg/ml PIL aqueous solution is added dropwise to a MO aqueous solution with the same concentration, i.e., in a 1:1 molar charge ratio.The precipitated complex is filtrated and washed several times with doubly distilled water to remove residual salts and possible non-complexed precursors, then dried in vacuum at 60?C for 12 h.Vertically linearly polarized Gaussian light with the wavelength of 650 nm is selected as the probe light to investigate the properties of the recorded polarized optical multi-vortices generator.The polarization states and intensity distributions of the output light waves are detected with a polarimeter (THORLABS, PAX5710VIS-T)and a CCD(CINOGY,CinCam-1201),respectively.Based on the directly measured polarization states and interference patterns,the amount of SAM and OAM carried by the generated polarized vortex beams can be evaluated experimentally.All measurements are performed at room temperature.According to the photo-alignment principle of liquid crystals discussed in the previous section, the designed polarized optical multivortices generator in Fig.4 is formed in the sample through one-step holographic recording.

    Fig.4.Schematic illustration of multi-channel generation of SAMcarrying vortex beams with desired topological charges of 3n and alloptically controllable SAM.Pin and Pdif represent the polarization states of the incident light and diffraction light,respectively.

    Fig.5.The experimentally captured image of diffraction light.Simulated helical phase patterns of the (a1) +first-order, (b1) -first-order,(c1)+second-order and(d1)-second-order structured diffraction beams.(a2)-(d2)Experimentally measured donut-shaped intensity profiles of the four generated OAM-carrying beams imaged on the CCD corresponding to (a1)-(d1).According to the simulated holograms of the interference of Gaussian light and structured light with helical phases presented in(a1)-(d1),the topological charges of the±first-order and±second-order diffraction beams are measured to be±3 and±6,respectively.

    4.Results and discussion

    Firstly, in terms of the spatial degree of freedom, the topological charges of the generated OAM-carrying beams are measured experimentally.According to theoretical analysis,the topological charge of diffraction lightmsatisfies the equationm=nl+l0withnbeing the diffraction order,landl0being the topological charges of recording holographic light field and incident light, respectively,[38-40]here,l=3.As shown in Figs.5(a2)-5(d2), four diffraction beams display donutshaped light-intensity profiles with phase singularities at the center of each light spot, characteristic of optical vortices.A coherent Gaussian beam is applied to investigate the OAM of the first-order and second-order vortex diffraction lights based on the interference patterns.The difference between the number of interference fringes in the upper-half part and the lowerhalf part of the interference pattern is equal to the topological charge.The experimental results are consistent with the theoretical analysis and the simultaneous generation of a group of vortex beams with anticipated topological charges of 3nhas been realized experimentally.

    Fig.6.All-optical SAM control of the (a) +first-order, (b) -first-order, (c) +second-order and (d) -second-order OAM-carrying diffraction beams has been demonstrated experimentally on the normalized Poincar′e sphere.When the incident light keeps vertically linearly polarized,the generated vortex beams can be manipulated from left-handed to right-handed elliptically polarized with tunable ellipticities in the ranges from-34.938?to 36.765?for the first diffraction order and from-35.724?to 38.208?for the second diffraction order.The polarization directions of the four vortex beams all can be modulated continuously between-90?and 90?.

    Then, the polarization states of the generated vortex beams can be controlled by rotating the recorded optical element and the results are presented on the Poincar′e sphere with red dots in Fig.6.For the±first diffraction orders (see Figs.6(a)and 6(b)), the polarization direction of light can be manipulated to change in the total range from-90?to 90?as the red dots in Figs.6(a3) and 6(b3) make one revolution around the center of the Poincar′e sphere ins1-s2plane.[41]According to Figs.6(a2) and 6(b2), the red dot shifts between the north and south poles ofs3-axis, which indicates that the first-order vortex diffraction light can be controlled to both left- and right-handed elliptically polarized with wideranging tunable ellipticities.The maximum magnitude of ellipticity measured in the experiment is 36.765?.Similarly,the polarization directions of the±second-order vortex diffraction beams are also controlled randomly between-90?and 90?, as shown in Figs.6(c) and 6(d).Moreover, the ellipticity of the polarization state can be manipulated continuously from-35.724?to 38.208?when the incident light is fixed to be linearly polarized in the vertical direction.According to Fig.1(b), the SAM of polarized light is determined by two parameters, ellipticityεand phase itemψ.As the recorded polarized optical multi-vortices generator is rotated, alternate SAM modulation from left-handed to right-handed with the wide-ranging tunable magnitude is realized for all diffraction beams.For the vortex beams with topological charges of±3 in Figs.6(a) and 6(b), the vortex light is regulated from linearly polarized with|ψ|=0.5πto left-handed elliptically polarized with the maximum SAM of-0.960/ω;then,the ellipticity decreases gradually and the vortex light returns to linearly polarized;afterwards,the handedness of SAM is reversed and the magnitude of right-handed SAM increases again to reach the peak of 0.945/ω; finally, the right-handed elliptically polarized vortex light is modulated to linearly polarized with|ψ|=0.5π.During this process, the generated maximum SAM of the first-order diffraction light equals 0.960Land the manipulation range of SAM modulation depth is continuous from 0 to 96.0%.On the other hand, in terms of the second-order vortex diffraction beams with topological charges of±6 in Figs.6(c)and 6(d),a similar SAM manipulation process can also be achieved.The handedness of SAM is switchable from left-handed to right-handed and the maximum modulation depth of SAM is measured up to 97.2%.

    5.Conclusion

    Acknowledgment

    Project supported by the National Natural Science Foundation of China(Grant No.92050116).

    999久久久国产精品视频| 亚洲国产中文字幕在线视频| 搞女人的毛片| 亚洲欧美日韩无卡精品| 国产精品自产拍在线观看55亚洲| aaaaa片日本免费| 成人欧美大片| 精品电影一区二区在线| 一个人免费在线观看的高清视频| 亚洲成a人片在线一区二区| 天堂av国产一区二区熟女人妻| 欧美三级亚洲精品| 亚洲18禁久久av| 欧美xxxx黑人xx丫x性爽| 久久久久国产一级毛片高清牌| 亚洲国产欧美网| 黄色 视频免费看| 18禁国产床啪视频网站| 欧美成人一区二区免费高清观看 | 身体一侧抽搐| 男人舔女人的私密视频| 久久国产精品影院| 真实男女啪啪啪动态图| 久久人妻av系列| 搞女人的毛片| 男人舔奶头视频| 色综合亚洲欧美另类图片| 视频区欧美日本亚洲| 免费人成视频x8x8入口观看| 国产淫片久久久久久久久 | 亚洲一区二区三区色噜噜| 色噜噜av男人的天堂激情| 国产一区二区三区在线臀色熟女| 这个男人来自地球电影免费观看| 最近在线观看免费完整版| 欧美中文日本在线观看视频| 色尼玛亚洲综合影院| 亚洲天堂国产精品一区在线| 啦啦啦观看免费观看视频高清| 午夜日韩欧美国产| 久久久久国产精品人妻aⅴ院| 日本成人三级电影网站| 麻豆久久精品国产亚洲av| av中文乱码字幕在线| 久久精品aⅴ一区二区三区四区| 91麻豆精品激情在线观看国产| 久久精品综合一区二区三区| 欧美激情在线99| 精品一区二区三区视频在线 | 法律面前人人平等表现在哪些方面| 欧美激情久久久久久爽电影| 黄色女人牲交| 两性夫妻黄色片| 九色国产91popny在线| 亚洲中文字幕日韩| 99在线人妻在线中文字幕| 99在线视频只有这里精品首页| 脱女人内裤的视频| 2021天堂中文幕一二区在线观| 亚洲狠狠婷婷综合久久图片| 午夜福利成人在线免费观看| 成人特级黄色片久久久久久久| 国产精品免费一区二区三区在线| 男插女下体视频免费在线播放| 中文在线观看免费www的网站| 女同久久另类99精品国产91| 国产黄a三级三级三级人| 午夜精品久久久久久毛片777| 日韩大尺度精品在线看网址| 亚洲 欧美 日韩 在线 免费| 深夜精品福利| 美女cb高潮喷水在线观看 | 天堂√8在线中文| 久久久色成人| 成人精品一区二区免费| 村上凉子中文字幕在线| 亚洲黑人精品在线| 亚洲第一电影网av| 在线观看免费视频日本深夜| 天堂√8在线中文| 国产成人aa在线观看| 色综合婷婷激情| 国产野战对白在线观看| 亚洲av熟女| 亚洲精品456在线播放app | 俺也久久电影网| 久久热在线av| 欧美一区二区精品小视频在线| 久久久国产精品麻豆| 精品一区二区三区四区五区乱码| 亚洲 欧美一区二区三区| 亚洲专区中文字幕在线| 亚洲精品中文字幕一二三四区| 99久国产av精品| 成年版毛片免费区| 美女黄网站色视频| 在线免费观看不下载黄p国产 | 国产精品久久视频播放| 两个人看的免费小视频| 两个人的视频大全免费| 久久久精品欧美日韩精品| 精品熟女少妇八av免费久了| 精品久久久久久久人妻蜜臀av| 最好的美女福利视频网| 久久亚洲真实| 亚洲在线自拍视频| 99国产极品粉嫩在线观看| av在线天堂中文字幕| www国产在线视频色| 亚洲国产精品合色在线| www.999成人在线观看| 午夜精品久久久久久毛片777| 在线国产一区二区在线| 亚洲美女视频黄频| 禁无遮挡网站| 在线观看舔阴道视频| 搡老岳熟女国产| av视频在线观看入口| 蜜桃久久精品国产亚洲av| 欧美日韩综合久久久久久 | 在线看三级毛片| 亚洲欧美日韩东京热| avwww免费| 十八禁人妻一区二区| 两个人看的免费小视频| 欧美又色又爽又黄视频| 欧美日韩乱码在线| 欧美一级毛片孕妇| 色哟哟哟哟哟哟| 亚洲狠狠婷婷综合久久图片| 久久久久精品国产欧美久久久| 国产一级毛片七仙女欲春2| 成年女人永久免费观看视频| 99热这里只有精品一区 | 51午夜福利影视在线观看| 亚洲国产中文字幕在线视频| 999久久久国产精品视频| 久久中文字幕人妻熟女| 99久久成人亚洲精品观看| 亚洲熟女毛片儿| 久久香蕉国产精品| 蜜桃久久精品国产亚洲av| 动漫黄色视频在线观看| 99国产综合亚洲精品| 亚洲avbb在线观看| av在线蜜桃| 亚洲狠狠婷婷综合久久图片| 亚洲天堂国产精品一区在线| 婷婷精品国产亚洲av在线| 久久久久久大精品| 国产精品永久免费网站| ponron亚洲| 国产伦人伦偷精品视频| 久久国产精品人妻蜜桃| 少妇人妻一区二区三区视频| 毛片女人毛片| 韩国av一区二区三区四区| 国产精品香港三级国产av潘金莲| 国产成人aa在线观看| 一个人看视频在线观看www免费 | 精品一区二区三区视频在线 | 美女大奶头视频| 久久天躁狠狠躁夜夜2o2o| 啦啦啦韩国在线观看视频| 人人妻人人澡欧美一区二区| 毛片女人毛片| 岛国在线观看网站| 哪里可以看免费的av片| 午夜成年电影在线免费观看| 人人妻,人人澡人人爽秒播| 欧美成人性av电影在线观看| 免费一级毛片在线播放高清视频| 丰满的人妻完整版| 成年免费大片在线观看| 国产一区二区三区视频了| 亚洲九九香蕉| 最新美女视频免费是黄的| 亚洲av成人不卡在线观看播放网| 成人无遮挡网站| 美女被艹到高潮喷水动态| 91av网一区二区| 免费观看的影片在线观看| 国产亚洲精品综合一区在线观看| 深夜精品福利| 亚洲avbb在线观看| 国产av在哪里看| 国产精品久久视频播放| 成人永久免费在线观看视频| 丰满人妻一区二区三区视频av | 国产美女午夜福利| 国产精品99久久99久久久不卡| 日本精品一区二区三区蜜桃| 成年女人毛片免费观看观看9| 亚洲人成网站在线播放欧美日韩| 我要搜黄色片| 看免费av毛片| 欧美日本亚洲视频在线播放| 亚洲色图 男人天堂 中文字幕| 人人妻人人看人人澡| 中文字幕人成人乱码亚洲影| 俺也久久电影网| 中文字幕高清在线视频| 久久精品aⅴ一区二区三区四区| 欧美色视频一区免费| 国产熟女xx| 亚洲片人在线观看| 非洲黑人性xxxx精品又粗又长| 国产毛片a区久久久久| 日本精品一区二区三区蜜桃| 欧美极品一区二区三区四区| 色哟哟哟哟哟哟| 少妇裸体淫交视频免费看高清| 日韩欧美国产在线观看| 亚洲国产精品sss在线观看| 在线观看午夜福利视频| 欧美绝顶高潮抽搐喷水| 天堂√8在线中文| 老司机午夜福利在线观看视频| 精品不卡国产一区二区三区| 噜噜噜噜噜久久久久久91| 国产久久久一区二区三区| 悠悠久久av| 51午夜福利影视在线观看| 最新美女视频免费是黄的| 日韩人妻高清精品专区| 性色avwww在线观看| 国产亚洲精品av在线| 国产蜜桃级精品一区二区三区| 操出白浆在线播放| 变态另类成人亚洲欧美熟女| 少妇裸体淫交视频免费看高清| 中文在线观看免费www的网站| 男人舔奶头视频| 这个男人来自地球电影免费观看| 日韩精品中文字幕看吧| 久久久久久大精品| 脱女人内裤的视频| 在线免费观看的www视频| 欧美丝袜亚洲另类 | 久久久国产精品麻豆| 国产av一区在线观看免费| av中文乱码字幕在线| 久久性视频一级片| 亚洲最大成人中文| 亚洲av日韩精品久久久久久密| 日本在线视频免费播放| 午夜免费成人在线视频| 女警被强在线播放| 麻豆成人av在线观看| 久久久久久大精品| 精品一区二区三区av网在线观看| 国产精品久久久久久精品电影| 很黄的视频免费| 久久精品人妻少妇| 免费看十八禁软件| 激情在线观看视频在线高清| 日本免费a在线| 欧美最黄视频在线播放免费| 国产精品,欧美在线| 欧美3d第一页| 国内少妇人妻偷人精品xxx网站 | 精品久久久久久,| 午夜福利视频1000在线观看| 成人精品一区二区免费| 亚洲专区国产一区二区| 亚洲在线观看片| 国产精品久久久久久久电影 | 人妻夜夜爽99麻豆av| 日本精品一区二区三区蜜桃| 午夜福利视频1000在线观看| 精品久久久久久久久久免费视频| 日本成人三级电影网站| 亚洲,欧美精品.| 亚洲成av人片免费观看| 中文字幕久久专区| 18禁观看日本| 亚洲精品粉嫩美女一区| 好男人在线观看高清免费视频| 国产1区2区3区精品| 伊人久久大香线蕉亚洲五| 天天添夜夜摸| 日本撒尿小便嘘嘘汇集6| 免费在线观看视频国产中文字幕亚洲| 日韩成人在线观看一区二区三区| 狠狠狠狠99中文字幕| 天堂av国产一区二区熟女人妻| 国产精品,欧美在线| 熟女少妇亚洲综合色aaa.| 国产精品影院久久| bbb黄色大片| 亚洲电影在线观看av| 色播亚洲综合网| 国产精品亚洲美女久久久| 天堂√8在线中文| 中文字幕最新亚洲高清| 久久久国产欧美日韩av| 国产美女午夜福利| 18禁观看日本| bbb黄色大片| 动漫黄色视频在线观看| 国产精华一区二区三区| 一二三四在线观看免费中文在| 久久久精品大字幕| 2021天堂中文幕一二区在线观| 欧美日韩一级在线毛片| 午夜福利高清视频| 久99久视频精品免费| 午夜两性在线视频| 嫁个100分男人电影在线观看| 曰老女人黄片| 免费搜索国产男女视频| h日本视频在线播放| 51午夜福利影视在线观看| 在线观看舔阴道视频| 国产精品日韩av在线免费观看| 国产在线精品亚洲第一网站| 色吧在线观看| 日本一本二区三区精品| 男女床上黄色一级片免费看| 高潮久久久久久久久久久不卡| 18禁国产床啪视频网站| 最近最新中文字幕大全电影3| 久久精品aⅴ一区二区三区四区| 成年女人毛片免费观看观看9| av天堂在线播放| 黄色片一级片一级黄色片| 我的老师免费观看完整版| 18禁裸乳无遮挡免费网站照片| 日韩精品中文字幕看吧| 99久久无色码亚洲精品果冻| 婷婷精品国产亚洲av| 欧美在线一区亚洲| 国产黄片美女视频| cao死你这个sao货| 亚洲色图av天堂| а√天堂www在线а√下载| 欧美乱码精品一区二区三区| 露出奶头的视频| 国产精品野战在线观看| 久久久久久国产a免费观看| 亚洲av成人精品一区久久| 香蕉av资源在线| 国内久久婷婷六月综合欲色啪| 男女下面进入的视频免费午夜| 99久久精品国产亚洲精品| 我的老师免费观看完整版| 嫁个100分男人电影在线观看| 国产毛片a区久久久久| 亚洲七黄色美女视频| 搞女人的毛片| 69av精品久久久久久| 天天一区二区日本电影三级| 国产高清有码在线观看视频| 亚洲色图av天堂| 免费搜索国产男女视频| 又紧又爽又黄一区二区| 国产亚洲av嫩草精品影院| 全区人妻精品视频| 亚洲色图 男人天堂 中文字幕| 999久久久精品免费观看国产| 男女视频在线观看网站免费| 亚洲欧美精品综合一区二区三区| 免费看十八禁软件| 成年女人看的毛片在线观看| av女优亚洲男人天堂 | 色视频www国产| 男女午夜视频在线观看| 99久久综合精品五月天人人| 精品国产三级普通话版| 国产av一区在线观看免费| 日韩欧美一区二区三区在线观看| 国产 一区 欧美 日韩| 香蕉av资源在线| 制服人妻中文乱码| 亚洲精品美女久久久久99蜜臀| 欧美一级a爱片免费观看看| 波多野结衣高清作品| 日韩大尺度精品在线看网址| 久久久久久久午夜电影| 精品国产乱子伦一区二区三区| 一二三四社区在线视频社区8| 高潮久久久久久久久久久不卡| 亚洲精品美女久久久久99蜜臀| 黄色成人免费大全| 叶爱在线成人免费视频播放| 国产免费男女视频| 一个人免费在线观看的高清视频| 国产精品99久久久久久久久| 免费人成视频x8x8入口观看| 99视频精品全部免费 在线 | 91av网一区二区| 特大巨黑吊av在线直播| 国产免费av片在线观看野外av| 丰满人妻熟妇乱又伦精品不卡| 日韩欧美一区二区三区在线观看| 九色国产91popny在线| 亚洲av美国av| 看片在线看免费视频| 综合色av麻豆| 国产精品99久久久久久久久| 99久久无色码亚洲精品果冻| 在线观看免费视频日本深夜| 一边摸一边抽搐一进一小说| 亚洲一区二区三区色噜噜| 国产淫片久久久久久久久 | tocl精华| 久久欧美精品欧美久久欧美| www国产在线视频色| 亚洲国产看品久久| 亚洲国产中文字幕在线视频| 久久久久久久久久黄片| 波多野结衣巨乳人妻| 国产精品精品国产色婷婷| 亚洲自偷自拍图片 自拍| 国产高清有码在线观看视频| 精品不卡国产一区二区三区| 午夜精品久久久久久毛片777| 婷婷六月久久综合丁香| 午夜成年电影在线免费观看| 深夜精品福利| 日韩欧美在线乱码| 精品免费久久久久久久清纯| 三级男女做爰猛烈吃奶摸视频| 国产成人影院久久av| 国内精品美女久久久久久| 可以在线观看的亚洲视频| 精品人妻1区二区| 少妇的丰满在线观看| 国产精品香港三级国产av潘金莲| 最近最新中文字幕大全电影3| 长腿黑丝高跟| 亚洲av片天天在线观看| 亚洲七黄色美女视频| 国产精品98久久久久久宅男小说| 久久午夜亚洲精品久久| 亚洲精品在线观看二区| 国产男靠女视频免费网站| 给我免费播放毛片高清在线观看| 精品电影一区二区在线| 午夜激情福利司机影院| 成人三级黄色视频| 精品久久久久久成人av| 日本精品一区二区三区蜜桃| 亚洲国产日韩欧美精品在线观看 | 最新在线观看一区二区三区| avwww免费| 国产单亲对白刺激| 草草在线视频免费看| 99热这里只有是精品50| 色综合站精品国产| 亚洲va日本ⅴa欧美va伊人久久| 男女视频在线观看网站免费| 人妻夜夜爽99麻豆av| 国产成人av教育| 国产精品久久久久久亚洲av鲁大| 校园春色视频在线观看| 深夜精品福利| 国产亚洲精品av在线| 99国产精品一区二区蜜桃av| 亚洲电影在线观看av| 99久久国产精品久久久| 日韩 欧美 亚洲 中文字幕| 制服人妻中文乱码| 亚洲精品美女久久av网站| 亚洲 欧美一区二区三区| 久久中文字幕人妻熟女| 在线观看66精品国产| av女优亚洲男人天堂 | 国内久久婷婷六月综合欲色啪| 波多野结衣高清作品| 亚洲中文日韩欧美视频| 欧美激情在线99| 久久精品91蜜桃| 非洲黑人性xxxx精品又粗又长| 国产真人三级小视频在线观看| 欧美大码av| 久久久久久久午夜电影| 国产精品一区二区三区四区免费观看 | 国产午夜精品久久久久久| 一本综合久久免费| 久久久久国内视频| 久久精品人妻少妇| 精品无人区乱码1区二区| 一a级毛片在线观看| 观看免费一级毛片| 女生性感内裤真人,穿戴方法视频| 亚洲自偷自拍图片 自拍| 久久久久国内视频| 悠悠久久av| 首页视频小说图片口味搜索| 国产精品免费一区二区三区在线| 91在线观看av| 亚洲黑人精品在线| 欧美一区二区精品小视频在线| 狂野欧美激情性xxxx| 国产精品av视频在线免费观看| 一级毛片女人18水好多| 我要搜黄色片| 久久精品91蜜桃| xxxwww97欧美| 国产91精品成人一区二区三区| 小蜜桃在线观看免费完整版高清| 99久久无色码亚洲精品果冻| 午夜福利高清视频| 亚洲avbb在线观看| 国产精品九九99| 欧美激情久久久久久爽电影| 久久久国产成人免费| 国产精品久久久av美女十八| 亚洲在线自拍视频| 黄频高清免费视频| 国产99白浆流出| 国产精品亚洲av一区麻豆| 久久中文看片网| 9191精品国产免费久久| 国模一区二区三区四区视频 | 蜜桃久久精品国产亚洲av| 99精品欧美一区二区三区四区| 日韩大尺度精品在线看网址| 女生性感内裤真人,穿戴方法视频| 一级毛片高清免费大全| 9191精品国产免费久久| 久久久水蜜桃国产精品网| 亚洲性夜色夜夜综合| 久久人妻av系列| www.999成人在线观看| 欧美一级a爱片免费观看看| 99精品欧美一区二区三区四区| 精品国产乱子伦一区二区三区| 波多野结衣高清作品| 最近最新中文字幕大全电影3| 热99在线观看视频| 亚洲avbb在线观看| 午夜a级毛片| 欧美另类亚洲清纯唯美| 少妇丰满av| 91麻豆av在线| 亚洲 国产 在线| 成年免费大片在线观看| av国产免费在线观看| 99久久综合精品五月天人人| 在线观看一区二区三区| 日本在线视频免费播放| 国产91精品成人一区二区三区| 99热这里只有是精品50| 久久香蕉国产精品| 久久精品国产综合久久久| 欧美日韩乱码在线| 色老头精品视频在线观看| 色播亚洲综合网| av福利片在线观看| 午夜精品在线福利| 国产乱人视频| 欧美丝袜亚洲另类 | 99国产精品一区二区三区| 国产主播在线观看一区二区| 国产精品永久免费网站| 在线观看一区二区三区| 午夜成年电影在线免费观看| 99热只有精品国产| 99精品在免费线老司机午夜| 九色成人免费人妻av| 欧美一级a爱片免费观看看| 久久香蕉国产精品| 中文字幕av在线有码专区| 亚洲国产欧美人成| 一级毛片高清免费大全| 国产精品av久久久久免费| 无限看片的www在线观看| 日韩av在线大香蕉| 国产精品久久久久久久电影 | 香蕉国产在线看| 成人国产一区最新在线观看| 女人被狂操c到高潮| 亚洲片人在线观看| 久久热在线av| 国产一区二区激情短视频| 亚洲无线观看免费| av视频在线观看入口| 中文亚洲av片在线观看爽| 操出白浆在线播放| 色在线成人网| svipshipincom国产片| 五月玫瑰六月丁香| 国产亚洲精品综合一区在线观看| 亚洲欧美一区二区三区黑人| 国产亚洲精品一区二区www| 一二三四社区在线视频社区8| 国产成人精品久久二区二区免费| 国模一区二区三区四区视频 | 最新美女视频免费是黄的| 性色av乱码一区二区三区2| 国产高清视频在线播放一区| 伦理电影免费视频| 免费看美女性在线毛片视频| 午夜视频精品福利| 国产人伦9x9x在线观看| 国产伦人伦偷精品视频| 一进一出抽搐gif免费好疼| 99久久成人亚洲精品观看| 国产伦人伦偷精品视频| 国产乱人视频| 男女那种视频在线观看| av视频在线观看入口| 午夜福利在线在线| 精品国产乱子伦一区二区三区| 亚洲五月天丁香| 日韩欧美精品v在线| 麻豆一二三区av精品| 国产精华一区二区三区| 最新中文字幕久久久久 | 久久精品人妻少妇| 中文字幕最新亚洲高清| 成人午夜高清在线视频| 午夜福利在线在线|