• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Degradation mechanism of high-voltage single-crystal LiNi0.5Co0.2Mn0.3O2 cathode material

    2023-12-15 11:48:20NaLiu柳娜
    Chinese Physics B 2023年12期

    Na Liu(柳娜)

    Contemporary Amperex Technology Co.,Limited,Ningde 352000,China

    Keywords: high voltage,Li-ion battery,phase transition,LiNixCoyMnzO2

    1.Introduction

    Since the development of LiCoO2for commercial applications, high energy density, high safety, long life and low cost are the demands for a new generation of lithiumion batteries.The LiNixCoyMnzO2(x+y+z= 1; NCM;280 mAh/g) has a higher theoretical specific capacity than LiFePO4(170 mAh/g)and LiMn2O4(150 mAh/g),which may become the most powerful competitor in the new generation of battery materials.[1-4]The safety and stability of NCM can be improved by adjusting the atomic ratio of transition metals(TMs), which has been successfully applied in mobile electronic devices and power vehicles.In order to improve the energy density,Ni-rich and Co-poor NCMs have been widely developed and applied,but the cycle performance is seriously affected due to a series of side reactions and irreversible phase transitions.Therefore,recent attention is focused on adjusting the charge cut-off voltage of NCM and optimizing the electrolyte composition to obtain higher energy density.However, at high operating voltage (> 4.4 V), the charge compensation process of NCM could be changed due to the deep lithium removal.At lower voltages (<4.4 V), TM participates in the charge compensation by valence change, while at higher voltages (>4.4 V), the anions participate in charge

    In this paper, the commercial single-crystal LiNi0.5Co0.2Mn0.3O2(NCM523) was used to investigate the cycle performance under different charging cut-off voltages.The crystal structure and surface phase transition process of NCM523 after high voltage cycling were investigated by means of x-ray diffraction (XRD), transmission electron microscope(TEM)and electron back scatter diffraction(EBSD),and the surface structure degradation under different cut-off voltages was understood for improving the performance of NCM materials under high voltages.compensation to form peroxide (Oσ-2 ) or oxygen.[5]In addition,Li+extraction will aggravate Li/Ni mixing and result in irreversible phase transition generating spinel phase and rocksalt phase.[6,7]The dissolution of transition metal[8]and particle cracking due to inhomogeneous stress distribution[9-13]also restrict the applications of high voltage NCM.

    2.Experimental materials and equipment

    The tested electrode was made of commercial single crystal NCM523 material, mixed with an appropriate amount of conductive carbon and binder(PVDF)dissolved in NMP,and coated on the surface of Al foil.The full battery used graphite as anode, NCM523 as cathode, 1 M LiPF6in EC/DMC(1:1 vol/vol) as electrolyte.The charging and discharging process was carried out at 0.33 C between 2.8-4.4 V, 2.8-4.5 V and 2.8-4.6 V.All cycling tests were performed on a NEWARE battery tester, and the EIS test was performed on an AutoLab electrochemical workstation (frequency range of 1 MHz to 1 mHz).The XRD test was conducted on Bruker D8, with CuKαas the radiation source, the scanning range was 15?-85?,and the scanning speed was 5?/min.the crosssections of the particles were polished using a cooling crosssection polisher(IB-19520CCP,JEOL).The TEM sample was fabricated by the focused ion beam(FIB)on Scios DualBeam double-beam electron microscope.All TEM tests were performed on the JEM2100 equipment produced by Nippon Electronics.Scanning electron microscope (SEM) test was performed on the field emission scanning electron microscope Zeiss Gemini360.EBSD was performed using the Oxford Nordly max3.

    3.Results

    3.1.Electrochemical performance

    Figure 1(a) shows the charge-discharge cycle curve of NCM523 half-cell at 0.05 C (1 C = 6.6 mA), the specific capacity of NCM523 at 4.55 V is 170 mAh/g for the initial cycle.The capaciy decays faster in the accelerated decaying test(45?C)as the charge cut-off voltage increases from 4.4 V to 4.6 V.Especially at 4.6 V, capacity fade to less than 80%around 150 cycles, as shown in Fig.1(b).To eliminate the influence of the dynamics factors,the half cell was further discharged to 2.85 V at very low rate of 0.04 C after discharging from 0.33 C to 2.85 V.After 150 cycles at the cut off voltages of 4.4/4.5/4.6 V,the half-cell was cycled at 0.33+0.04 C,and the power capacity loss was obtained (0.33 C), as shown in Fig.2(a).There is basically no irreversible capacity loss after 150 cycles at 2.8-4.4 V.For the 2.8-4.5 V cycle, the capacity loss is 12.9% at 150 cycles, most of which is caused by the reversible capacity loss (10.05%).The capacity loss is the largest after 150 cycles of 2.8-4.6 V cycle, reaching 29.2% (0.33 C+0.04 C), of which irreversible loss accounts for 14.24% and power loss accounts for 14.95%.It can be seen that the higher the cycle voltage results in the larger the capacity loss, and it mainly comes from the power loss.The reversible loss is mainly considered to be the slowing down of the kinetic process.The power loss is often considered to be the capacity attenuation caused by the loss of active materials.Figure 2(b)show the dissolved TMs ions on the negative electrode of samples after 150 cycles at different cut-off voltages detected by inductively coupled plasma-optical emission spectrometer(ICP-OES).The results show the sample at low cut-off voltage has much less TMs ions dissolution.Although the amount of Mn dissolved is the largest,the overall amount of TMs dissolved are relatively small.Therefore,the dissolution of TMs is not the main reason for capacity decay.

    Fig.1.NCM523 cycle performance.(a)0.05 C charge-discharge curve of NCM523 half-cells at different cut-off voltages.(b)The capacity retention curves with different cut-off voltages at 45 ?C(4.4 V,4.5 V,4.6 V).

    Fig.2.(a)Capacity loss of half-cells(Li||NCM)under different cut-voltages.(b)The dissolved TMs ions on the negative electrode after 150 cycles.(c)After the pole piece is disassembled,the positive pole piece is made into a symmetrical battery EIS curve.

    Electrochemical impedance spectroscopy (EIS) analysis was performed on the symmetrical battery made of the disassembled NCM523 electrode to study the interfacial impedance change.Figure 2(c) shows the relationship between the impedance change and the cut-off voltage.An obvious semicircle can be observed, corresponding to the electron transfer process (Rct).According to the results,Rctat 4.6 V is much larger than that at the lower charge cut-off voltages(4.4 V and 4.5 V) during cycling.The surface film impedanceRfvaries less with the cut-off voltages relative toRct,which can be ignored here.It can be seen that the capacity attenuation during cycling at high voltages may be related to the increase in the charge transfer impedance (Rct) of the electrodes.In the following discussion,we will focus on the origin of the increased charge transfer resistance of the samples cycled at high charge cut-off voltages by analyses that consider both the bulk and surface structure.

    3.2.Phase transition behavior

    In order to study the reason of capacity decay during high voltage cycling, the bulk structure of NCM523 after cycling was first examined using XRD.Each sample at the discharged state(2.8 V)after 150 cycles was collected and analyzed.By comparison,it is found that all the samples show the hexagonalα-NaFeO2structure of theR-3mspace group, and no significant structural degradation and new phase formation was observed (Fig.3).It is known that Ni2+(0.69 ?A) and Li+(0.76 ?A)are similar in the atomic radius.In the NCM,the Li vacancy (3bsite) left in the Li slab after Li+extraction is easily occupied by Ni2+,forming the“cationic mixed phase”or“cation disorder”.[14]The ratio of(003)diffraction peak intensity to (104) diffraction peak intensityI(003)/(104)is often used to analyze the degree of cation mixing in the XRD spectrum.The smaller is the value ofI(003)/(104), the more severe is the cation mixing.[15]A large number of studies have shown that the cation mixing facilitates the blocking of the Li+channel due to the larger diffusion barriers in the Li layers.It can be seen that a higher degree of cation mixing was observed for samples that were operated at higher voltages.This indicates that the electrode polarization becomes more severe when cycled at high voltages consistent with the larger resistance value(Fig.2(c)).[16,17]

    Fig.3.Comparison of XRD patterns before and after 150 cycles of high voltage cycling.

    Fig.4.SEM images before and after high voltage cycle.(a) The crosssectional SEM image of fresh electrode.(b)-(d) The cross-sectional SEM images after 150 cycles at different cut-off voltages.

    During the charging process, the NCM usually undergoes a series of phase change.For example, in the singlecrystal NCM811 system, the phase transition sequence between 2.8 V and 4.6 V is H1→M→H2→H3.[15]In addition,in the process of charging and discharging, the lattice expansion and contraction generate increased micro-stress,resulting in micro-cracks in the particle,and deteriorating the electronic conductivity.[11]The electrolyte enters the interior of the particle via these crack networks and decomposes to form CEI,which affects the transport of electrons and ions at the interface.The SEM was carried out to observe the cross-sections of the electrode at different cut-off voltages.Figure 4 shows the SEM images of the full-discharged NCM523(particle size is about 2-5μm)before and after the cycle.It can be observed that the particles remain intact even in the 2.8-4.6 V cycle,and there is no particle cracking,suggesting that the reason for the rapid attenuation of capacity at high voltage is not related to the micro-cracks of particles.

    Fig.5.Atomic resolution STEM images of NCM523 after different cut-off voltages.The HADDF-STEM images of(a),(b)2.8-4.5 V after 150 cycles.(b) The high-resolution STEM image indicated by yellow dotted rectangle in (a).(c), (d) STEM images after 150 cycles under 2.8-4.6 V conditions 150 cycles.(d)The high-resolution STEM image indicated by yellow dotted rectangle in(c).

    The above XRD data analysis indicates that theI(003)/(104)value decreases with the increase of the cut-off voltage,demonstrating that the cation mixing is more severe at high voltage.It was reported that the particle surface contact with the electrolyte is prone to the phase transition of the layered structure, from the layeredR-3mto the rock-salt phase NiOlike(Fm-3m)or the spinel-like phase, thereby destroying the active Li site, blocking the lithium intecalation channel, and decreasing the ionic conductivity.[17,18]In order to further explore the surface structure phase transition and cation mixing phase, the HADDF-STEM analyses were performed.After 150 cycles, the cation mixed phase with a thickness of about 2 nm appeared on the surface of NCM cycled between 2.8-4.5 V(Figs.5(a)and 5(b)).The thickness of the surface cation mixed phase is larger after 4.6 V cycling than 4.5 V cycling.Meanwhile,a reconstruction layer of 5-10 nm appears on the outermost surface and along the lithium diffusion channels.The high-resolution STEM can clearly recognize the reconstructed layer as a rock-salt phase(NiO) structure (Figs.5(c)and 5(d).Since the STEM imaging is located,in order to further count the distribution of salt rock phase, the argon ion beam was applied to polish the cathodes after the 2.8-4.6 V cycling,and the smooth and clean surface is obtained.EBSD test can observe a wide range of crystal structure phase transition(Fig.6).For the as-prepared cathodes, the EBSD results showed that the crystal plane orientation was relatively random, without obvious meritocratic orientation, and the particles were of single crystal type, with well-defined grains and agglomerates inside the particles.For the samples after 2.8-4.6 V cycling,the rock-salt phase(NiO)appears and has a special orientation relationship with the layered structure, which is consistent with the above STEM results.

    Fig.6.EBSD images of(a)fresh NCM523 electrode and(b)after 150 cycles under 2.8-4.6 V.The color represents crystal direction.As for fresh electrode,each particle contains only one color,which represents a single crystal particle.The particles contain other crystal orientations,indicating phase transformation after cycling.

    The formation of surface rock-salt phase is related to cation exchange and cation migration, which is attributed to the similar radius of Li+and Ni2+, and the low energy barrier of Li+/Ni2+exchange, which is easy to occur in NCM.The process of Li+/Ni2+cation mixing and Ni2+migration is related to the formation of Li vacancies after extracting lithium from NCM, and the above process occurs most obviously when more lithium is extracted at high voltage.[18]During the charging process, Li+is gradually removed from the particle surface.The Li-removed NCM is thermodynamically unstable, and the surface oxygen is active and is lost at high voltage.Since the formation energy of Li/Ni mixing in NCM is relatively lower than that of Li/Co or Li/Mn,a large amount of cation exchange between Li/Ni occurs in NCM, and then the Ni atoms that are located in Li layers,migrated to the particle surface,leading to the enrichment of Ni on the non-(001)surface and the growth of rock-salt phase in the reconstructed layer.[19-21]The formation of salt rock phase leads to the loss of active Li sites,and hinders the lithium diffusion.The variation of charge transfer resistance above 4.4 V can be attributed to the rock-salt or cation mixing phase that exist more profoundly on the surface of the 4.6 V charged samples than on the 4.4 V charged sample.[22,23]

    Elemental doping is feasible for preparing layered materials with high-voltage stability.Doping elements into the material lattice can enhance the O-TM bonding, improving the structural stability and suppressing the oxygen release.As mentioned above,the electrolyte decomposition at active material surface significantly affects the performance of the cathodes at high charge voltages.Surface coating can act as a physical protection barrier to isolate the active materials from the electrolyte and inhibit the generation of CEI at high working voltage.The common coating materials mainly contain oxides,[24,25]phosphates[26]and fluorides.[27]

    4.Conclusion

    In this paper,NCM523 is used to explore the cycle performance under different cut-off voltages (2.8-4.4 V, 2.8-4.5 V and 2.8-4.6 V).Under the condition of 45?C as the acceleration factor, the higher is the cut-off voltage, the faster will be the capacity decay.Among them,the capacity of the 4.6 V charged material decays by 80%after 150 cycles,which is due to power loss.Further analysis shows that theRctundergoes a substantially larger increase during cycling at high voltages.Combined with XRD and STEM,it was found that there was no obvious phase transition and cracking in the bulk of the material.High-resolution STEM and EBSD confirmed that the layered structure on the surface of the particles changed to the mixed phase or rock-salt phase after cycling at high voltages.Therefore, the phase transition near the surface at high voltages is mainly responsible for capacity degradation.Our understanding provides an important reference for further improving the high-voltage NCM523 performance.

    一级黄色大片毛片| 亚洲aⅴ乱码一区二区在线播放| 给我免费播放毛片高清在线观看| 九色国产91popny在线| 搞女人的毛片| 亚洲自拍偷在线| 成人特级av手机在线观看| 欧美xxxx黑人xx丫x性爽| 97超级碰碰碰精品色视频在线观看| 亚洲在线自拍视频| 99久久久亚洲精品蜜臀av| 久久天堂一区二区三区四区| 久久精品91无色码中文字幕| 国产精品 欧美亚洲| 两性午夜刺激爽爽歪歪视频在线观看| 少妇人妻一区二区三区视频| 国产三级黄色录像| 三级毛片av免费| 夜夜躁狠狠躁天天躁| 老司机在亚洲福利影院| 色噜噜av男人的天堂激情| 99国产综合亚洲精品| 国产成人aa在线观看| 国产久久久一区二区三区| 天天一区二区日本电影三级| 日韩成人在线观看一区二区三区| 亚洲九九香蕉| 中出人妻视频一区二区| 国产伦一二天堂av在线观看| 午夜免费成人在线视频| 亚洲av日韩精品久久久久久密| 欧美成狂野欧美在线观看| 级片在线观看| 亚洲国产高清在线一区二区三| avwww免费| 91在线精品国自产拍蜜月 | 久久午夜综合久久蜜桃| 日韩中文字幕欧美一区二区| 亚洲精品美女久久av网站| 桃红色精品国产亚洲av| 99热这里只有是精品50| 国产精品综合久久久久久久免费| 午夜福利免费观看在线| 最新在线观看一区二区三区| 日日夜夜操网爽| 免费无遮挡裸体视频| 色哟哟哟哟哟哟| 一级a爱片免费观看的视频| 久久中文字幕人妻熟女| 色综合欧美亚洲国产小说| 亚洲无线观看免费| 精华霜和精华液先用哪个| 日韩欧美免费精品| 熟女少妇亚洲综合色aaa.| 一个人看视频在线观看www免费 | 久久久久久久精品吃奶| 国产精品永久免费网站| 国产亚洲av高清不卡| 欧美午夜高清在线| 给我免费播放毛片高清在线观看| 怎么达到女性高潮| 午夜福利在线观看免费完整高清在 | 亚洲av片天天在线观看| 国产精品自产拍在线观看55亚洲| 久9热在线精品视频| 99热这里只有是精品50| 伊人久久大香线蕉亚洲五| 国产av不卡久久| 久久久色成人| 人人妻人人看人人澡| 久久精品人妻少妇| 俄罗斯特黄特色一大片| 亚洲欧美精品综合久久99| 不卡av一区二区三区| 精品久久久久久,| 制服丝袜大香蕉在线| 国产亚洲欧美98| 亚洲无线观看免费| 亚洲美女视频黄频| 欧美乱妇无乱码| 国产探花在线观看一区二区| 日本五十路高清| 舔av片在线| 亚洲一区高清亚洲精品| 国产乱人伦免费视频| 久久久成人免费电影| 18美女黄网站色大片免费观看| 在线播放国产精品三级| 亚洲精品在线美女| 免费高清视频大片| 99在线视频只有这里精品首页| 美女被艹到高潮喷水动态| 久久久久久人人人人人| 我要搜黄色片| 欧洲精品卡2卡3卡4卡5卡区| 国产午夜福利久久久久久| 天堂√8在线中文| 在线观看免费午夜福利视频| 亚洲av中文字字幕乱码综合| 无遮挡黄片免费观看| 日本免费a在线| 99久国产av精品| 色老头精品视频在线观看| avwww免费| 国模一区二区三区四区视频 | 午夜福利免费观看在线| 99久国产av精品| h日本视频在线播放| 欧美午夜高清在线| 黄色片一级片一级黄色片| 国产激情欧美一区二区| 亚洲欧美日韩无卡精品| 免费看十八禁软件| 九色国产91popny在线| av在线蜜桃| 亚洲中文av在线| 在线看三级毛片| 亚洲专区字幕在线| 黄色女人牲交| 青草久久国产| 一级毛片高清免费大全| 午夜福利18| 两个人视频免费观看高清| 国产激情久久老熟女| 精品福利观看| 国产成人福利小说| 99久久综合精品五月天人人| 变态另类成人亚洲欧美熟女| 午夜福利免费观看在线| 欧美一级毛片孕妇| 99视频精品全部免费 在线 | 欧美日韩精品网址| 香蕉av资源在线| 国产成人影院久久av| 午夜精品一区二区三区免费看| 12—13女人毛片做爰片一| 舔av片在线| 成熟少妇高潮喷水视频| 999久久久精品免费观看国产| 亚洲熟妇熟女久久| 97超级碰碰碰精品色视频在线观看| 亚洲欧美日韩东京热| 色综合亚洲欧美另类图片| 国产亚洲av嫩草精品影院| 亚洲 欧美一区二区三区| 久久欧美精品欧美久久欧美| 制服丝袜大香蕉在线| 日本三级黄在线观看| 成年女人看的毛片在线观看| 久久久久久久午夜电影| 成熟少妇高潮喷水视频| 人妻夜夜爽99麻豆av| 综合色av麻豆| 高清在线国产一区| 成人国产一区最新在线观看| 免费人成视频x8x8入口观看| 99热精品在线国产| 午夜福利欧美成人| 亚洲色图 男人天堂 中文字幕| 小蜜桃在线观看免费完整版高清| 久久99热这里只有精品18| 精品欧美国产一区二区三| 人人妻人人看人人澡| 99re在线观看精品视频| 又大又爽又粗| 欧美高清成人免费视频www| 91av网一区二区| 在线观看午夜福利视频| 99热精品在线国产| 美女午夜性视频免费| 国产成人影院久久av| 天堂av国产一区二区熟女人妻| 2021天堂中文幕一二区在线观| 欧美zozozo另类| 国产又黄又爽又无遮挡在线| 天天躁狠狠躁夜夜躁狠狠躁| 中国美女看黄片| 成人一区二区视频在线观看| 一区福利在线观看| 成人无遮挡网站| 亚洲av电影不卡..在线观看| 亚洲国产精品合色在线| 中文字幕人成人乱码亚洲影| 最近在线观看免费完整版| 中文字幕av在线有码专区| 男人舔女人下体高潮全视频| 国产成人av教育| 色老头精品视频在线观看| 99精品欧美一区二区三区四区| x7x7x7水蜜桃| 国产99白浆流出| 亚洲av电影在线进入| 欧美丝袜亚洲另类 | 男插女下体视频免费在线播放| 真人做人爱边吃奶动态| 啦啦啦免费观看视频1| 一边摸一边抽搐一进一小说| 好看av亚洲va欧美ⅴa在| 中文字幕人成人乱码亚洲影| 中文字幕精品亚洲无线码一区| 国产精品一区二区三区四区免费观看 | АⅤ资源中文在线天堂| 日本三级黄在线观看| 观看美女的网站| 日韩欧美在线二视频| 日韩欧美 国产精品| 日本a在线网址| 黑人欧美特级aaaaaa片| 国产一区二区在线观看日韩 | 首页视频小说图片口味搜索| 久久久久久九九精品二区国产| 亚洲av第一区精品v没综合| 黑人欧美特级aaaaaa片| 国内揄拍国产精品人妻在线| 久久久久性生活片| 午夜福利在线观看免费完整高清在 | 男人舔女人的私密视频| 一本久久中文字幕| 国产精品国产高清国产av| www.999成人在线观看| 最新在线观看一区二区三区| 国产一级毛片七仙女欲春2| 黄色视频,在线免费观看| 国内久久婷婷六月综合欲色啪| 波多野结衣高清无吗| 母亲3免费完整高清在线观看| 精品久久久久久久久久免费视频| 精华霜和精华液先用哪个| 欧美色视频一区免费| 成人高潮视频无遮挡免费网站| АⅤ资源中文在线天堂| 天堂影院成人在线观看| 五月伊人婷婷丁香| 精品无人区乱码1区二区| 在线观看66精品国产| 亚洲无线在线观看| 怎么达到女性高潮| 亚洲精品在线观看二区| 国产高清有码在线观看视频| 久久久久久久久中文| 国产精品av视频在线免费观看| 日韩有码中文字幕| 国产亚洲av高清不卡| 免费大片18禁| 真人做人爱边吃奶动态| 1024香蕉在线观看| 亚洲国产中文字幕在线视频| 亚洲乱码一区二区免费版| 两性夫妻黄色片| 免费在线观看视频国产中文字幕亚洲| 麻豆国产97在线/欧美| 国产激情久久老熟女| 波多野结衣高清无吗| 99riav亚洲国产免费| 亚洲自偷自拍图片 自拍| АⅤ资源中文在线天堂| 国产 一区 欧美 日韩| 亚洲乱码一区二区免费版| 欧美成狂野欧美在线观看| 757午夜福利合集在线观看| 亚洲精品国产精品久久久不卡| 国产精品永久免费网站| 午夜福利欧美成人| 国产单亲对白刺激| 一区二区三区高清视频在线| 欧美xxxx黑人xx丫x性爽| 成人永久免费在线观看视频| 色综合站精品国产| 午夜久久久久精精品| 天天躁狠狠躁夜夜躁狠狠躁| aaaaa片日本免费| 国内精品美女久久久久久| 欧美激情在线99| 精品久久久久久久人妻蜜臀av| 日韩欧美一区二区三区在线观看| 婷婷丁香在线五月| 日韩成人在线观看一区二区三区| 日本撒尿小便嘘嘘汇集6| 亚洲精品在线美女| 午夜免费激情av| 一个人看视频在线观看www免费 | 国产69精品久久久久777片 | 欧美国产日韩亚洲一区| 日韩 欧美 亚洲 中文字幕| 18禁黄网站禁片午夜丰满| 欧美日韩综合久久久久久 | 美女被艹到高潮喷水动态| 免费av毛片视频| 免费看日本二区| 又粗又爽又猛毛片免费看| 俺也久久电影网| 757午夜福利合集在线观看| 一个人免费在线观看的高清视频| 免费在线观看日本一区| 97超视频在线观看视频| 久久久久精品国产欧美久久久| 97人妻精品一区二区三区麻豆| bbb黄色大片| 午夜两性在线视频| 最近最新免费中文字幕在线| 白带黄色成豆腐渣| 欧美激情在线99| 国产午夜精品论理片| 久久久水蜜桃国产精品网| 亚洲天堂国产精品一区在线| 国产高清激情床上av| 美女高潮的动态| 好男人电影高清在线观看| 男人的好看免费观看在线视频| 岛国在线观看网站| 欧美成人性av电影在线观看| 亚洲成av人片在线播放无| 床上黄色一级片| 久久人妻av系列| 国内揄拍国产精品人妻在线| 亚洲男人的天堂狠狠| 日韩欧美精品v在线| 国产麻豆成人av免费视频| 在线观看免费视频日本深夜| 欧美成人一区二区免费高清观看 | 两性夫妻黄色片| 变态另类成人亚洲欧美熟女| 欧美xxxx黑人xx丫x性爽| 久久久久国产精品人妻aⅴ院| 嫩草影院精品99| 脱女人内裤的视频| 波多野结衣高清作品| 久久午夜综合久久蜜桃| 丰满人妻一区二区三区视频av | 国产探花在线观看一区二区| 国产av不卡久久| 国产高清三级在线| 亚洲av免费在线观看| 国产人伦9x9x在线观看| 色吧在线观看| 久久国产精品人妻蜜桃| 欧美黄色片欧美黄色片| 九色国产91popny在线| 国产蜜桃级精品一区二区三区| 老司机福利观看| 日本与韩国留学比较| 女警被强在线播放| 成人国产一区最新在线观看| 精品一区二区三区四区五区乱码| 久久欧美精品欧美久久欧美| xxxwww97欧美| 日本与韩国留学比较| 国内精品久久久久久久电影| 2021天堂中文幕一二区在线观| 久久这里只有精品19| 12—13女人毛片做爰片一| 久久午夜亚洲精品久久| av在线蜜桃| 亚洲成av人片免费观看| 亚洲一区二区三区色噜噜| 久久性视频一级片| 黄色 视频免费看| tocl精华| 我的老师免费观看完整版| 高清毛片免费观看视频网站| 亚洲电影在线观看av| 国产成人影院久久av| 女同久久另类99精品国产91| 嫁个100分男人电影在线观看| 婷婷精品国产亚洲av| 欧美在线一区亚洲| 国产乱人伦免费视频| 夜夜爽天天搞| 亚洲专区国产一区二区| 嫁个100分男人电影在线观看| 欧美+亚洲+日韩+国产| 在线观看免费午夜福利视频| 国产精品久久久久久亚洲av鲁大| 成年免费大片在线观看| 亚洲乱码一区二区免费版| 97超级碰碰碰精品色视频在线观看| 婷婷精品国产亚洲av在线| 久久久久性生活片| 亚洲真实伦在线观看| 97超级碰碰碰精品色视频在线观看| 人人妻,人人澡人人爽秒播| 美女 人体艺术 gogo| 此物有八面人人有两片| 色视频www国产| 2021天堂中文幕一二区在线观| 夜夜夜夜夜久久久久| 99国产极品粉嫩在线观看| 亚洲成a人片在线一区二区| 国产男靠女视频免费网站| 99在线视频只有这里精品首页| 婷婷精品国产亚洲av| 亚洲国产欧洲综合997久久,| 午夜免费成人在线视频| 成人无遮挡网站| 天堂av国产一区二区熟女人妻| 久久精品aⅴ一区二区三区四区| 亚洲成a人片在线一区二区| 午夜视频精品福利| 日韩高清综合在线| 搞女人的毛片| 亚洲熟妇中文字幕五十中出| 成熟少妇高潮喷水视频| 在线视频色国产色| 精品熟女少妇八av免费久了| 老司机在亚洲福利影院| 九九热线精品视视频播放| 国产aⅴ精品一区二区三区波| 国产av在哪里看| 操出白浆在线播放| 日韩中文字幕欧美一区二区| 欧美激情在线99| 一个人看视频在线观看www免费 | 久久中文看片网| 午夜精品久久久久久毛片777| 久久精品亚洲精品国产色婷小说| 欧美黄色片欧美黄色片| xxxwww97欧美| 在线观看免费视频日本深夜| 国产成人精品无人区| 亚洲午夜理论影院| 久久这里只有精品中国| 女警被强在线播放| av福利片在线观看| 国产精品爽爽va在线观看网站| 欧美大码av| 一a级毛片在线观看| 亚洲欧美激情综合另类| 国内精品美女久久久久久| 天天躁日日操中文字幕| 久久精品亚洲精品国产色婷小说| 久久香蕉国产精品| 黄色丝袜av网址大全| 精华霜和精华液先用哪个| 亚洲人成伊人成综合网2020| 免费在线观看影片大全网站| 成人无遮挡网站| 少妇熟女aⅴ在线视频| 国产精品自产拍在线观看55亚洲| 成年版毛片免费区| 18禁美女被吸乳视频| h日本视频在线播放| 桃红色精品国产亚洲av| 大型黄色视频在线免费观看| 国产精品亚洲av一区麻豆| 在线观看一区二区三区| 久久人妻av系列| 亚洲精品粉嫩美女一区| 国产伦在线观看视频一区| 久久久久久久精品吃奶| 午夜福利在线观看免费完整高清在 | 久久精品aⅴ一区二区三区四区| 国产又黄又爽又无遮挡在线| 久久精品综合一区二区三区| 老司机深夜福利视频在线观看| 老鸭窝网址在线观看| 国产亚洲av高清不卡| 麻豆成人午夜福利视频| 国产野战对白在线观看| 国内久久婷婷六月综合欲色啪| 五月玫瑰六月丁香| 91在线观看av| 母亲3免费完整高清在线观看| 亚洲电影在线观看av| 女警被强在线播放| www日本黄色视频网| 精品久久久久久久久久久久久| 国产欧美日韩精品亚洲av| 色综合婷婷激情| av在线天堂中文字幕| 曰老女人黄片| 亚洲欧美日韩高清专用| 亚洲真实伦在线观看| 校园春色视频在线观看| 欧美黄色片欧美黄色片| 亚洲午夜理论影院| 男女视频在线观看网站免费| 欧美日韩黄片免| 三级毛片av免费| 国产真人三级小视频在线观看| 久久午夜综合久久蜜桃| 综合色av麻豆| h日本视频在线播放| 精品欧美国产一区二区三| av中文乱码字幕在线| 99热这里只有精品一区 | 国产精品久久电影中文字幕| www.999成人在线观看| 在线观看舔阴道视频| 亚洲国产欧美一区二区综合| 麻豆久久精品国产亚洲av| av片东京热男人的天堂| 国产精品久久久久久精品电影| 99精品在免费线老司机午夜| а√天堂www在线а√下载| 午夜两性在线视频| 亚洲欧美激情综合另类| 日韩欧美一区二区三区在线观看| 国产1区2区3区精品| 两个人视频免费观看高清| 欧美三级亚洲精品| 97超级碰碰碰精品色视频在线观看| 午夜a级毛片| 免费在线观看日本一区| 亚洲精品中文字幕一二三四区| 夜夜看夜夜爽夜夜摸| 国内精品久久久久久久电影| 99久久精品热视频| 波多野结衣巨乳人妻| 免费人成视频x8x8入口观看| 国产精品综合久久久久久久免费| 精品日产1卡2卡| 色吧在线观看| 国产熟女xx| 久久久久国内视频| 午夜免费成人在线视频| 国产高清videossex| 欧美日韩中文字幕国产精品一区二区三区| 激情在线观看视频在线高清| 麻豆成人午夜福利视频| 美女午夜性视频免费| 欧美一级a爱片免费观看看| 叶爱在线成人免费视频播放| 亚洲熟女毛片儿| xxxwww97欧美| 美女黄网站色视频| 国产午夜精品论理片| 国产成人影院久久av| 人人妻,人人澡人人爽秒播| 欧美国产日韩亚洲一区| 午夜福利免费观看在线| 久久国产精品影院| 免费在线观看成人毛片| 亚洲激情在线av| 9191精品国产免费久久| www.www免费av| 男人舔奶头视频| 国内久久婷婷六月综合欲色啪| 成人特级av手机在线观看| 国语自产精品视频在线第100页| 在线观看免费午夜福利视频| 国产主播在线观看一区二区| 美女被艹到高潮喷水动态| 欧美zozozo另类| 国产精品综合久久久久久久免费| 亚洲avbb在线观看| 国产黄a三级三级三级人| 欧美日韩瑟瑟在线播放| 久99久视频精品免费| 精品国产三级普通话版| 波多野结衣巨乳人妻| 最近最新免费中文字幕在线| 午夜福利在线在线| 国产又黄又爽又无遮挡在线| 91av网站免费观看| 亚洲一区二区三区色噜噜| 精品午夜福利视频在线观看一区| 亚洲熟妇中文字幕五十中出| 久久久久国产精品人妻aⅴ院| 在线观看日韩欧美| 久久精品aⅴ一区二区三区四区| 小蜜桃在线观看免费完整版高清| 国模一区二区三区四区视频 | 久久久久精品国产欧美久久久| or卡值多少钱| 日韩中文字幕欧美一区二区| 亚洲第一欧美日韩一区二区三区| АⅤ资源中文在线天堂| 亚洲色图av天堂| 精品无人区乱码1区二区| 午夜免费观看网址| 欧美乱码精品一区二区三区| 欧美乱妇无乱码| 国产不卡一卡二| 亚洲国产高清在线一区二区三| 亚洲人成伊人成综合网2020| 亚洲,欧美精品.| 天天一区二区日本电影三级| 日韩有码中文字幕| 在线永久观看黄色视频| 国产伦在线观看视频一区| 亚洲色图 男人天堂 中文字幕| 男人舔女人下体高潮全视频| 国产成人精品久久二区二区免费| 又大又爽又粗| 国产成人系列免费观看| 丁香六月欧美| 免费看十八禁软件| 日韩成人在线观看一区二区三区| 精品国内亚洲2022精品成人| 国产精品久久久久久人妻精品电影| 嫩草影视91久久| 观看免费一级毛片| 国产高清有码在线观看视频| 又粗又爽又猛毛片免费看| 亚洲天堂国产精品一区在线| 精品免费久久久久久久清纯| 男人舔女人的私密视频| 久久午夜综合久久蜜桃| 国产高清有码在线观看视频| 欧美+亚洲+日韩+国产| 观看免费一级毛片| 国产高清有码在线观看视频| 伊人久久大香线蕉亚洲五| 最新美女视频免费是黄的| 欧美成人性av电影在线观看| www.自偷自拍.com| 久久伊人香网站| 黄色视频,在线免费观看| 三级国产精品欧美在线观看 | 女生性感内裤真人,穿戴方法视频| 一级黄色大片毛片| 狂野欧美激情性xxxx| 亚洲国产欧美人成| 亚洲人成网站在线播放欧美日韩| 99久国产av精品|