• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Resolution-enhanced single-pixel imaging using the Hadamard transform matrix

    2023-12-15 11:48:26ShuHangBie別書航ChenHuiWang王晨暉RuiBingLv呂瑞兵QianQianBao鮑倩倩QiangFu付強ShaoYingMeng孟少英andXiHaoChen陳希浩
    Chinese Physics B 2023年12期
    關(guān)鍵詞:晨暉

    Shu-Hang Bie(別書航), Chen-Hui Wang(王晨暉), Rui-Bing Lv(呂瑞兵), Qian-Qian Bao(鮑倩倩),Qiang Fu(付強), Shao-Ying Meng(孟少英), and Xi-Hao Chen(陳希浩)

    Key Laboratory of Optoelectronic Devices and Detection Technology,College of Physics,Liaoning University,Shenyang 110036,China

    Keywords: single-pixel imaging,Gaussian filtering,resolution enhancement

    1.Introduction

    Single-pixel imaging(SPI)is a newly developed computational imaging technique,[1-3]which can reconstruct a highdimensional image by various reconstruction algorithms including correlated imaging (also well known as ghost imaging (GI))[5,6]and compressed sensing (CS)[7]by only utilizing one-dimensional (1D) single-pixel signals with the help of the default synchronizing modulation patterns.Because of this special imaging mechanism, it can image a target object in harsh environments such as extremely weak light,[4]atmospheric turbulence[8]and scattering media[9]just as traditional GI can do.[10]Currently,besides performing in the visible spectrum,SPI has demonstrated its viability in exotic regions of the electromagnetic spectrum,such as infrared,[20,21]terahertz,[31-34]x-ray[22,29]and neutron,[23]where conventional imaging techniques face difficulties in both practicality and cost.In 2008, two different imaging schemes of passive and active (it is also well known as computational GI(CGI)) SPI systems were proposed by Duarte’s group and Shapiro,[1,2]respectively.Later, although the idea of active SPI, i.e., CGI comes from traditional GI, an agreement was gradually reached that they were equivalent in imaging principle, modulation strategy and reconstruction method except that the positions of the light source, the spatial light modulator(SLM),the object and so on are different in the imaging setup.

    Different modulation methods have been proposed and implemented for SPI schemes using both digital micromirror devices (DMDs) and SLM technologies.[11-43]Initially, nonorthogonal random patterns were used to modulate the optical field in SPI.[11-14]However, this approach was associated with issues such as long data acquisition time and low reconstruction quality.As SPI continued to develop, it was found that deterministic model-based techniques could effectively address these issues.The two representative modulation schemes are those based on the Hadamard bases[15-38]and Fourier bases,[39-43]respectively.They are able to achieve almost perfect reconstruction of the target scene by taking advantage of these basis patterns from a complete orthogonal set,[44]which effectively overcomes the problem of low reconstruction quality.In addition, they can also reconstruct clear images from the under-sampled data by utilizing the fact that the measurement basis is sparse in different representations.Over more than a decade,there have been many reports about the ordering of these basis patterns in SPI.[16-18,53-55]Besides various CS and CS-based SPI schemes,[24,25]SPI via deep learning[26-30]has been also proposed to not only improve the quality of reconstructed images but greatly reduce the sampling number.

    In the following study, except for the above basis patterns used in SPI, some schemes have been proposed to generate various customized speckle fields.[46-51]In 2014,Cao’s group proposed a versatile method for generating non-Rayleigh speckle patterns.The method involves encoding higher-order correlations into the optical by the phase-only SLM which results in a redistribution of light intensity among the speckle grains in the far field.[46]In recent work, they found that the non-local correlation introduced by tailoring the intensity probability spectral density of the speckle patterns can exceed the resolution limit.[47,48]Moreover, an approach of generating the speckle patterns by different noise modes was proposed in the perspective of power spectral density (PSD),[51,52]where a computational GI-like experiment was realized based on a binary-modulated DMD.It is found that there are special spatial intensity fluctuation correlations between adjacent pixels of these speckle patterns,which helps achieve better noise robustness or higher spatial resolution in CGI systems.[51,52]However, almost all of these schemes of generating customized speckle fields required a certain complicated transformation to obtain speckle patterns and then project these on the modulation device.This is greatly limited by the accuracy of a modulation device such as DMD when the modulation patterns have to be not binary.Therefore,although the transformation of some standardized modulation,patterns may theoretically make the performance of SPI improve,there is still a limitation of hardware in an actual experiment.

    In this paper we propose a novel SPI scheme to achieve a high-resolution image,which is based on the cross-correlation between the standard binary Hadamard modulation bases and their transformation patterns.Here, the DMD is modulated by standard binary Hadamard bases.Merely by a computational processing, each Hadamard transform pattern can be acquired by an inverse Fourier transform on a Gaussianfiltered Hadamard basis in the frequency domain.Based on the cross-correlation between the bucket signals acquired by actual modulated standard Hadamard bases and their corresponding synchronized transform patterns,a higher-resolution image could be restored just according to a traditional GI algorithm.

    2.Theory and method

    The principle of a passive SPI is shown in Fig.1,where an illuminating optical beam from a light-emitting diode (LED)passes through an object and enters a lens-imaging system,then an image of the object is imaged on a DMD.The light beam is reflected and converged into a single-pixel detector after it is modulated by the DMD.As we know,the key point of correlated SPI is the correlation between the modulation matrices and the single-pixel signals.Thus in this section we will start from the second-order correlation function of modulation matrices to study the correlation of Hadamard transformation matrices,the cross-correlation between the Hadamard bases and the corresponding transformation matrices,and enhanced resolution by using the latter.To simplify the calculation without loss of generality, only the 1D SPI is considered here,where the intensity correlation functionG(2)(?x)of modulation bases can be expressed as

    Here ?xis the relative distance inx.Currently,the DMD is the most commonly used SLM in SPI systems due to its superior modulation rate, and broadband wavelength response.Compared with the Fourier basis,the Hadamard basis is more suitable for loading on DMD without a quantization error because of its binary characteristics.[45]Here the correlation function of Hadamard-based matrices can be simplified as

    Fig.1.Diagram of experimental setup of SPI.

    Actually, the transformation of modulated matrix is a standard process of matrix computation.Firstly, each Hadamard matrixI(ω) in the frequency domain is obtained by a spatial Fourier transform ofI(x).And then the filtered matrixIF(ω) is acquired by Gaussian high-pass filtering for eachI(ω),i.e.,

    whereHHP(ω) is a Gaussian function likeHHP(ω) =A0-exp(-ω2/ω0).HereA0andω0are constants set in the function.Finally, eachIF(ω) would be converted intoIF(x) by an inverse Fourier transform, which will be used to correlate with the bucket signals.It is shown in Fig.2 that the correlation between the individual pixels in the filtered matrix is changed with the change of the low-frequency components of the Hadamard matrix.According to the Wiener-Khinchin theorem,the second-order correlation functionG(2)F (?x)after Gaussian filtering can be written as

    whereδ(ω)is the average PSD of Hadamard-based patterns.Based on this equation,the auto-correlation of transformation matrix is simulated, whereA0andω0are set to 3 and 8, respectively,and the simulation result is as shown in Fig.2(b).It can be seen that negative correlation dips come out around the correlation peak,which will lead to resolution improvement in SPI.

    Fig.2.Auto-correlation functions of(a)the Hadamard matrix and(b)transformation matrix;(c)cross-correlation function between Hadamard and their transformed matrix.

    In the proposed scheme, the image is reconstructed by the cross-correlation of the Hadamard transformation matrices and the bucket signals that are obtained by using the Hadamard matrices to encode and sample the object.Therefore,the correlation functionG(2)

    HF(?x)is accordingly modified by

    which is also used to simulate the correlation in Fig.2(c).It is similar to Fig.2(b)that significant spatial cross-correlation dips also exist around the correlation peak, which means that new background noise will be formed near the object when the object image is reconstructed.

    In an actual SPI system,thei-th modulated patternIi(x,y)(1≤x ≤M,1≤y ≤N)withM×Npixels is generally a twodimensional discrete matrix.Therefore,thei-th bucket signalBiacquired by the single-pixel detector can be expressed as

    3.Simulations and experiments

    3.1.Simulation results

    In order to demonstrate the effectiveness of the proposed method,an SPI simulation experiment is first performed based on the scheme in Fig.1.In the present simulation, a binary three-slit picture with a size of 64×64 pixels is selected as the imaged object shown in Fig.3(a).The image in Fig.3(b)is obtained by Gaussian low-pass filtering for Fig.3(a),which obviously became blurred because of the loss of spatial highfrequency components of light carrying the information of the object.It is noted that the low-pass filtering for Fig.3(a)should be regarded to mimic a diffraction-limited SPI system and the image of Fig.3(b)is equivalent to the one that is projected on the DMD in a passive diffraction-limited SPI experiment.In the simulation process of SPI,the bucket signals are simulated as follows.The fuzzy image of Fig.3(b) is convolved with each computer-generated Hadamard matrix, and then each convolution pattern is summed pixel by pixel to get a series of 1D bucket signals that are actually captured by a single-pixel detector in an experiment.The corresponding reconstructed images are shown in Figs.3(c)and 3(d)according to Eqs.(7) and (8), respectively.It can be seen that the image of Fig.3(c) recovered by Hadamard matrices is almost as blurred as Fig.3(b) while the image of Fig.3(d) is more resolved and distinguished, which is retrieved by the correlation between the Hadamard and their transformed matrices.It should be noted that the Hadamard matrix that we use is the optimized ordering of the Hadamard basis by using fast Walsh Hadamard transform.[16]To further verify the proposed scheme,an object with two Chinese characters in Fig.3(f)that is a shortened form of Liaoning University is substituted for Fig.3(a)to perform the same simulation experiment.The experimental results of simulations are shown in the second row of Fig.3,which are quite similar to the results of the first simulation as predicted.It is not a surprise that the blurred images can be resolved and distinguished more clearly by the proposed method.When the transfer function in the diffraction system is invertible and known,the higher-resolution image can be reconstructed by the deconvolution just shown in Fig.2.However, it is obvious in Figs.3(d) and 3(i) that additional background noise is also brought in the reconstructed images due to the negative correlation,which would form socalled “virtual” images near the real images that may lead to the image degradation and the decreasing of SNR.Therefore,a simple spatial high-pass filtering method is adopted to remove the background noise, where a properly chosen threshold that is determined by the direct current background of the recovered images is set to subtract the negative background.The background-subtracted images are shown in Figs.3(e)and 3(j), where they have been remapped to a grayscale range of 0-255.

    Fig.3.First column: digital-imaged objects of binary pictures with (a)three slits and (f) two Chinese characters.Second column: (b) and (g)are low-pass filtering of (a) and (f), respectively.Third column: reconstructed images of(c)and(h)for the images in the second column based on Eq.(7).Fourth column: reconstructed images of(d)and(i)based on Eq.(8).Fifth column: background-free images of(e)and(j).

    Fig.4.Cross-sectional images of Figs.3(a)-3(e).

    In addition, how much the proposed scheme can improve the image resolution is necessary to be much concerned.Therefore,the cross sections of the first row of Fig.3 are plotted in Fig.4 to further explain this problem, where they are represented by the black,red(covered by the blue line),blue,green and purple lines, respectively.Here, it can be more clearly seen that the proposed scheme can achieve a highresolution image with a better SNR, where the two slits on the left are just distinguished while the two slits on the right are completely discernible (see the green and purple lines).Honestly, the spacing distancesW1andW2of the three slits in Fig.3(a)are specially designed to talk about the diffraction limit and super-resolution.It is clear in Fig.4 that the two slits on the right of the blue line are just resolved whenW1=12 pixels,which can be considered as the diffraction limit according to the definition of Rayleigh diffraction bound for the case of Hadamard patterns.The left two slits with a spacing width ofW2=6 pixels are used to test the resolution limit in our scheme,where they are just resolved,too.Thus,it is estimated that the proposed method can exceed the resolution limit by a factor of about 2.

    3.2.Experimental results

    For the purpose of further verifying the feasibility and performance of our method, a typical diffraction-limited SPI experiment is demonstrated with respect to the configuration in Fig.1, where an object of a double-slit with a slit spacing ofW=2 mm illuminated by a white light LED is imaged on the DMD(V-7000/ViALUX)by an imaging lens with a focal length off= 100 mm.One of the reflected light beams by DMD is totally captured by a single-pixel detector(DET36A2/Thorlabs)with the help of a collecting lens.In addition, a slit with an adjustable widthlis co-axially inserted at the rear focal plane, which is used to form a diffractionlimited imaging system by blocking the spatial high-frequency components of light carrying the object information.The signal from the single-pixel detector is fed into an amplification circuit including a signal-amplifier and an analog-digital converter,and then the signal from the amplifier circuit is finally saved to a computer to be processed via a data acquisition card.Generally, Hadamard bases with a sampling number of the Nyquist limit are in advance stored in the memory of DMD, and the SPI experiment is also realized at a sampling rate of 100%.The results for different sampling rates(including under sample and 100%sample)of different methods are compared and discussed in data post-processing.Here, the sampling number of 32×32=1024 is chosen in the present experiment, which means the size of the modulation matrix is also 32×32 pixels.Notice that the ordering of Hadamard basis is the same with the above simulations.[16]

    Fig.5.The reconstructed images by Eq.(7) with different slit widths l=(a)30 mm, (b)0.3 mm; (c)the reconstructed image by Eq.(8), and(d)the background-free version of panel(c).

    Two different settings oflare studied here, i.e.,l=30 mm andl=0.3 mm,corresponding to the non-diffractionlimited and diffraction-limited systems, respectively.The reconstructed images by Eq.(7)are shown in Figs.5(a)and 5(b).Apparently, two slits in Fig.5(a) are quite clearly resolvable while those in Fig.5(b) are almost overlapped and become blurred.Figure 5(c) is the reconstructed image achieved by the proposed method based on Eq.(8).Though the image seems to have more noise caused by the decrease of optical intensity when smallerlis preferred,two slits can be perfectly distinguishable.Of course, negative background noise also exists inevitably due to the cross-correlation.However, the clearer background-free image is achieved by removing the background noise and shown in Fig.5(d).The experimental results are in good agreement with the simulations.

    4.Conclusion

    In conclusion,we have successfully performed a computational GI experiment by correlating a series of bucket signals obtained from a single-pixel detector with the synchronized transformed matrices of modulating DMD Hadamard bases.Our experiment revealed the observation of anticorrelation phenomena between the Hadamard bases and their transformed counterparts, as well as the bunching effect between them.Furthermore, we were able to improve the resolution of the reconstructed image.The proposed approach for achieving high-resolution imaging is solely based on a passive SPI setup and does not rely on the accuracy of the modulated device or complex imaging systems.The transformation of the matrix and image reconstruction are carried out by postprocessing of the computation, which makes this scheme applicable to various mature SPI systems that have been extensively studied.Despite the presence of additional background noise due to negative correlations,a clearer reconstructed image can be obtained through spatial filtering to remove most of the noise.This approach offers an SPI method for achieving high-resolution imaging without increasing the complexity of the SPI system, and may be suitable for use in combination with different imaging systems.

    Acknowledgments

    We thank Prof.L.A.Wu for helpful discussions.Project supported by the National Key Research and Development Program of China(Grant No.2018YFB0504302).

    猜你喜歡
    晨暉
    游崀山紫霞峒
    乘用車盤式制動creep groan噪音優(yōu)化
    不同類型水稻品種莖葉維管束與同化物運轉(zhuǎn)特征
    一類二元分式最小值問題的探究和推廣
    夏弟弟
    碧潭白鵝
    當代貴州(2018年24期)2018-08-06 10:39:00
    第二屆中國畫學(xué)會展·時代華章
    國畫家(2018年2期)2018-04-25 06:39:06
    覃琪、王詩曼、李明明、蔣晨暉作品
    The pursuit of love
    “冰棍”
    国产精品久久久人人做人人爽| 中文字幕av在线有码专区| 久久久久免费精品人妻一区二区| 白带黄色成豆腐渣| 国产午夜福利久久久久久| 欧美日韩瑟瑟在线播放| 少妇熟女aⅴ在线视频| 成年版毛片免费区| 波野结衣二区三区在线 | 国产欧美日韩精品一区二区| 精品久久久久久久久久免费视频| 男女那种视频在线观看| 亚洲人成网站在线播| 国产成人啪精品午夜网站| 人妻久久中文字幕网| 亚洲不卡免费看| 熟女少妇亚洲综合色aaa.| 国产av一区在线观看免费| 亚洲天堂国产精品一区在线| 国产伦精品一区二区三区四那| 日韩中文字幕欧美一区二区| 天堂动漫精品| 精品欧美国产一区二区三| 午夜久久久久精精品| 亚洲av五月六月丁香网| 高清日韩中文字幕在线| 日韩亚洲欧美综合| 国产伦精品一区二区三区四那| 12—13女人毛片做爰片一| 久久久久久久久久黄片| 国产欧美日韩一区二区精品| 波多野结衣巨乳人妻| 99久久久亚洲精品蜜臀av| 88av欧美| 国产成人aa在线观看| 午夜精品一区二区三区免费看| 国产精品久久久久久久电影 | 国产探花在线观看一区二区| 在线观看av片永久免费下载| 老汉色av国产亚洲站长工具| 精品熟女少妇八av免费久了| 日韩欧美在线二视频| 国产精品一区二区三区四区免费观看 | 亚洲片人在线观看| 免费看十八禁软件| 高清在线国产一区| 日本黄大片高清| 88av欧美| 非洲黑人性xxxx精品又粗又长| 欧美一级a爱片免费观看看| 精品国产超薄肉色丝袜足j| 香蕉av资源在线| 欧美xxxx黑人xx丫x性爽| 内地一区二区视频在线| 欧美三级亚洲精品| 有码 亚洲区| 欧美日韩福利视频一区二区| 久久精品国产99精品国产亚洲性色| 一级毛片女人18水好多| 国产精品一区二区三区四区免费观看 | 亚洲欧美日韩卡通动漫| 国产高清videossex| 日本成人三级电影网站| 五月玫瑰六月丁香| 国产麻豆成人av免费视频| 亚洲av中文字字幕乱码综合| 日韩人妻高清精品专区| 日本免费a在线| 色视频www国产| 久久久精品大字幕| 国产亚洲精品一区二区www| 精品不卡国产一区二区三区| 午夜影院日韩av| www.999成人在线观看| 国产精品爽爽va在线观看网站| 叶爱在线成人免费视频播放| 在线观看午夜福利视频| 亚洲成人久久爱视频| 中出人妻视频一区二区| av专区在线播放| 成人高潮视频无遮挡免费网站| 国产极品精品免费视频能看的| 日韩欧美国产一区二区入口| 国产91精品成人一区二区三区| 极品教师在线免费播放| 嫁个100分男人电影在线观看| 97超级碰碰碰精品色视频在线观看| 99久久成人亚洲精品观看| 伊人久久精品亚洲午夜| 日韩免费av在线播放| 床上黄色一级片| 久99久视频精品免费| 真人做人爱边吃奶动态| 在线视频色国产色| 高清毛片免费观看视频网站| 国产精品野战在线观看| 亚洲精品日韩av片在线观看 | 国产老妇女一区| 亚洲成人中文字幕在线播放| 国产精品久久视频播放| 天堂影院成人在线观看| 国产午夜福利久久久久久| 国产国拍精品亚洲av在线观看 | 国产亚洲精品久久久久久毛片| 18禁国产床啪视频网站| 久久性视频一级片| 中文字幕久久专区| 在线观看av片永久免费下载| 亚洲狠狠婷婷综合久久图片| 亚洲一区高清亚洲精品| 欧美日韩瑟瑟在线播放| 国产精品av视频在线免费观看| 亚洲精品影视一区二区三区av| 欧美国产日韩亚洲一区| 成人特级黄色片久久久久久久| www.999成人在线观看| bbb黄色大片| 91在线观看av| 91av网一区二区| 欧美成人a在线观看| 国产又黄又爽又无遮挡在线| 国产99白浆流出| 成年女人永久免费观看视频| 久久久久性生活片| 99国产精品一区二区三区| 国产精品av视频在线免费观看| 嫁个100分男人电影在线观看| 免费观看精品视频网站| 国产乱人视频| 免费大片18禁| 国产精品久久电影中文字幕| 国产老妇女一区| 国产欧美日韩精品亚洲av| 午夜激情福利司机影院| 老司机深夜福利视频在线观看| 国产一区二区在线观看日韩 | 国产毛片a区久久久久| 国产蜜桃级精品一区二区三区| 男人的好看免费观看在线视频| 啦啦啦观看免费观看视频高清| 嫩草影视91久久| 一夜夜www| 色尼玛亚洲综合影院| 欧美日韩综合久久久久久 | 两人在一起打扑克的视频| 法律面前人人平等表现在哪些方面| a级一级毛片免费在线观看| 国产亚洲精品av在线| 免费看光身美女| 国内精品美女久久久久久| 日韩成人在线观看一区二区三区| 一二三四社区在线视频社区8| 啪啪无遮挡十八禁网站| 久久久久性生活片| 淫妇啪啪啪对白视频| 手机成人av网站| 男女午夜视频在线观看| 国产av不卡久久| 国产精品 国内视频| 女人被狂操c到高潮| 看黄色毛片网站| 每晚都被弄得嗷嗷叫到高潮| 日本 av在线| 俺也久久电影网| 国产在视频线在精品| 少妇的逼水好多| 亚洲人成网站在线播放欧美日韩| 美女免费视频网站| 我要搜黄色片| 国产淫片久久久久久久久 | 国产黄色小视频在线观看| 久久天躁狠狠躁夜夜2o2o| aaaaa片日本免费| 看免费av毛片| 在线观看免费视频日本深夜| 一a级毛片在线观看| 黄色视频,在线免费观看| 日韩有码中文字幕| 两个人看的免费小视频| 网址你懂的国产日韩在线| 亚洲真实伦在线观看| 国产亚洲欧美在线一区二区| 色播亚洲综合网| 中亚洲国语对白在线视频| 欧美色欧美亚洲另类二区| 99久久综合精品五月天人人| 久久香蕉精品热| a级毛片a级免费在线| 成人亚洲精品av一区二区| 国产一级毛片七仙女欲春2| 国产精品女同一区二区软件 | 精品午夜福利视频在线观看一区| 99视频精品全部免费 在线| 亚洲av电影在线进入| 国产久久久一区二区三区| 久久久久久九九精品二区国产| 亚洲av第一区精品v没综合| 99热这里只有是精品50| 精品人妻1区二区| 免费看十八禁软件| 18+在线观看网站| 久久久成人免费电影| 国产麻豆成人av免费视频| 老司机在亚洲福利影院| 19禁男女啪啪无遮挡网站| 久久草成人影院| 国产极品精品免费视频能看的| 我要搜黄色片| 国产高清三级在线| 亚洲美女黄片视频| a在线观看视频网站| 亚洲无线观看免费| 宅男免费午夜| 最新在线观看一区二区三区| 全区人妻精品视频| 听说在线观看完整版免费高清| 欧美国产日韩亚洲一区| 男人舔奶头视频| 久久精品91无色码中文字幕| 看黄色毛片网站| 国产蜜桃级精品一区二区三区| 美女 人体艺术 gogo| 国产精品99久久99久久久不卡| 欧美日韩中文字幕国产精品一区二区三区| 校园春色视频在线观看| 亚洲专区中文字幕在线| 99久久无色码亚洲精品果冻| 夜夜躁狠狠躁天天躁| 久久精品91蜜桃| 男女之事视频高清在线观看| 亚洲在线观看片| 亚洲乱码一区二区免费版| 禁无遮挡网站| 亚洲欧美日韩东京热| 亚洲精品美女久久久久99蜜臀| 亚洲精品456在线播放app | 女同久久另类99精品国产91| av在线天堂中文字幕| 国产色爽女视频免费观看| 人人妻人人澡欧美一区二区| 欧美乱妇无乱码| 色老头精品视频在线观看| 成年女人永久免费观看视频| 在线播放国产精品三级| 日本五十路高清| 99riav亚洲国产免费| 久久久久免费精品人妻一区二区| 美女高潮喷水抽搐中文字幕| 蜜桃亚洲精品一区二区三区| 久久久久久人人人人人| 久久亚洲真实| 在线播放无遮挡| 88av欧美| 亚洲人成网站在线播| 午夜福利在线在线| 日韩欧美精品免费久久 | 国产一区在线观看成人免费| 可以在线观看的亚洲视频| 一级黄色大片毛片| 欧美性感艳星| 欧美大码av| 国产真实伦视频高清在线观看 | 久久性视频一级片| 国内精品一区二区在线观看| 国产一区二区亚洲精品在线观看| 中文在线观看免费www的网站| 欧美av亚洲av综合av国产av| 亚洲人与动物交配视频| 成人特级黄色片久久久久久久| 欧美激情在线99| 亚洲成av人片在线播放无| 欧美黄色片欧美黄色片| 成熟少妇高潮喷水视频| 午夜福利在线在线| 1024手机看黄色片| h日本视频在线播放| av在线天堂中文字幕| 啦啦啦韩国在线观看视频| 99久久精品热视频| 亚洲第一欧美日韩一区二区三区| 久久精品人妻少妇| 午夜福利视频1000在线观看| 又黄又爽又免费观看的视频| 乱人视频在线观看| 日韩大尺度精品在线看网址| 黄色女人牲交| 蜜桃亚洲精品一区二区三区| 亚洲精品在线观看二区| 日韩亚洲欧美综合| 麻豆成人av在线观看| 狠狠狠狠99中文字幕| 小蜜桃在线观看免费完整版高清| 99精品欧美一区二区三区四区| 国产成人啪精品午夜网站| 午夜影院日韩av| 亚洲成人久久爱视频| 动漫黄色视频在线观看| 色av中文字幕| 久久99热这里只有精品18| 成年女人看的毛片在线观看| 久久亚洲精品不卡| 国产91精品成人一区二区三区| 叶爱在线成人免费视频播放| 操出白浆在线播放| 国产激情欧美一区二区| 国产探花极品一区二区| 此物有八面人人有两片| 国产精品免费一区二区三区在线| a级毛片a级免费在线| 亚洲aⅴ乱码一区二区在线播放| 午夜福利视频1000在线观看| 国产日本99.免费观看| 男女那种视频在线观看| 日韩精品中文字幕看吧| 国产男靠女视频免费网站| 天堂√8在线中文| 亚洲av免费高清在线观看| 国产aⅴ精品一区二区三区波| 欧美bdsm另类| 丝袜美腿在线中文| 欧美日本视频| 哪里可以看免费的av片| 午夜久久久久精精品| 五月伊人婷婷丁香| 久久久国产成人免费| 又紧又爽又黄一区二区| 欧美在线一区亚洲| 亚洲国产日韩欧美精品在线观看 | 高清毛片免费观看视频网站| 国产探花极品一区二区| 天天添夜夜摸| 99热精品在线国产| 18禁国产床啪视频网站| 亚洲avbb在线观看| 色在线成人网| 国产美女午夜福利| 欧美日韩黄片免| 久久天躁狠狠躁夜夜2o2o| 内射极品少妇av片p| 久久久国产精品麻豆| 亚洲人成网站高清观看| www日本黄色视频网| 97超级碰碰碰精品色视频在线观看| 两个人的视频大全免费| www.www免费av| 色老头精品视频在线观看| 99国产综合亚洲精品| 麻豆一二三区av精品| 波多野结衣高清作品| 中文字幕人妻熟人妻熟丝袜美 | 久久人妻av系列| 亚洲片人在线观看| 狂野欧美激情性xxxx| 99国产极品粉嫩在线观看| 精品熟女少妇八av免费久了| 国产午夜福利久久久久久| 一区二区三区免费毛片| 激情在线观看视频在线高清| 一个人免费在线观看电影| 亚洲国产欧美网| 老汉色av国产亚洲站长工具| 最新美女视频免费是黄的| 草草在线视频免费看| 精品99又大又爽又粗少妇毛片 | 国产乱人视频| 国产淫片久久久久久久久 | 日韩欧美国产一区二区入口| 别揉我奶头~嗯~啊~动态视频| 三级男女做爰猛烈吃奶摸视频| 岛国在线免费视频观看| 成人高潮视频无遮挡免费网站| 极品教师在线免费播放| 欧美高清成人免费视频www| 国产一区二区在线av高清观看| 两个人看的免费小视频| 国产精品一及| 尤物成人国产欧美一区二区三区| 草草在线视频免费看| 亚洲精品乱码久久久v下载方式 | 高潮久久久久久久久久久不卡| 男女床上黄色一级片免费看| 观看免费一级毛片| 国产欧美日韩一区二区三| 亚洲国产精品久久男人天堂| 少妇丰满av| 91麻豆av在线| 国产精品香港三级国产av潘金莲| 亚洲欧美精品综合久久99| 欧美av亚洲av综合av国产av| 美女高潮的动态| 在线视频色国产色| 99久国产av精品| 成人三级黄色视频| 国产单亲对白刺激| 日韩欧美精品v在线| 两人在一起打扑克的视频| 99国产极品粉嫩在线观看| xxxwww97欧美| 免费看a级黄色片| 首页视频小说图片口味搜索| 亚洲自拍偷在线| 最新在线观看一区二区三区| 午夜影院日韩av| 国产69精品久久久久777片| 人人妻人人澡欧美一区二区| 夜夜夜夜夜久久久久| 日本与韩国留学比较| 97超级碰碰碰精品色视频在线观看| 2021天堂中文幕一二区在线观| 99久久精品国产亚洲精品| av中文乱码字幕在线| 日本撒尿小便嘘嘘汇集6| 久久欧美精品欧美久久欧美| 免费在线观看亚洲国产| 男女午夜视频在线观看| 中出人妻视频一区二区| 中文字幕人成人乱码亚洲影| 欧美黄色淫秽网站| 丁香欧美五月| 老司机午夜福利在线观看视频| 91av网一区二区| 91麻豆av在线| 久久婷婷人人爽人人干人人爱| 色尼玛亚洲综合影院| 色综合亚洲欧美另类图片| 日韩欧美国产在线观看| 99热只有精品国产| 人妻丰满熟妇av一区二区三区| 国产av不卡久久| 日日摸夜夜添夜夜添小说| 国产亚洲欧美在线一区二区| 午夜日韩欧美国产| 深爱激情五月婷婷| 伊人久久精品亚洲午夜| 99国产精品一区二区蜜桃av| 国语自产精品视频在线第100页| 久久天躁狠狠躁夜夜2o2o| 亚洲电影在线观看av| 好男人在线观看高清免费视频| 12—13女人毛片做爰片一| 国产中年淑女户外野战色| 亚洲真实伦在线观看| 非洲黑人性xxxx精品又粗又长| 国产高潮美女av| 狂野欧美白嫩少妇大欣赏| 精品人妻偷拍中文字幕| 免费在线观看成人毛片| 美女免费视频网站| 制服人妻中文乱码| 亚洲av成人av| 色综合婷婷激情| 51午夜福利影视在线观看| 日韩精品中文字幕看吧| 免费观看的影片在线观看| av在线蜜桃| 狂野欧美白嫩少妇大欣赏| 日韩欧美精品v在线| 亚洲国产精品久久男人天堂| 免费高清视频大片| 欧美高清成人免费视频www| 狠狠狠狠99中文字幕| 国产精品98久久久久久宅男小说| 久久九九热精品免费| 日韩精品青青久久久久久| 久久久久性生活片| 中文字幕人成人乱码亚洲影| 黑人欧美特级aaaaaa片| 久久久精品欧美日韩精品| 亚洲国产精品合色在线| 99riav亚洲国产免费| 国内精品美女久久久久久| 女警被强在线播放| 亚洲国产精品sss在线观看| 亚洲久久久久久中文字幕| 色吧在线观看| 天堂av国产一区二区熟女人妻| av在线天堂中文字幕| 成人亚洲精品av一区二区| 国产精品一及| 日韩欧美在线乱码| 成人午夜高清在线视频| 激情在线观看视频在线高清| 真人一进一出gif抽搐免费| 久久久久久人人人人人| 国产日本99.免费观看| 国产精品香港三级国产av潘金莲| 久久久精品大字幕| 嫩草影院精品99| 少妇熟女aⅴ在线视频| 久久亚洲真实| 国产午夜福利久久久久久| 三级毛片av免费| 一级a爱片免费观看的视频| 国产综合懂色| 午夜福利免费观看在线| 久久久久国产精品人妻aⅴ院| 久久久久国内视频| 日韩人妻高清精品专区| 非洲黑人性xxxx精品又粗又长| eeuss影院久久| 制服人妻中文乱码| 中文字幕熟女人妻在线| 国内精品一区二区在线观看| 免费观看的影片在线观看| 日本五十路高清| 特大巨黑吊av在线直播| 国产精品av视频在线免费观看| 国产成人a区在线观看| 精品久久久久久久毛片微露脸| 中文资源天堂在线| 色播亚洲综合网| 国产一区二区三区视频了| 1024手机看黄色片| 人人妻人人澡欧美一区二区| 中文字幕人妻熟人妻熟丝袜美 | 手机成人av网站| 亚洲成av人片免费观看| 国产三级在线视频| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 女生性感内裤真人,穿戴方法视频| 国产精品亚洲美女久久久| 久久精品91无色码中文字幕| 日本免费一区二区三区高清不卡| 中出人妻视频一区二区| 十八禁网站免费在线| 欧美乱码精品一区二区三区| 国产精品久久视频播放| 国产乱人视频| 国产精品永久免费网站| 国产三级黄色录像| 在线十欧美十亚洲十日本专区| 日本一二三区视频观看| 精品人妻1区二区| 欧美国产日韩亚洲一区| 久久久久久久午夜电影| 手机成人av网站| 国产成人aa在线观看| 亚洲国产精品999在线| 国产aⅴ精品一区二区三区波| 黄色视频,在线免费观看| 波野结衣二区三区在线 | 九九在线视频观看精品| 夜夜夜夜夜久久久久| 国产精品免费一区二区三区在线| 国产精品99久久久久久久久| 男人的好看免费观看在线视频| 色在线成人网| 啦啦啦观看免费观看视频高清| 午夜亚洲福利在线播放| 999久久久精品免费观看国产| 欧美丝袜亚洲另类 | 成人三级黄色视频| 一级毛片女人18水好多| 狠狠狠狠99中文字幕| 国产精品综合久久久久久久免费| 婷婷丁香在线五月| 亚洲国产欧美人成| 在线a可以看的网站| 国内精品久久久久久久电影| 精品国产美女av久久久久小说| 韩国av一区二区三区四区| 日韩欧美精品免费久久 | 我要搜黄色片| 麻豆久久精品国产亚洲av| 欧美另类亚洲清纯唯美| 国产一区二区在线av高清观看| 亚洲av二区三区四区| 狂野欧美白嫩少妇大欣赏| 久久精品国产清高在天天线| 欧美乱码精品一区二区三区| 久久午夜亚洲精品久久| 97人妻精品一区二区三区麻豆| 国产成人a区在线观看| 亚洲欧美日韩卡通动漫| 日韩免费av在线播放| 欧洲精品卡2卡3卡4卡5卡区| 亚洲av日韩精品久久久久久密| 波野结衣二区三区在线 | 日本免费一区二区三区高清不卡| 高清在线国产一区| 制服丝袜大香蕉在线| 亚洲国产高清在线一区二区三| 欧美一级毛片孕妇| 国产av不卡久久| 亚洲精品一卡2卡三卡4卡5卡| 两人在一起打扑克的视频| www.999成人在线观看| 岛国在线观看网站| 欧美日韩福利视频一区二区| 国产主播在线观看一区二区| 看黄色毛片网站| 成人精品一区二区免费| 有码 亚洲区| 网址你懂的国产日韩在线| 三级毛片av免费| 色吧在线观看| 亚洲国产精品合色在线| 精品无人区乱码1区二区| 深夜精品福利| 又黄又爽又免费观看的视频| 一级黄片播放器| 黄片小视频在线播放| 欧美激情久久久久久爽电影| bbb黄色大片| 国产精品免费一区二区三区在线| 欧美精品啪啪一区二区三区| 国产美女午夜福利| 在线免费观看的www视频| 一个人看视频在线观看www免费 | 亚洲自拍偷在线| 高清在线国产一区| 久久久久久国产a免费观看| 两性午夜刺激爽爽歪歪视频在线观看| 日韩欧美国产一区二区入口| 99久久无色码亚洲精品果冻|