• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Investigation of degradation and recovery characteristics of NBTI in 28-nm high-k metal gate process

    2023-12-15 11:51:26WeiTaiGong鞏偉泰YanLi李閆YaBinSun孫亞賓YanLingShi石艷玲andXiaoJinLi李小進
    Chinese Physics B 2023年12期

    Wei-Tai Gong(鞏偉泰), Yan Li(李閆), Ya-Bin Sun(孫亞賓), Yan-Ling Shi(石艷玲), and Xiao-Jin Li(李小進)

    Shanghai Key Laboratory of Multidimensional Information Processing and the Department of Electrical Engineering,East China Normal University,Shanghai 200241,China

    Keywords: negative bias temperature instability(NBTI),high-k metal gate(HKMG),threshold voltage shift,interface trap,gate oxide defect

    1.Introduction

    The physical mechanism of NBTI has been extensively investigated through comprehensive models established by several research groups.Commonly consistent results are achieved from the fact that three subcomponents contribute to the degradation of NBTI,i.e.,generated interface traps(?NIT),hole traps in pre-existing gate oxide defects(?NHT),and generated gate oxide traps (?NOT).[14-16]Note that they were treated as being uncoupled with each other.The generation of interface traps(?NIT)followed a power-law dependence on time in long-time NBTI stress and could be well described by using the double interface reaction-diffusion(RD)model.[17]For an HKMG device,the interface trap generation(?NIT)was ascribed to the breaking of Si-H bonds at the Si/interlayer(IL)interface and the diffusion of hydrogen molecular(H2)generated by the reaction of hydrogen atoms (H) withX-H bonds at the IL/high-Kinterface,with theXrepresenting oxygen or nitrogen-related gate oxide defect.The hole trapping in preexisting gate oxide defects(?NHT)was extremely sensitive to the gate nitriding process since the nitrogen could diffuse into gate oxide layer and thus creating original defects.[18-20]Note that it usually reached to a saturated state within a few seconds.The generation of gate oxide defects(?NOT)represents the contribution of hole trapping to overall degradation that occurs owing to fresh traps created in thicker gate oxide under higher stress.For most of HKMG devices with thinner oxide dielectric,?NOTmay be negligible.At the beginning of recovery,a fraction of electrons captured which are associated with interface traps[21]and holes detrapped in pre-existing gate oxide defects recover rapidly.After that,the long-time recovery process dominated the passivation of interface traps, induced by the back diffusion of H2molecules.[22,23]However,a fraction of H2molecules could not be recovered owing to being locked within the traps during stress.

    In this work,we study the characteristics of NBTI degradation and recovery for 28-nm HKMG p-MOSFETs by using the experimental data and the comprehensive models.The NBTI parameters including power-law time exponent(n),temperature activation energy (EA), and oxide field acceleration factor (ΓE) are extracted.The influence of long-time NBTI stress biases(VG-STR)and temperatures(T)on device operating lifetime are accurately evaluated.Furthermore, the longtime recovery behaviors of devices are also analyzed by using comprehensive models.

    2.Device and experiment

    The p-MOSFETs used in this work were fabricated by the 28-nm HKMG process technology.The device had an equivalent oxide thickness(EOT)of 1.75 nm.In order to evaluate the influence of NBTI degradation, the values of threshold voltage(VT)were obtained under different values of stressVG-STR(1.4 V,1.5 V,and 1.6 V)and different values of temperatureT(80?C,100?C,and 125?C)at fixed stress timetSTR(3000 s).The fresh threshold voltage(VT0)of device has been extracted through the constant current method.The drain to source voltage ofVD=0.05 V was held to keep the device in linear region,with both source and substrate grounded.As the gate to source voltage (VG) increased until the drain current reaches 0.1 μA×W/L,VTcould be obtained byVG.Figure 1 shows the NBTI measurement setup of HKMG device through using the measure-stress-measure (MSM) method.Firstly, the transfer characteristic of fresh device was measured to extract theVT.Then,the stress was applied,and after that theVTwas measured periodically during the measurement.In this way,the dependence of threshold voltage shift (?VT) on thetSTRvariation could be obtained.

    Fig.1.Schematic diagram of measurement setup to characterize NBTI stress.

    3.Results and discussion

    3.1.Degradation characteristics

    As mentioned above, the threshold voltage shift induced by the NBTI in HKMG device is composed of three parts caused by uncoupled physical mechanisms, i.e., ?NIT, ?NHT,and ?NOT,[16]and can be written as

    whereqis the electronic charge,andCOXis the gate oxide capacitance.The degradation of the threshold voltage induced by the interface trap (?NIT) can be described by the double interface reaction diffusion model[24,25]as shown in Fig.2(a).The Si-H bonds are assumed to be located at the Si/IL interface,which is named the first interface of the HKMG device.TheX-H bonds are located at the second interface, which is defined at some distance away from the first interface.TheXrepresents oxygen or nitrogen-related defect.When the NBTI stress is applied,weak covalent Si-H bonds are easily broken by the collision under the stress, leading to the formation of unbonded Si or interfacial traps at the Si/IL interface.Owing to the concentration gradient, the H atoms released from the broken Si-H bond begin to diffuse towards the gate and can form H2molecules by reacting with theX-H bond at the IL/high-Kinterface.The ?NIThas a power-law dependence on time for long-time stress[22,26]and can be written as

    whereEOXis the gate oxide field,EAITis the temperature activation,Ais the fitting parameter,kTis the thermal energy,nis the power-law time exponent,andΓITis the gate oxide field acceleration, which are all process-dependent and need modelling for the HKMG process.Moreover, the degradation of fresh threshold voltage is included in the degradation process by the calculation ofEOX.Using the iterative method, more accurate result can be obtained from the following equation:

    如今新型的區(qū)塊鏈技術(shù)給人們帶來了解決方案:區(qū)塊鏈建立了動態(tài)的P2P網(wǎng)絡(luò),沒有了中心化服務(wù),帳本均分布在每個節(jié)點中,所有的節(jié)點一同維護;帳本上記錄了該區(qū)塊鏈自創(chuàng)建以來的記下的所有交易記錄,通過密碼學的安全機制,使得所有記錄不可修改、真實可信;每個人都是一個節(jié)點,通過彼此之間的信任來建立區(qū)塊鏈的信任。區(qū)塊鏈網(wǎng)絡(luò)沒有傳統(tǒng)的中心管理員,整個網(wǎng)絡(luò)的運作由線上的電腦共同進行維護,使得運營成本大幅降低。

    The temperature activation for interface trap(EAIT)consists of molecular H2diffusion(EADH2),forward breaking(EAKF)and reverse passivation (EAKR) of the Si-H bond.[27]Hence, it is written as

    EAKRof 0.2 eV andEADH2of 0.58 eV are fixed in different HKMG devices,andEAKFis the only process-dependent factor and needs modelling according to the various experimental data.

    Fig.2.Schematic diagram of (a) double interface reaction diffusion model and (b) hole trapping in pre-existing gate oxide defects during NBTI degradation.

    The hole trapping model and detrapping model are another explanation for the NBTI.[25]As is well known,a great number of defects can be generated inside gate insulator in the manufacturing process.When gate stress bias is applied, the holes are trapped by the pre-existing gate oxide defects,which causes these defects to be positively charged,thereby leading the threshold voltage to shift as shown in Fig.2(b).The studies have confirmed that ?NHTis saturated and reaches a constant value for long-time stress,[22]and can be expressed as

    where the parameterBand oxide field acceleration factorΓHTare related to the fabrication process.The temperature activation energy for ?NHT(EAHT) is fixed at a value of 0.052 eV for different processes.According to the generation mechanism of bulk gate oxide defects,the time evolution of ?NOTis represented by a stretched exponential form,[22]and it is expressed as

    where the parameterβOT=0.33 is kept unchanged for various processes, andCis related to the fabrication process.It is important to remark that trap generation in gate insulator is negligible for HKMG devices owing to thinner EOT at lowerVG-STR.[16,28,29]In this work,?NOTis not considered for this low voltage core logic device.

    Fig.3.Curves of measured(symbols)and model-calculated ?VT,?VIT,?VHT subcomponents (lines) at 125 ?C, VG-STR of -1.4 V (a) and-1.6 V(b),respectively.

    Figure 3 shows the time evolutions of measured and calculated ?VTas well as its subcomponents for HKMG devices atVG-STR= 1.4 V and 1.6 V, respectively.Note that the?NOTis negligible and the overall degradation only considers the ?NITand ?NHTsubcomponents.It can be seen that the experimental data are consistent with the calculations from the model for the NBTI degradation.The time evolution of?VTincreases rapidly at the onset of stress and shows the power-law dependence for long stress time.It can be observed that the ?NITdominates the majority of ?VTduring the NBTI stress,whereas the ?NHTis saturated in a few seconds and then keeps constant.The reason is that the contribution from the generated interface traps continuously increases for long stress time,however,the hole trapping in pre-existing bulk gate oxide defects is a fast process.The ?NITalso shows a power-law time dependence and increases as theVG-STRincreases.GiventSTR=3×103s, when theVG-STRreaches 1.4 V, the contribution from ?NITis 24.67 mV compared with 37.38 mV as theVG-STRbecomes 1.6 V.However, the contribution from the ?NHTchanges slightly as theVG-STRincreases, giving 5.2 mV@VG-STR=1.4 V,7.9 mV@VG-STR=1.6 V,respectively.Figure 4 shows the time evolutions of measured and calculated ?VTat different values ofVG-STRand temperature,demonstrating that the experimental data can be accurately predicted by the models.

    Fig.4.Curves of measured(symbols),model-calculated ?VT(lines)for different values of VG-STR(a)and temperature(b),with identical model parameters used.The extracted parameters: (q/COX)×A = 4.2×10-9 (1/cm·s0.18), ΓIT (=ΓHT) = 0.24 (cm/MV), EAKF = 0.205 eV,n=0.18, (q/Cox)×B=9.32×10-10 (1/cm), C =0 (?VOT is negligible for HKMG devices at low stress bias).

    Furthermore, the dependence of relative contributions from underlying ?NITand ?NHTon temperature andtSTRare analyzed.Figures 5(a)and 5(b)show the evolution of relative contributions from ?NITand ?NHTto the accumulated degradationversus Tat fixedVG-STR=1.5 V but differenttSTR,respectively.It can be seen that ?NIThas a strong dependence ontSTR, longertSTRlarger ?VIT.The relative contribution of?NITcan reach up to 90% for the longest stress time even at room temperature,as shown in Fig.5(a).?NITcontributes the most degradation and the impact of ?NHTweakens over longertSTR.On the contrary,whentSTRis short enough,the relative contribution from ?NHTis higher because the hole trapping in pre-existing gate insulator can be saturated in few seconds,as shown in Fig.5(b).

    Fig.5.Relative contributions versus temperature for different values of?VIT/tSTR (a)and ?VHT/tSTR (b).

    The dependence of NBTI degradation on channel length in HKMG p-MOSFETs is also studied.Taking the channel length into account,equation(1)can be revised as follows:

    whereLis the channel length, andmis the fitting parameter.Figure 6 shows the time evolution of ?VTunder the fixedVG-STRandT, for the different channel lengths.The shorter the lengthL,the less the NBTI degradation is;as theLshrinks from 1000 nm to 30 nm,the NBTI degradation decreases from 36.9 mV to 12.7 mV attSTR=3000 s, correspondingly.The root cause is that in the post-gate high-temperature process steps in oxygen atmosphere,the oxygen diffuses into the highklayer at the corners of active-gate overlapping region and annihilates the positively charged oxygen vacancies.[6,30]This process reduces the average number of oxygen vacancies per gate area in narrow and short device,and thus the NBTI degradation is also alleviated.

    Fig.6.Time evolutions of ?VT for different channel lengths at fixed VG-STR of -1.5 V at T = 125 ?C, and the extracted parameters:m=0.37 for different values of L.

    From a practical point of view, it is essential to estimate the working lifetime of the device.The working lifetime of HKMG device is defined as the length of working time before its threshold voltage shift exceeds 50 mV.[31]Figure 7 illustrates the variations of operating lifetime withVG-STRat different values ofT,calculated from the model together with the extracted parameters.The model prediction shows that the higherVG-STRandTlead to the higher NBTI degradation.Consequently, the NBTI lifetime is significantly reduced as well.

    Fig.7.Variations of NBTI lifetime with VG-STR for HKMG p-MOSFETs at different temperatures.

    3.2.Discussion on NBTI parameters

    3.2.1.Power-law time exponent

    The ?VTversus time shows a power-law dependence under long-time stress.The working lifetime can be significantly reduced as the time exponent(n)increases,hence it is essential to extract the time exponentnfor HKMG device.It is observed that the time evolution of ?VTshows a parallel relation to each other in log-log scale diagram with differentVG-STR.Then the value ofncan be extracted in the linear regression of measured?VTversus time evolution in a fixed range oftSTR=1000 s to 3000 s.Figure 8 shows the power law time exponent (n)as a function of variousVG-STRin HKMG p-MOSFET.It is crucial to find that the degradation shows a similar power-law time dependence withnof 0.18 for different values ofVG-STR.Moreover,it indicates that ?NITdominates the degradation under long-time NBTI stress.Note that the measured data are from the HKMG device with thinner EOT under lower stress conditions,hence ?NOTis neglected.

    Fig.8.Extracted power-law time exponent n versus VG-STR,measured and fitted at T =125 ?C.

    3.2.2.Temperature-activation energy

    Figure 9 shows the measured ?VTas a function ofTat a fixedtSTRof 2000 s.It is clear that ?VTpresents the linear dependence ofTon a semi-log scale, and hence the temperature-activation energy(EA)which is close to 0.096 eV is extracted from Fig.9.It is important to remark that ?NITcontributes most of degradation, and theEAHT(0.052 eV) of?NHT[16]is lower than that of ?NIT.On the one hand,the time evolution of ?NITis mainly determined by the diffusion of molecular H2under long-time stress.TheEAKFfor forward breaking is close to theEAKRfor reverse passivation of the Si-H bond.It can be seen thatEAITof ?NITis similar to that ofEADH2/6 (about 0.1 eV), whereasEADH2is temperatureactivation of H2molecular diffusion.As a result,the extractedEA(0.096 eV) is slightly lower than 0.1 eV when the contribution of ?NHTis considered.

    Fig.9.Measured ?VT as a function of temperature at fixed tSTR of 2000 s.

    3.2.3.Field acceleration factor

    As discussed above, the hole trapping in inverse layer leads Si-H bonds to break and defects to generate at the Si/IL interface,resulting in an increase in ?NIT.Similarly,the hole trapping in pre-existing gate oxide defects makes ?NHTaccumulate.?NITand ?NHThave the sameEOXdependence(ΓIT=ΓHT).Figure 10 shows the measured ?VTas a function ofEOXat given stress timetSTR=3000 s.The oxide field acceleration (ΓE) is also extracted from the slope of fitting line,giving a value of 0.231 cm/MV.

    Fig.10.Measured and fitted ?VT as a function of stress EOX at fixed tSTR and T =125 ?C.

    3.3.Recovery characteristics

    Once the gate stress is removed,the energy of a fraction of?NITmay move below the Fermi level of substrate and recover rapidly by capturing electrons within a few seconds.Then,the remaining part of ?NITrecovers owing to the back diffusion of H2and H,which leads to the passivation of the broken bonds at the interface.It is important to remark that this is a slow process.The double interface reaction diffusion model can predict the physics process of slow recovery.At the beginning, the H2molecule reacts with the brokenX-bonds at the IL/high-Kinterface and generates H atoms.After that,the H atoms diffuse towards the Si/IL interface and passivate the broken Si bonds,resulting in the recovery of ?NIT.Of course,the probability of H2finding the interface defects decreases as the recovery time lapses, which can be expressed as the decrease of diffusion coefficient of H2with time.Note that a fraction of H species may be locked by the defects, resulting in a permanent degradation that cannot be recovered.[32]

    Furthermore, the recovery of pre-existing and generated gate insulator defects is a fast process that is depicted by hole detrapping when the stress voltage is withdrawn.Because the trap generation in gate insulator is negligible for thinner EOT device and lowerVG-STR, the recovery due to ?NOTis also excluded during NBTI recovery.

    As a result,the overall recovery of threshold voltage shift consists of fast electron capturing(?VIT1),slow recovery of interface traps (?VIT2), and fast hole detrapping of pre-existing gate insulator traps (?VHT).The total recovery can be expressed as

    whereFFASTdenotes the fast recovery component of ?NIT,αis the scaling factor of non-recoverable component due to H species locked in the trap,andξrepresents the decrease of H2diffusion with time going by.Note that the parameterξcan be approximately treated as a constant whentREC

    whereτECis the electron capture time constant, andτRECis the hole detrapping time constant.The stretched-exponential form is used to describe the time constant dispersion with the parametersβECandβREC,and ?VHT0is also obtained from the NBTI stress model discussed above.

    Fig.11.Measured and calculated ?VT as well as its underlying subcomponents recovery(?VIT1,?VIT2,and ?VHT)as a function of recovery time after different values of NBTI VG-STR and temperature during VG-REC =0 V.And the extracted parameters: (1-FFAST)(1-α)ξ1/2=0.3,FFAST=0.02,τEC=0.82,βEC=0.36,τREC=0.5,and βREC=0.23.

    Figure 11 plots the time evolution of measured and calculated ?VTrecovery under stress for different values ofVG-STRandT, in which the underlying three subcomponents calculated by the models are also shown.It is clear that the process of electron capturing and hole detrapping recover fast.The long-time recovery occurs based on the trap passivation induced by the slow back diffusion of H2.

    Fig.12.Time kinetics of relative contribution from ?VIT1,?VIT2,and ?VHT to the remaining overall degradation at tSTR=100 s(a),300 s(b),and 106 s(c),and the time kinetics of relative contribution from ?VIT1, ?VIT2, ?VHT, and ?VT to the initial degradation before recovery at tSTR =100 s(d), 300 s(e), and 106 s(f),with VG-STR=-1.5 V,VG-REC=0 V,and T =125 ?C.

    Figure 12 shows the time evolution of the calculated ?VTand underlying ?VIT1, ?VIT2, and ?VHTby using the comprehensive model and extracted parameters.It is observed that as the stress time decreases, the contribution of ?VHTincreases.Consequently, the overall recovery turns out to be faster.For the stress times such as 100 s, 3000 s, and 106s, shown in Figs.12(a)-12(c), the recovery times for ?VIT2which contributes to 99% of the remaining degradation are 200 s, 60 s,and 20 s,respectively,demonstrating that ?VIT2dominates the slow process through H2back diffusion during long-time recovery.

    Figure 13 shows the time evolution of the measured and the calculated ?VT, and its underlying subcomponents at different values of NBTIVG-STRandTfor the p-MOSFETs.The comprehensive models fit the measured data well.It is noteworthy that about 34%of overall degradation for these devices recovers at 2000 s.For the stress voltage of 1.4 V,1.5 V,and 1.6 V, the recovery at 125?C after 2000 s reaches to 31.4%,34.9%, and 34.7%, respectively.ForVG-STR= 1.5 V andT=80?C,the recovery also arrives at 35.8%.

    Fig.13.Time evolution of measured and calculated ?VT recovery for different values of NBTI VG-STR and temperature.

    4.Conclusions

    In summary,the NBTI characteristics of degradation and recovery are studied for 28-nm HKMG p-MOSFETs by using comprehensive models.It is shown that the extracted parameters reflect the long-time NBTI characteristics well.The contribution of the independent underlying subcomponents ?VITand ?VHTto overall degradation is calculated, and the results indicate that the ?VITdominated the NBTI degradation during stress experiments.The reason behind this behavior is that the?VITshows power-law time dependence ofn=0.18 at longtime degradation, while ?VHTis saturated in a few seconds.Meanwhile, NBTI parameters including the power-law time exponent of 0.18, temperature activation energy of 0.096 eV,and gate oxide field acceleration factor of 0.231 cm/MV are all extracted based on experimental data.The results in this work also provide a reference for reliable design by discussing the dependence of lifetime on stress,voltage and temperature.The main physical mechanism for recovery process of threshold voltage degradation after NBTI stress is confirmed to be the passivation of interface traps due to back diffusion of H2.

    国产毛片在线视频| 婷婷色综合大香蕉| av网站免费在线观看视频| 成年人免费黄色播放视频| 侵犯人妻中文字幕一二三四区| 一区二区三区四区激情视频| 一级片'在线观看视频| 亚洲美女视频黄频| 国产精品免费大片| av电影中文网址| 精品99又大又爽又粗少妇毛片| 国产伦理片在线播放av一区| 男女边摸边吃奶| 爱豆传媒免费全集在线观看| 久久久久精品性色| 晚上一个人看的免费电影| 涩涩av久久男人的天堂| 狂野欧美激情性bbbbbb| av天堂久久9| 国产男人的电影天堂91| 在线观看免费日韩欧美大片| 大话2 男鬼变身卡| 大片电影免费在线观看免费| 午夜日韩欧美国产| 亚洲一区中文字幕在线| 在线 av 中文字幕| av在线观看视频网站免费| 捣出白浆h1v1| 国产亚洲av片在线观看秒播厂| 伊人久久大香线蕉亚洲五| 国产成人一区二区在线| 免费观看a级毛片全部| 国产日韩一区二区三区精品不卡| 亚洲精品在线美女| 亚洲男人天堂网一区| 永久网站在线| 天天躁夜夜躁狠狠久久av| 免费高清在线观看日韩| 99re6热这里在线精品视频| 秋霞伦理黄片| 中文字幕制服av| 侵犯人妻中文字幕一二三四区| 老司机亚洲免费影院| 老司机影院成人| 国产精品久久久久久精品古装| 午夜免费男女啪啪视频观看| 亚洲激情五月婷婷啪啪| 免费av中文字幕在线| 久久97久久精品| 丝袜美足系列| 人人妻人人澡人人看| 亚洲av国产av综合av卡| 成年美女黄网站色视频大全免费| 精品酒店卫生间| 久久久久国产网址| 搡女人真爽免费视频火全软件| 一区二区三区四区激情视频| 天天躁夜夜躁狠狠躁躁| 欧美激情极品国产一区二区三区| 免费在线观看黄色视频的| 91在线精品国自产拍蜜月| 亚洲欧美日韩另类电影网站| 97在线人人人人妻| 考比视频在线观看| 精品亚洲成国产av| a级片在线免费高清观看视频| 99国产综合亚洲精品| 日韩人妻精品一区2区三区| 国产成人免费观看mmmm| 亚洲美女视频黄频| 亚洲国产欧美在线一区| 美女主播在线视频| 久久国内精品自在自线图片| 纯流量卡能插随身wifi吗| 欧美97在线视频| 成人亚洲欧美一区二区av| 亚洲一区二区三区欧美精品| 极品人妻少妇av视频| 国产成人av激情在线播放| 国产片特级美女逼逼视频| 免费看av在线观看网站| av在线老鸭窝| 久久久精品免费免费高清| 人人妻人人澡人人爽人人夜夜| 亚洲欧美一区二区三区黑人 | 好男人视频免费观看在线| 三级国产精品片| 热re99久久精品国产66热6| 在线亚洲精品国产二区图片欧美| 午夜福利视频在线观看免费| 久久精品国产亚洲av涩爱| 看免费成人av毛片| 亚洲国产精品一区二区三区在线| 亚洲精品视频女| 色哟哟·www| 秋霞在线观看毛片| 欧美最新免费一区二区三区| 亚洲精品国产一区二区精华液| 狂野欧美激情性bbbbbb| 国产毛片在线视频| 日日撸夜夜添| www日本在线高清视频| 自线自在国产av| 亚洲精华国产精华液的使用体验| 一级爰片在线观看| 日本黄色日本黄色录像| 久久久久久久久久久久大奶| 亚洲av男天堂| 亚洲 欧美一区二区三区| 国产精品免费视频内射| 999久久久国产精品视频| 丁香六月天网| 国产一区二区三区综合在线观看| 欧美精品人与动牲交sv欧美| 一级毛片 在线播放| 黄色怎么调成土黄色| 精品国产国语对白av| 免费看av在线观看网站| 久热这里只有精品99| 90打野战视频偷拍视频| 2022亚洲国产成人精品| 18禁裸乳无遮挡动漫免费视频| 在线观看国产h片| 99久国产av精品国产电影| 老汉色∧v一级毛片| 久久精品aⅴ一区二区三区四区 | 搡女人真爽免费视频火全软件| 亚洲精品久久午夜乱码| 美女国产高潮福利片在线看| 国产精品蜜桃在线观看| 欧美在线黄色| 国产白丝娇喘喷水9色精品| 久久99精品国语久久久| 国产精品欧美亚洲77777| 午夜日韩欧美国产| 黑人巨大精品欧美一区二区蜜桃| 欧美在线黄色| 日本-黄色视频高清免费观看| 母亲3免费完整高清在线观看 | 国产精品亚洲av一区麻豆 | 日韩一卡2卡3卡4卡2021年| 国产一区二区在线观看av| 亚洲伊人久久精品综合| 激情五月婷婷亚洲| 亚洲欧美中文字幕日韩二区| 女的被弄到高潮叫床怎么办| 人妻 亚洲 视频| 精品国产乱码久久久久久男人| 国产精品国产三级专区第一集| 久久久久精品久久久久真实原创| 午夜久久久在线观看| av在线播放精品| 国产成人a∨麻豆精品| 曰老女人黄片| 国产亚洲精品第一综合不卡| 午夜福利视频在线观看免费| 少妇精品久久久久久久| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲少妇的诱惑av| 老熟女久久久| 国产在线一区二区三区精| 久久精品国产鲁丝片午夜精品| 久久久久久人妻| 男人舔女人的私密视频| 热re99久久精品国产66热6| 999精品在线视频| 国产精品久久久久久精品古装| 婷婷成人精品国产| 亚洲中文av在线| 免费在线观看黄色视频的| 午夜免费鲁丝| 妹子高潮喷水视频| 久久精品国产亚洲av涩爱| 一级,二级,三级黄色视频| 亚洲国产欧美在线一区| 不卡av一区二区三区| 少妇精品久久久久久久| 成年人免费黄色播放视频| 青草久久国产| 成人影院久久| 好男人视频免费观看在线| 亚洲av综合色区一区| 亚洲欧美成人精品一区二区| 大话2 男鬼变身卡| 亚洲精品乱久久久久久| 成人亚洲欧美一区二区av| 亚洲激情五月婷婷啪啪| 欧美国产精品一级二级三级| 日韩欧美精品免费久久| 午夜福利视频在线观看免费| 亚洲一码二码三码区别大吗| 国产亚洲最大av| 黄色视频在线播放观看不卡| 秋霞伦理黄片| 超色免费av| 丰满迷人的少妇在线观看| 侵犯人妻中文字幕一二三四区| 人妻 亚洲 视频| 国产精品 国内视频| 男女高潮啪啪啪动态图| 韩国av在线不卡| 老熟女久久久| 亚洲成色77777| 亚洲av成人精品一二三区| 夜夜骑夜夜射夜夜干| 伊人久久大香线蕉亚洲五| 亚洲中文av在线| 亚洲av成人精品一二三区| 国产成人a∨麻豆精品| av在线app专区| 你懂的网址亚洲精品在线观看| av又黄又爽大尺度在线免费看| 亚洲精品日本国产第一区| 美女午夜性视频免费| 精品国产乱码久久久久久男人| 日本午夜av视频| 久久青草综合色| 一级黄片播放器| a级片在线免费高清观看视频| 亚洲熟女精品中文字幕| 久久韩国三级中文字幕| 伊人久久国产一区二区| 美女脱内裤让男人舔精品视频| 可以免费在线观看a视频的电影网站 | 99精国产麻豆久久婷婷| 99香蕉大伊视频| 亚洲精品乱久久久久久| av国产久精品久网站免费入址| 热re99久久精品国产66热6| 久久久久久人妻| 亚洲少妇的诱惑av| 在线观看一区二区三区激情| 天天影视国产精品| 80岁老熟妇乱子伦牲交| 成人亚洲精品一区在线观看| 老司机影院毛片| 欧美日韩视频精品一区| 久久久久人妻精品一区果冻| 午夜激情av网站| 在线亚洲精品国产二区图片欧美| 一区二区日韩欧美中文字幕| 电影成人av| 免费久久久久久久精品成人欧美视频| 国产片特级美女逼逼视频| 80岁老熟妇乱子伦牲交| 亚洲人成电影观看| 国产男人的电影天堂91| 色婷婷久久久亚洲欧美| 日韩精品免费视频一区二区三区| 久久国产精品大桥未久av| 人人妻人人澡人人看| 大片免费播放器 马上看| 久久久久久人妻| 成年美女黄网站色视频大全免费| 国产亚洲欧美精品永久| 国产成人欧美| 你懂的网址亚洲精品在线观看| 亚洲欧洲精品一区二区精品久久久 | 久久久久精品性色| 黄色 视频免费看| 亚洲经典国产精华液单| 中文字幕色久视频| 亚洲欧美一区二区三区久久| 日本91视频免费播放| 成人亚洲欧美一区二区av| 看非洲黑人一级黄片| 免费观看性生交大片5| 美女视频免费永久观看网站| 80岁老熟妇乱子伦牲交| 国产精品国产三级专区第一集| 亚洲欧洲精品一区二区精品久久久 | 精品视频人人做人人爽| 午夜福利在线观看免费完整高清在| 成年女人毛片免费观看观看9 | 亚洲情色 制服丝袜| 水蜜桃什么品种好| 日本免费在线观看一区| 欧美日韩国产mv在线观看视频| 99国产精品免费福利视频| 日本猛色少妇xxxxx猛交久久| 十八禁高潮呻吟视频| 国产熟女午夜一区二区三区| 韩国高清视频一区二区三区| 免费高清在线观看视频在线观看| 黄色视频在线播放观看不卡| 国产免费现黄频在线看| 有码 亚洲区| 999精品在线视频| 国产成人一区二区在线| 一区二区三区精品91| 国产亚洲欧美精品永久| 99久国产av精品国产电影| 丁香六月天网| 高清视频免费观看一区二区| 丝袜人妻中文字幕| 中文字幕最新亚洲高清| 国产乱来视频区| 日韩欧美一区视频在线观看| 天堂中文最新版在线下载| 少妇人妻久久综合中文| a级毛片黄视频| 久久女婷五月综合色啪小说| av卡一久久| 欧美激情 高清一区二区三区| 视频区图区小说| 亚洲婷婷狠狠爱综合网| 亚洲成人一二三区av| 欧美黄色片欧美黄色片| 久久婷婷青草| 国产成人一区二区在线| 婷婷色麻豆天堂久久| 国产精品偷伦视频观看了| 校园人妻丝袜中文字幕| 中文字幕制服av| 国产不卡av网站在线观看| 亚洲一区二区三区欧美精品| 日本爱情动作片www.在线观看| 国产野战对白在线观看| 亚洲av成人精品一二三区| 国产一级毛片在线| 99香蕉大伊视频| 久久久久久免费高清国产稀缺| 久久免费观看电影| 少妇 在线观看| 亚洲av日韩在线播放| 一本久久精品| 国产熟女欧美一区二区| 国产在视频线精品| 亚洲第一区二区三区不卡| 午夜老司机福利剧场| 国产成人精品在线电影| 欧美日韩国产mv在线观看视频| 性高湖久久久久久久久免费观看| 综合色丁香网| 人人妻人人爽人人添夜夜欢视频| 国产亚洲欧美精品永久| 18禁动态无遮挡网站| 欧美黄色片欧美黄色片| 美女午夜性视频免费| 午夜福利网站1000一区二区三区| 精品一区在线观看国产| 亚洲成人一二三区av| 久久免费观看电影| 99热全是精品| 2022亚洲国产成人精品| 国产亚洲一区二区精品| 91aial.com中文字幕在线观看| 建设人人有责人人尽责人人享有的| 亚洲一区二区三区欧美精品| 黄网站色视频无遮挡免费观看| 男女边摸边吃奶| 亚洲欧美精品综合一区二区三区 | 免费av中文字幕在线| 亚洲三级黄色毛片| 国产精品 欧美亚洲| 午夜免费观看性视频| 有码 亚洲区| 精品一品国产午夜福利视频| 91久久精品国产一区二区三区| 男女无遮挡免费网站观看| 精品午夜福利在线看| 波多野结衣av一区二区av| 成人国语在线视频| 美女中出高潮动态图| 高清av免费在线| 成年女人在线观看亚洲视频| 男女国产视频网站| 深夜精品福利| 日韩成人av中文字幕在线观看| 午夜免费男女啪啪视频观看| 色吧在线观看| 视频区图区小说| 久久青草综合色| 日本91视频免费播放| 国产一区二区三区av在线| av不卡在线播放| 亚洲在久久综合| 国产亚洲最大av| 日日啪夜夜爽| 黄片无遮挡物在线观看| 在现免费观看毛片| 国产一区二区激情短视频 | 日韩制服骚丝袜av| 一级a爱视频在线免费观看| 亚洲精华国产精华液的使用体验| 美女主播在线视频| 婷婷色综合www| 国产不卡av网站在线观看| 女人精品久久久久毛片| 亚洲国产欧美日韩在线播放| 视频区图区小说| 久久精品国产鲁丝片午夜精品| 美女国产视频在线观看| 亚洲第一av免费看| 激情五月婷婷亚洲| 亚洲精品美女久久久久99蜜臀 | 免费久久久久久久精品成人欧美视频| 国产午夜精品一二区理论片| 国产综合精华液| 高清视频免费观看一区二区| 一二三四中文在线观看免费高清| 大香蕉久久网| 亚洲精品国产av成人精品| 欧美激情极品国产一区二区三区| 亚洲国产精品一区三区| a级片在线免费高清观看视频| 美女xxoo啪啪120秒动态图| 久久国产精品男人的天堂亚洲| 国产欧美日韩综合在线一区二区| 国产亚洲精品第一综合不卡| 亚洲内射少妇av| 国产午夜精品一二区理论片| 日本av手机在线免费观看| 国产成人精品福利久久| 午夜老司机福利剧场| 久久精品国产亚洲av高清一级| 黄色视频在线播放观看不卡| 亚洲美女黄色视频免费看| 久久久久久久大尺度免费视频| 人人妻人人澡人人看| 男女午夜视频在线观看| 午夜久久久在线观看| 亚洲视频免费观看视频| 亚洲,一卡二卡三卡| 欧美最新免费一区二区三区| 天美传媒精品一区二区| 少妇被粗大的猛进出69影院| 成人国产av品久久久| 亚洲av成人精品一二三区| 女人高潮潮喷娇喘18禁视频| 一边亲一边摸免费视频| 亚洲,欧美精品.| 天美传媒精品一区二区| 久久国产精品大桥未久av| 热99国产精品久久久久久7| 精品人妻偷拍中文字幕| 超碰97精品在线观看| 日韩伦理黄色片| 男女午夜视频在线观看| 夫妻午夜视频| 亚洲精品美女久久av网站| 国产成人a∨麻豆精品| 免费观看av网站的网址| 国产精品99久久99久久久不卡 | 国产av精品麻豆| 高清不卡的av网站| 日本-黄色视频高清免费观看| 曰老女人黄片| 国产精品成人在线| 国产在线一区二区三区精| 久久久久国产一级毛片高清牌| 考比视频在线观看| 亚洲精品久久午夜乱码| 精品国产乱码久久久久久男人| 国产精品久久久久久精品电影小说| 免费高清在线观看视频在线观看| 伊人久久大香线蕉亚洲五| 免费不卡的大黄色大毛片视频在线观看| 久久婷婷青草| 看免费av毛片| 香蕉丝袜av| 丝袜脚勾引网站| 香蕉国产在线看| 国产爽快片一区二区三区| 亚洲av男天堂| 国产精品国产av在线观看| 久久精品久久精品一区二区三区| 你懂的网址亚洲精品在线观看| 日韩 亚洲 欧美在线| 三上悠亚av全集在线观看| 国产97色在线日韩免费| 免费看不卡的av| 亚洲精品av麻豆狂野| 中文字幕人妻丝袜制服| 免费黄色在线免费观看| 久久久久精品久久久久真实原创| 一个人免费看片子| 亚洲av电影在线观看一区二区三区| 久久鲁丝午夜福利片| 夜夜骑夜夜射夜夜干| 最近最新中文字幕大全免费视频 | 亚洲欧美中文字幕日韩二区| 男人操女人黄网站| 国产精品麻豆人妻色哟哟久久| 国产亚洲最大av| 亚洲中文av在线| 免费日韩欧美在线观看| 如日韩欧美国产精品一区二区三区| 999久久久国产精品视频| 极品人妻少妇av视频| 午夜福利乱码中文字幕| 高清不卡的av网站| 边亲边吃奶的免费视频| 欧美日韩亚洲高清精品| 亚洲综合色网址| 亚洲成av片中文字幕在线观看 | 久久久久国产网址| 国产精品嫩草影院av在线观看| 91国产中文字幕| 女人高潮潮喷娇喘18禁视频| 国产视频首页在线观看| 欧美最新免费一区二区三区| 一级a爱视频在线免费观看| av福利片在线| 国产淫语在线视频| 国产av国产精品国产| 制服丝袜香蕉在线| 欧美亚洲日本最大视频资源| 国产精品人妻久久久影院| 亚洲,欧美精品.| 日韩欧美精品免费久久| 这个男人来自地球电影免费观看 | 精品国产一区二区三区久久久樱花| 国产精品免费视频内射| 国产麻豆69| 亚洲精品久久成人aⅴ小说| 国精品久久久久久国模美| 国产成人精品久久久久久| 久久久久久免费高清国产稀缺| 成人国产av品久久久| 中文天堂在线官网| 久久久久久久国产电影| 亚洲欧洲日产国产| 精品酒店卫生间| a 毛片基地| 国产国语露脸激情在线看| 久久这里有精品视频免费| 国精品久久久久久国模美| 制服丝袜香蕉在线| 亚洲三区欧美一区| 18禁裸乳无遮挡动漫免费视频| 免费在线观看完整版高清| 亚洲综合精品二区| 青草久久国产| 亚洲第一av免费看| 亚洲色图综合在线观看| 国产成人精品无人区| 中文字幕制服av| 日本猛色少妇xxxxx猛交久久| 精品酒店卫生间| 水蜜桃什么品种好| 菩萨蛮人人尽说江南好唐韦庄| 国产又色又爽无遮挡免| 一级毛片我不卡| 国产精品成人在线| 国产xxxxx性猛交| 国产av国产精品国产| 男的添女的下面高潮视频| 天天躁夜夜躁狠狠躁躁| 激情五月婷婷亚洲| 99国产综合亚洲精品| 国产亚洲一区二区精品| 久久久久国产一级毛片高清牌| 老汉色av国产亚洲站长工具| 曰老女人黄片| 亚洲国产av新网站| 亚洲,欧美精品.| 不卡av一区二区三区| 日本av免费视频播放| 国产色婷婷99| 美女福利国产在线| 亚洲精品久久久久久婷婷小说| 日本91视频免费播放| 人人妻人人添人人爽欧美一区卜| 久久99一区二区三区| 狠狠精品人妻久久久久久综合| 免费久久久久久久精品成人欧美视频| 成人亚洲精品一区在线观看| 国产乱来视频区| 可以免费在线观看a视频的电影网站 | 亚洲经典国产精华液单| 麻豆乱淫一区二区| 中文字幕色久视频| 精品酒店卫生间| 秋霞在线观看毛片| 少妇的丰满在线观看| 在线精品无人区一区二区三| av女优亚洲男人天堂| 久久这里只有精品19| 宅男免费午夜| 国产精品熟女久久久久浪| 国产欧美日韩综合在线一区二区| 国产又色又爽无遮挡免| 欧美 亚洲 国产 日韩一| 日韩伦理黄色片| 亚洲视频免费观看视频| 2021少妇久久久久久久久久久| 久久精品国产自在天天线| 80岁老熟妇乱子伦牲交| 亚洲欧美清纯卡通| 看非洲黑人一级黄片| 国产又色又爽无遮挡免| 99久国产av精品国产电影| 久久久久精品久久久久真实原创| kizo精华| 在现免费观看毛片| 搡女人真爽免费视频火全软件| 免费在线观看完整版高清| 中文乱码字字幕精品一区二区三区| 中文字幕人妻熟女乱码| 蜜桃在线观看..| 国产精品嫩草影院av在线观看| 亚洲美女视频黄频| 欧美人与善性xxx| 国产精品99久久99久久久不卡 | 在现免费观看毛片| 久久这里只有精品19| 国产精品二区激情视频| 黄色视频在线播放观看不卡| 色吧在线观看| 大香蕉久久网| 国产精品一二三区在线看| 熟女少妇亚洲综合色aaa.| 精品国产一区二区三区久久久樱花| 国产精品久久久久久久久免|