• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical simulation study of ionization characteristics of argon dielectric barrier discharge

    2023-12-15 11:48:08GuimingLiu劉桂銘LeiChen陳雷ZhiboZhao趙智博andPengSong宋鵬
    Chinese Physics B 2023年12期
    關(guān)鍵詞:陳雷

    Guiming Liu(劉桂銘), Lei Chen(陳雷),?, Zhibo Zhao(趙智博), and Peng Song(宋鵬)

    1Liaoning Key Laboratory of Advanced Measurement and Test Technology for Aviation Propulsion System,Shenyang Aerospace University,Shenyang 110136,China

    2College of Mechanical and Electrical Engineering,Dalian Minzu University,Dalian 116600,China

    Keywords: dielectric barrier discharge,particle distribution properties,electron density,electron temperature

    1.Introduction

    According to some research, non-equilibrium plasmas are applicable in a wide range of fields such as medical services, aerospace, environmental protection and agricultural production.[1,2]They can be generated by glow discharge,corona discharge, dielectric barrier discharge (DBD) and so on.[3-5]Among various discharge technologies,DBD provides one of the most effective solutions to the generation of lowtemperature non-equilibrium plasma under atmospheric pressure.Capable of working under high pressure and at a wide frequency range, it meets the requirement for use of plasma discharge technology under high pressures, playing an important role in the industrial application of low-temperature plasma.[6-8]Therefore,many scholars have already carried out research on how the characteristics of a DBD would be affected by the parameters of the DBD actuator structure, discharge parameters,working conditions and other factors.[9-11]

    In the process of DBD,it is worth paying attention to the selection of dielectric materials,the structure of the discharge space and the size of the input voltage as these factors can affect the ionization characteristics of particles.[12]Jud′eeet al.[13]compared the plasma parameters of the jet part of the exciter of a single dielectric layer DBD and a double dielectric layer DBD so as to analyze their ionization characteristics and the factors influencing plasma jet length and ionization velocity.However,no consideration was given to the law governing the influence of different parameters on the characteristics of ionization inside the exciter.[13]Barkaouiet al.[14]studied the effects of aerodynamic parameters and input voltage of gas on a plasma jet to analyze the effect of gas velocity on the electric field and electron density in the course of propagation.Despite this, no analysis was conducted on the characteristics of particle ionization in the exciter.[14]Baiet al.[15]investigated the thermodynamic reaction process of a nanosecond pulsed DBD to analyze how to produce important substances when methane and carbon dioxide are introduced,with the generation of these substances described in detail.However, little attention was paid to analyzing the final result of ionization.[15]Wanget al.[16]conducted a study on the characteristics of multi-current pulse dielectric layer discharge with a ring electrode under atmospheric pressure.In this study,the effects of different current pulses on ionization characteristics in the same cycle were described.They analyzed the patterns of variation in discharge mode, current density,electron density and electric field when the number of current pulses was changed.However,they did not take into account how the structural parameters of the physical model would affect the characteristics of ionization.[16]Wanget al.[17]used a one-dimensional fluid simulation model of a He/N2dielectric blocking discharge with parallel plate electrodes to investigate the law of the effect of different gap widths,secondary electron emission coefficients and driving frequencies on the characteristics of the multi-current pulse discharge and transition of the discharge mode.The process of discharge mode transition was further explored when the parameters changed,but the effect on the particle discharge characteristics was ignored.[17]Apart from assisting the effort to establish the correlation between the structural parameters,working parameters and performance indices of the discharge exciter,the results of qualitative and quantitative analyses of the internal working process and its influencing factors also provide a crucial reference for the design and development of the discharge exciter and accelerate the development cycle.It is thus necessary to reveal the rationale of the DBD exciter and identify its influencing factors.In addition, simulation of the plasma must be performed progressively because setting the actual working conditions directly often leads to error and hampers troubleshooting.Given the relative simplicity of the reaction kinetics of Ar,we first study Ar in this paper to summarize the law applied to setting the practical conditions of simulation and application for reference.[18]However, most of the current plasma simulations are one-dimensional.Unlike two-dimensional simulations, they ignore the distribution of particles in the axial direction,which results in inaccurate simulation results.[19-21]

    To solve this problem,the internal discharge process and operating characteristics of a DBD exciter are taken as the research object of this paper, with Ar as the carrier gas.The purpose is to explore the effect of different voltages,pressures inside the reactor and relative permittivities on the characteristics of ionization under atmospheric pressure.The distribution laws of electron density, potential and electron temperature are also analyzed.This helps address the shortcoming of one-dimensional simulations.

    2.Experimental details

    2.1.Experimental setup

    The experimental setup is illustrated in Fig.1.The plasma generator shown in the figure is a coaxial DBD device independently developed by our group.As its components, the central electrode is made of purple copper with a diameter of 7 mm and a length of 65 mm, the insulation layer is made of polytetrafluoroethylene(PTFE)with a relative dielectric constant of 2.55, the shell is made of 304 stainless steel with a discharge gap of 2 mm and the CPT-2000K low-temperature plasma power supply produced by Nanjing Suman is purposed to power the DBD device.The voltage and current waveforms generated during the experiment were recorded using a Tektronix-TDS1002 digital oscilloscope.A MX2500+multichannel spectrometer was employed to record the spectral information and transmit the spectral data to the computer in real time,facilitating both observation and recording.

    Fig.1.Schematic diagram of the experimental setup.

    2.2.Spectral diagnostic method and calculation of electron density

    Figure 2 illustrates how spectral acquisition was performed.With the fiber optic probe fixed at a distance of 30 mm from the DBD device,the axis of the fiber optic probe and the DBD device were kept aligned during the experiment.Also,the spectral information on the plasma generated by the DBD was collected by the spectrometer.

    Fig.2.Physical diagram of spectral acquisition.

    For the spectral lines of non-hydrogen-like atoms, the Boltzmann slope method was used.For the two emission spectral lines at wavelengthsλ1andλ2,the ratio of their intensities is expressed as

    whereIis the intensity of the emitted light,kis the Boltzmann constant,gis the statistical weight,Ais the Einstein coefficient of the spontaneous radiation,Eis the excitation energy of the spectral line andTeis the electron excitation temperature.By taking logarithms for both sides of the above equation,the collation yield is obtained as

    where the values of excitation energyEare obtained from the atomic spectra database,gandAare obtained from the National Institute of Standards and Technology table of leap odds and the spectral intensityIis measured using a spectrometer.Thus,the electron excitation temperature can be calculated by measuring only the spectral intensities of the two emitted lights with wavelengthsλ1andλ2.To calculate the electron excitation temperature using Eq.(2),the following requirements need to be met.Firstly,the light emission of both spectral lines must be proportional to the ground state Bourget number.Secondly,the two excited states undergo a known electron collisional excitation process.Thirdly,the leap is subjected to no radiative capture.Fourthly,the two excitation energies are basically identical.Fifthly, there is no variation in the leap probabilities and other de-activation steps of the two spectral lines with the change of the plasma.Lastly, the excitation processes of the two spectral lines are related to the electron energy at the same level.By introducing the natural logarithm of the intensity relationship of the emitted light and inputting the values ofk,the following formula is obtained:

    According to Eq.(3),if a series of ln(Iλ/(gA))values corresponding to the excitation energyEof each spectral line are plotted as coordinates, it is theoretically possible to obtain a straight line with a slope of-5040/Te.Thus,the electron excitation temperatureTecan be calculated.

    3.Simulation model

    3.1.Physical model

    Figure 3 shows a three-dimensional model of the coaxial dielectric blocking discharge.As can be seen from the figure,the AC is connected to the central electrode,the dielectric layer covers the surface of the central electrode and the ground electrode is connected to the metal shell.The diameter of the central electrode is 2 mm,the thickness of the dielectric layer is 1 mm,the thickness of the metal shell is 1 mm and the discharge gap between the dielectric layer and the metal shell is 2 mm.PTFE is taken as the dielectric material,and has a relative dielectric constant of 2.55.A sinusoidal AC voltage is applied between the central electrode and the metal housing

    The discharge frequencyf0=104Hz.The discharge gap is filled with pure Ar gas, the temperature of which is set to 300 K,and the pressure inside the reactor is set to 1 atm.The initial electron density is set to 1010m-3and the initial average electron energy is set to 4 V.Due to the large computational volume of the actual three-dimensional model, the model is simplified into a two-dimensional axisymmetric model in this paper for improved efficiency of computation.Figure 4 shows the simulation model used in this study.According to the figure, the dielectric layer widthx=1 mm, the discharge gapd=2 mm and the lengthL=8 mm.

    Fig.3.Three-dimensional model of the coaxial medium blocking discharge.

    Fig.4.Simulation model.

    3.2.Chemical model

    The kinetic reactions that occur when the dielectric barrier is infused with gas discharges are highly complex.At present,there remains a lack of clarity on the influence of the interactions between different particles on the results.The reaction kinetics of Ar plasma is far less complex than the reactions of gas in the ionization process.The mechanism of Ar plasma reaction is shown in Table 1,with four types of particles, namely, e, Ar, Ars and Ar+, involved in a total of seven different reactions.

    Table 1.Argon plasma reaction mechanism.

    3.3.Mathematical models

    The transport equations for electrons during the model calculation are formulated as follows:

    whereneandnεare the electron number density and electron energy density,Eis the electric field strength in the discharge space,Reis the electron rate expression,Rεis the energy loss due to inelastic collisions,uis to the mass-averaged flow rate,Γeis the electron flux andΓεis the electron energy.TheReandRεare calculated as

    wherekejis the reaction rate coefficient,cjis the molar concentration of reactants in thejth reaction,Nnis the number density of neutral particles and ?εjis the energy loss during the reaction.

    Based on the drift-diffusion approximation, the electron flux and energy flux are calculated as

    whereμeis the electron mobility,μεis the electron energy mobility,Deis the diffusion coefficient of electrons andDεis the energy diffusivity of electrons.

    The electron temperature is calculated with the equation of conservation of electron energy

    The electric fieldEis governed by Poisson’s equation,which is related to the potentialV

    The boundary conditions for the electrons on the solid wall are

    wherenis the unit normal vector on the surface of the medium,γiis the secondary electron emission coefficient,αsis the switching function associated withEandα′sbeing the switching function associated withn.

    4.Results and analysis

    In this paper, finite element analysis is conducted to explore the discharge characteristics of a coaxial DBD.To begin with,the particle discharge process is studied under a specific working condition.Then, the effect on the particle distribution in the DBD process is analyzed by changing the discharge voltage,dielectric layer material and air pressure,respectively,through the control variable method.

    4.1.Discharge characteristics of particles in four cycles

    In an atmosphere of pure Ar gas,the AC voltage is set to 10 kV and PTFE is taken as the dielectric layer material(relative permittivity 2.55).On this basis,the voltage and current,and electron density and electron temperature distribution are studied in one cycle to analyze the connection between them.

    Figure 5 shows the voltage and current waveforms in four cycles.According to the figure, there is a one-off change in the direction of the sinusoidal AC voltage and current in one cycle,and the numerical magnitude of the voltage and current first increases and then decreases over time in the same direction as the discharge.Since the voltage and current waveforms in the four cycles are identical,the laws of electron density and electron temperature changes are studied for only one cycle in the following sections.Figure 6 shows the spatial distribution of electron density at a certain point in time.Since the electron density and electron temperature at any moment vary in each position in space, the average of electron density and electron temperature in space at each moment is taken as the electron density and electron temperature at that moment.This method is used to calculate the magnitude of electron density and electron temperature in the numerical simulation section of this paper.Figure 7 shows the variation of electron density and electron temperature in four cycles over time.As shown in the figure,electron density increases sharply and reaches its maximum in the initial stage of the discharge; this is because the electrons absorb energy and collide with Ar atoms under the action of an electric field,thus producing a large number of sub-stable Ar atoms.The density of sub-stable Ar atoms also increases rapidly.When the voltage decreases gradually, the energy absorbed by the electrons diminishes, which causes a gradual decline in the number density of sub-stable Ar atoms.During the period 80-100μs,the particles increasingly aggregate on one side of the discharge.When the voltage is applied continuously, the energy absorbed by the electrons increases and the number of particles produced becomes larger, which means the electron density rises.In the initial stage of the discharge,the electron temperature rises at an extremely fast pace because of the energy generated after numerous electron collisions.However,in the period 60-80μs,the energy consumed by the collisions between particles exceeds the energy released by ionization,which reduces the electron temperature.[23]Figure 8 shows curves of the electron density and total capacitive power deposition with time.It can be seen from the figure that fluctuation of total capacitive power deposition occurs twice per cycle.The discharge process provides the energy required to excite the DBD,the discharge energy drives the generation of plasma active material in the discharge air gap and the energy is partly stored in the dielectric layer.The particles collide with each other due to the applied electric field, with a large number of free electrons and ions generated.As a result,electron density increases.

    Fig.5.Voltage and current waveforms.

    Fig.6.Spatial distribution of electron density.

    Fig.8.Change in electron density and total capacitance power deposition.

    4.2.Effect of voltage on discharge characteristics

    With other conditions unchanged,a study was conducted on the effect of voltage on electron density and electron temperature when the AC voltage increases from 10 kV to 15 kV.Figure 9 shows the variation of electron density with voltage.As can be seen, the energy absorbed by the particles in the electric field increases with the gradual rise in voltage.Meanwhile,the collisions become more violent,the number of electrons produced increases and the maximum value of electron density rises from 6.36×1016m-3to 8.31×1016m-3.

    Fig.9.Change in electron density at different voltages.

    Fig.7.Change in electron density and electron temperature.

    Fig.10.Change in electron temperature at different voltages.

    Figure 10 shows the change in electron temperature with voltage.As can be seen, with the increase in input voltage,the electron temperature shows an overall increasing trend and its maximum value also rises gradually.This is because the collisions between the particles absorbing energy intensifies continuously,thus leading to a rise in temperature.

    4.3.Effect of dielectric layer material on discharge characteristics

    With other conditions unchanged,variations of discharge characteristics were analyzed by changing the dielectric layer material.For teflon,silica and quartz as dielectric layer materials, the relative permittivities areεteflon=2.55,εsilica=3.9 andεquartz=4.3.

    Figure 11 shows the variation of electron density with relative permittivity.It can be seen from the figure that the electron-dense region expands with increase in the relative permittivity.This is because when the dielectric blocks discharge,the dielectric layer acts as a capacitive element in the circuit to store the electric field energy, and the capacitance of the capacitive element increases when the relative permittivity increases.The relationship between the capacitanceC,the chargeqand the voltageuof the capacitive element is expressed as

    Fig.11.Variation of electron density at different relative permittivities.

    Given a certain through voltage,the larger the capacitanceC,the higher the chargeqand the greater the current density.Therefore, the current density increases with increase in the relative permittivity, which increases the number of charged particles on the surface of the dielectric during the discharge process, thus expanding the range of electron density distributions for which the dielectric blocks discharge.Figure 12 shows the variation of electron temperature with relative permittivity,and Fig.13 shows the spatial distribution of electron temperature given different relative permittivities.It can be seen from the figures that the high-temperature region gradually approaches the cathode region with increase in relative permittivity,while the maximum value of electron temperature gradually decreases.This is because the intensity of electric field in the cathode region rises as the relative permittivity increases.In this case,the electrons have more energy to collide with each other, and power loss increases accordingly.Also,there is a gradual decrease not only in the width of the cathode glow region but also in the maximum value of electron temperature.

    Fig.12.Variation of electron temperature at different relative permittivities.

    Fig.13.Spatial distribution of electron temperature at different relative permittivities.

    4.4.Effect of pressure inside the reactor on discharge characteristics

    With the other parameters unchanged, the effect of air pressure on electron density and electron temperature distribution was analyzed by changing only the pressure inside the reactor.Figure 14 shows the change of electron density with discharge pressure inside the reactor.According to this figure,the electron density increases significantly when the discharge pressure inside the reactor is raised from 1.0 atm to 1.2 atm.This is because when the density of the gas rises,the free range between the particles is narrowed,the number of collisions between individual particles increases and the collision leads to the generation of more particles.That is to say, the electron density increases.

    The variation of electron temperature with discharge time is shown in Fig.15.As the discharge pressure inside reactor increases from 1.0 atm to 1.2 atm, the electron temperature shows a decreasing trend.This is because the rise in the number of collisions between individual particles increases energy consumption,thus reducing the electron temperature.

    Fig.14.Change in electron density under different pressures inside the reactor.

    Fig.15.Change in electron temperature under different pressures inside reactor.

    4.5.Processing of experimental results

    The spectral data for a DBD can be obtained by using a spectrometer and plotting a characteristic spectral map.Since the distribution of Ar atoms ranges between 680 and 850,some of the data are selected for Gaussian fitting, as shown in Fig.16.The slope of this image is clearly observable, and has a value of-5040/Te.Furthermore, the numerical magnitude of the electron excitation temperature can be obtained.With the other parameters related to the experiment kept constant,the discharge voltage is adjusted to determine the variation of electron excitation temperature with discharge voltage,as shown in Fig.17.Through a comparison with the simulation results,it is found that the experimentally measured electron excitation temperature changes with voltage in the same way as in the simulation,so the temperature of electron excitation increases with increase in the voltage.However,there is a disparity between the experimental and simulation data due to errors in the process of experimental measurement.The errors are within the allowable range.

    Fig.16.Gaussian fitting diagram.

    Fig.17.Trend of changes in electron excitation temperature with voltage.

    5.Conclusion

    In the present work an investigation was conducted into the effects of voltage,pressure inside the reactor and dielectric layer material on the characteristics of particle discharge during the course of a coaxial dielectric blocking discharge.The main conclusions of this study are as follows.

    (1) As the input voltage rises, the potential of the discharge gap increases, the particles absorb more and more energy,the collisions become intensified,the number of particles generated increases with more energy released and there is an increase in both electron density and electron temperature.

    (2)With change in the dielectric layer material,the number of charged particles in the dielectric layer increases with the relative permittivity,the electron density rises and the electron temperature decreases due to the increase in energy loss caused by the collisions.

    (3)With a gradual rise in pressure inside reactor,the gas density increases, which causes the number of particle collisions to increase.Meanwhile, the electron density increases,while the electron temperature gradually declines due to energy consumption between the particles.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos.51509035 and 51409158), the Project of Shenyang Science and Technology Bureau (Grant No.RC200010),and the National Natural Science Foundation of Liaoning Province of China(Grant No.2020-KF-13-03).

    猜你喜歡
    陳雷
    Detecting the possibility of a type of photon number splitting attack in decoy-state quantum key distribution
    間斷吸唾技術(shù)對根管治療患者舒適度的影響
    陳雷膠漆
    命中注定
    水利部部長陳雷在我省調(diào)研水利工作
    山西水利(2016年5期)2017-01-20 08:51:22
    時尚“吃播”陳雷:邊吃邊秀邊掙錢
    華人時刊(2016年16期)2016-04-05 05:57:23
    陳雷主持召開國家防總會商會安排臺風“天鵝”和新一輪強降雨防范工作
    中國水利(2015年16期)2015-02-28 15:14:52
    陳雷講“三嚴三實”專題黨課
    中國水利(2015年11期)2015-02-28 15:13:49
    陳雷主持召開全國水庫安全度汛視頻會議
    中國水利(2015年8期)2015-02-28 15:13:15
    水利部傳達貫徹全國兩會精神 陳雷主持會議并講話
    中國水利(2015年6期)2015-02-28 15:12:51
    9色porny在线观看| 久久久久久久久大av| 日本欧美视频一区| 制服人妻中文乱码| 久久人妻熟女aⅴ| 妹子高潮喷水视频| 极品人妻少妇av视频| 精品视频人人做人人爽| 青春草亚洲视频在线观看| 国产成人精品久久久久久| 三级国产精品片| xxxhd国产人妻xxx| 午夜免费鲁丝| 久久久久视频综合| 观看av在线不卡| 中文天堂在线官网| 国产成人精品在线电影| 女人久久www免费人成看片| 亚洲国产精品999| 国产午夜精品一二区理论片| 久久婷婷青草| 精品久久久噜噜| 亚洲国产毛片av蜜桃av| 99久久人妻综合| 成年av动漫网址| 自线自在国产av| 51国产日韩欧美| 午夜老司机福利剧场| 国模一区二区三区四区视频| 亚洲,一卡二卡三卡| 一二三四中文在线观看免费高清| 成年av动漫网址| 一级黄片播放器| 一本大道久久a久久精品| 午夜91福利影院| 大片免费播放器 马上看| 久久精品久久精品一区二区三区| 亚洲精品国产色婷婷电影| 国产男女内射视频| av又黄又爽大尺度在线免费看| 国产一区二区在线观看av| 人人妻人人爽人人添夜夜欢视频| 久久狼人影院| 日本91视频免费播放| 国产成人精品一,二区| 日本欧美视频一区| 久久久欧美国产精品| 久久亚洲国产成人精品v| 午夜福利,免费看| 国产一区二区三区综合在线观看 | av国产久精品久网站免费入址| 黄色怎么调成土黄色| 久久人人爽av亚洲精品天堂| 久久久精品94久久精品| 搡老乐熟女国产| 日本猛色少妇xxxxx猛交久久| 精品一区在线观看国产| 黄色怎么调成土黄色| 国产精品一区二区在线不卡| 免费久久久久久久精品成人欧美视频 | 伦理电影免费视频| 国产日韩一区二区三区精品不卡 | 成年人午夜在线观看视频| 美女cb高潮喷水在线观看| 一区二区三区乱码不卡18| 最后的刺客免费高清国语| 春色校园在线视频观看| 美女国产高潮福利片在线看| 人妻人人澡人人爽人人| 亚洲成人av在线免费| 51国产日韩欧美| 亚洲情色 制服丝袜| av.在线天堂| 中文字幕免费在线视频6| 老司机亚洲免费影院| 亚洲第一区二区三区不卡| 狠狠婷婷综合久久久久久88av| 制服丝袜香蕉在线| 欧美日韩一区二区视频在线观看视频在线| 成人亚洲欧美一区二区av| 午夜福利在线观看免费完整高清在| 午夜福利网站1000一区二区三区| 美女大奶头黄色视频| 亚洲精品自拍成人| 免费人妻精品一区二区三区视频| 国产精品无大码| 国产 一区精品| 亚洲av在线观看美女高潮| 日本黄色日本黄色录像| www.av在线官网国产| 国产老妇伦熟女老妇高清| 满18在线观看网站| 免费人成在线观看视频色| 免费观看无遮挡的男女| 少妇的逼水好多| 香蕉精品网在线| 一区二区三区乱码不卡18| 久久久久久久久大av| 九九在线视频观看精品| 麻豆乱淫一区二区| 黑人高潮一二区| 最近中文字幕2019免费版| 国产69精品久久久久777片| 亚洲国产欧美在线一区| 高清午夜精品一区二区三区| 久久久久久人妻| 久久ye,这里只有精品| 国产一区二区三区综合在线观看 | 日韩伦理黄色片| 另类亚洲欧美激情| 午夜福利影视在线免费观看| 亚洲美女视频黄频| 日韩成人伦理影院| 日韩免费高清中文字幕av| 亚洲欧美成人综合另类久久久| 亚洲久久久国产精品| 少妇熟女欧美另类| 人人澡人人妻人| 亚洲激情五月婷婷啪啪| 国产色婷婷99| 午夜福利影视在线免费观看| av免费在线看不卡| 人妻制服诱惑在线中文字幕| 999精品在线视频| 日本av手机在线免费观看| 日产精品乱码卡一卡2卡三| 中文字幕久久专区| 91精品一卡2卡3卡4卡| 亚洲精品成人av观看孕妇| 一边亲一边摸免费视频| 天堂中文最新版在线下载| 自线自在国产av| 夜夜骑夜夜射夜夜干| 亚洲av成人精品一二三区| 岛国毛片在线播放| 精品人妻一区二区三区麻豆| 午夜福利影视在线免费观看| 免费不卡的大黄色大毛片视频在线观看| 免费看光身美女| 亚洲成人一二三区av| 亚洲精品久久午夜乱码| 日产精品乱码卡一卡2卡三| 人妻一区二区av| 午夜福利影视在线免费观看| 国产精品秋霞免费鲁丝片| 久久精品熟女亚洲av麻豆精品| 毛片一级片免费看久久久久| 视频在线观看一区二区三区| 熟妇人妻不卡中文字幕| 欧美性感艳星| 永久免费av网站大全| 欧美一级a爱片免费观看看| 黄色怎么调成土黄色| 欧美精品人与动牲交sv欧美| 亚洲第一av免费看| 校园人妻丝袜中文字幕| 大香蕉久久成人网| 人妻 亚洲 视频| 美女视频免费永久观看网站| 王馨瑶露胸无遮挡在线观看| 亚洲精品乱码久久久久久按摩| 亚洲精品一区蜜桃| 搡老乐熟女国产| 久久免费观看电影| 免费人成在线观看视频色| 在线观看免费高清a一片| 视频在线观看一区二区三区| 成人午夜精彩视频在线观看| av女优亚洲男人天堂| 欧美另类一区| 国产成人精品久久久久久| 欧美成人午夜免费资源| 久久综合国产亚洲精品| 视频在线观看一区二区三区| 丝袜喷水一区| 国产成人aa在线观看| 精品久久国产蜜桃| 汤姆久久久久久久影院中文字幕| 赤兔流量卡办理| 欧美日韩av久久| 亚洲av男天堂| 色网站视频免费| 九九爱精品视频在线观看| 国产精品久久久久久久久免| 精品亚洲成国产av| 高清视频免费观看一区二区| 狠狠婷婷综合久久久久久88av| 超色免费av| 九九久久精品国产亚洲av麻豆| 色哟哟·www| 热re99久久国产66热| 久久精品夜色国产| 国产在线一区二区三区精| 在线观看免费视频网站a站| 欧美激情国产日韩精品一区| 精品熟女少妇av免费看| 亚洲色图 男人天堂 中文字幕 | 久久久久久久久久久免费av| 人成视频在线观看免费观看| 看非洲黑人一级黄片| 精品久久久久久久久av| 免费观看无遮挡的男女| 最近2019中文字幕mv第一页| 亚洲国产精品国产精品| 人妻一区二区av| 国产成人精品无人区| 国产熟女午夜一区二区三区 | 涩涩av久久男人的天堂| 亚洲性久久影院| 插逼视频在线观看| 日本与韩国留学比较| 亚州av有码| 青青草视频在线视频观看| 国产成人免费无遮挡视频| 久久精品国产自在天天线| 大码成人一级视频| 亚洲色图综合在线观看| 最近的中文字幕免费完整| 又黄又爽又刺激的免费视频.| 国产一区二区三区综合在线观看 | 色94色欧美一区二区| 免费观看a级毛片全部| 一级a做视频免费观看| 亚洲综合精品二区| 麻豆精品久久久久久蜜桃| 亚洲国产精品国产精品| 亚洲性久久影院| 亚洲精品aⅴ在线观看| 国产欧美日韩综合在线一区二区| 又粗又硬又长又爽又黄的视频| 黄色毛片三级朝国网站| 久久久久国产精品人妻一区二区| tube8黄色片| 成人亚洲精品一区在线观看| 街头女战士在线观看网站| 久久久久久伊人网av| 亚洲精品日韩av片在线观看| 国产精品欧美亚洲77777| 国产成人a∨麻豆精品| 啦啦啦啦在线视频资源| 中文字幕久久专区| 免费av不卡在线播放| 26uuu在线亚洲综合色| 一级二级三级毛片免费看| 水蜜桃什么品种好| 大又大粗又爽又黄少妇毛片口| 国产精品一区二区三区四区免费观看| 日韩av在线免费看完整版不卡| 一本—道久久a久久精品蜜桃钙片| 亚洲,一卡二卡三卡| 午夜激情福利司机影院| 亚洲三级黄色毛片| 最近中文字幕2019免费版| 日韩不卡一区二区三区视频在线| 国产精品女同一区二区软件| 亚洲av免费高清在线观看| 精品99又大又爽又粗少妇毛片| 97超碰精品成人国产| 永久网站在线| 一级毛片 在线播放| 亚洲欧洲日产国产| 久久综合国产亚洲精品| 日韩 亚洲 欧美在线| tube8黄色片| 夫妻性生交免费视频一级片| 日韩精品有码人妻一区| 国产精品女同一区二区软件| 另类精品久久| kizo精华| 街头女战士在线观看网站| 精品一区在线观看国产| 国产精品99久久99久久久不卡 | 精品视频人人做人人爽| 国产有黄有色有爽视频| 精品一区二区免费观看| 91精品伊人久久大香线蕉| 91精品国产九色| 国产一区二区三区综合在线观看 | 国产精品国产三级专区第一集| 2018国产大陆天天弄谢| 精品人妻熟女av久视频| 国产精品麻豆人妻色哟哟久久| 欧美最新免费一区二区三区| 最黄视频免费看| 制服人妻中文乱码| 热99国产精品久久久久久7| 久久久久久久亚洲中文字幕| 国产成人精品在线电影| 免费播放大片免费观看视频在线观看| 人人妻人人添人人爽欧美一区卜| 国产精品99久久99久久久不卡 | 午夜免费男女啪啪视频观看| 成年美女黄网站色视频大全免费 | 麻豆精品久久久久久蜜桃| 久久av网站| 久久99蜜桃精品久久| 18禁在线播放成人免费| 婷婷成人精品国产| 欧美 日韩 精品 国产| 一个人看视频在线观看www免费| 欧美日韩成人在线一区二区| 一级二级三级毛片免费看| 一级黄片播放器| 久久婷婷青草| 一级,二级,三级黄色视频| 一级片'在线观看视频| 欧美日韩av久久| kizo精华| 欧美精品一区二区免费开放| 国产精品欧美亚洲77777| 一级黄片播放器| 亚洲,欧美,日韩| 亚洲色图 男人天堂 中文字幕 | av免费观看日本| 久久青草综合色| 欧美丝袜亚洲另类| 伊人久久精品亚洲午夜| 日产精品乱码卡一卡2卡三| 天堂8中文在线网| 国产精品蜜桃在线观看| 日韩成人伦理影院| 观看av在线不卡| 嫩草影院入口| 极品少妇高潮喷水抽搐| 肉色欧美久久久久久久蜜桃| 777米奇影视久久| 亚洲人与动物交配视频| 人人妻人人爽人人添夜夜欢视频| 免费观看av网站的网址| 亚洲色图 男人天堂 中文字幕 | 三级国产精品欧美在线观看| 精品久久国产蜜桃| 日韩 亚洲 欧美在线| 亚洲欧美成人精品一区二区| 只有这里有精品99| 亚洲欧美日韩卡通动漫| 高清在线视频一区二区三区| 老司机影院毛片| 一本—道久久a久久精品蜜桃钙片| 大香蕉97超碰在线| 大又大粗又爽又黄少妇毛片口| 母亲3免费完整高清在线观看 | 国产69精品久久久久777片| 久久精品国产亚洲av涩爱| 亚洲欧洲国产日韩| 一级毛片我不卡| 亚洲欧美色中文字幕在线| 高清黄色对白视频在线免费看| 国产精品一区二区在线不卡| 国产69精品久久久久777片| 国产在线视频一区二区| 精品一区二区免费观看| 美女cb高潮喷水在线观看| av专区在线播放| 日本色播在线视频| 午夜福利视频精品| 久久久国产欧美日韩av| 欧美精品一区二区大全| av天堂久久9| 99热这里只有精品一区| 精品熟女少妇av免费看| a级毛片免费高清观看在线播放| 久久久精品区二区三区| 夫妻性生交免费视频一级片| 亚洲av福利一区| 人妻系列 视频| 国产在线免费精品| 一本—道久久a久久精品蜜桃钙片| 中文乱码字字幕精品一区二区三区| 另类亚洲欧美激情| av在线观看视频网站免费| 日日爽夜夜爽网站| 久久国产精品男人的天堂亚洲 | av在线观看视频网站免费| 久久午夜福利片| 国产淫语在线视频| 2022亚洲国产成人精品| 亚洲,一卡二卡三卡| 欧美精品高潮呻吟av久久| 纵有疾风起免费观看全集完整版| a级毛片免费高清观看在线播放| 99热这里只有精品一区| 91久久精品电影网| 亚洲内射少妇av| 建设人人有责人人尽责人人享有的| 国产精品99久久久久久久久| 99热网站在线观看| 水蜜桃什么品种好| 伦理电影大哥的女人| 亚州av有码| 国产69精品久久久久777片| 亚洲人成77777在线视频| 亚洲精品乱久久久久久| 狂野欧美白嫩少妇大欣赏| 女性生殖器流出的白浆| 国产欧美另类精品又又久久亚洲欧美| 国产成人aa在线观看| 日韩,欧美,国产一区二区三区| 美女主播在线视频| 亚洲av免费高清在线观看| 国产伦理片在线播放av一区| 国产极品粉嫩免费观看在线 | 丁香六月天网| 久久久午夜欧美精品| 国产成人免费无遮挡视频| videos熟女内射| 蜜臀久久99精品久久宅男| 免费观看无遮挡的男女| 老女人水多毛片| 视频在线观看一区二区三区| 精品卡一卡二卡四卡免费| 国产成人午夜福利电影在线观看| 最新中文字幕久久久久| 久久久久精品性色| 精品人妻熟女毛片av久久网站| 少妇人妻久久综合中文| 中文乱码字字幕精品一区二区三区| 日日摸夜夜添夜夜添av毛片| 国产国语露脸激情在线看| 免费黄色在线免费观看| 夫妻性生交免费视频一级片| 国产精品欧美亚洲77777| 18禁观看日本| 伊人亚洲综合成人网| 嫩草影院入口| 考比视频在线观看| 国产一区二区在线观看av| 人妻少妇偷人精品九色| 色94色欧美一区二区| 男女边吃奶边做爰视频| 亚洲不卡免费看| 亚洲精品日韩在线中文字幕| 一区二区三区免费毛片| 熟女av电影| 爱豆传媒免费全集在线观看| 999精品在线视频| 成年美女黄网站色视频大全免费 | 国产午夜精品一二区理论片| 国产一区二区在线观看av| 51国产日韩欧美| 免费高清在线观看日韩| 国产高清国产精品国产三级| av在线老鸭窝| 少妇被粗大猛烈的视频| 狂野欧美白嫩少妇大欣赏| 色94色欧美一区二区| 日韩强制内射视频| 少妇精品久久久久久久| 免费人妻精品一区二区三区视频| 亚洲综合精品二区| 内地一区二区视频在线| 看十八女毛片水多多多| 一本—道久久a久久精品蜜桃钙片| 久久精品国产亚洲网站| 国产av精品麻豆| 成人影院久久| 黄色欧美视频在线观看| 看非洲黑人一级黄片| 亚洲人与动物交配视频| 免费观看在线日韩| 国产成人免费无遮挡视频| 日韩在线高清观看一区二区三区| 亚洲一级一片aⅴ在线观看| 国产欧美日韩一区二区三区在线 | 狂野欧美白嫩少妇大欣赏| 全区人妻精品视频| 亚洲精品久久午夜乱码| 另类亚洲欧美激情| 97超视频在线观看视频| 蜜桃久久精品国产亚洲av| 亚洲熟女精品中文字幕| 少妇熟女欧美另类| 成人毛片60女人毛片免费| 插阴视频在线观看视频| 免费看光身美女| 国产精品三级大全| av黄色大香蕉| av福利片在线| 99热6这里只有精品| 一级毛片黄色毛片免费观看视频| 免费观看性生交大片5| 国产精品不卡视频一区二区| 久久人人爽人人爽人人片va| 精品人妻一区二区三区麻豆| 久久久久精品久久久久真实原创| 国产乱来视频区| 成年美女黄网站色视频大全免费 | 亚洲,欧美,日韩| 男女高潮啪啪啪动态图| 久久久久久久亚洲中文字幕| 婷婷色综合大香蕉| 建设人人有责人人尽责人人享有的| 边亲边吃奶的免费视频| 久久人人爽av亚洲精品天堂| 久久毛片免费看一区二区三区| 日韩精品有码人妻一区| 欧美亚洲日本最大视频资源| 久久热精品热| 国产精品嫩草影院av在线观看| 人妻制服诱惑在线中文字幕| 国产亚洲最大av| av专区在线播放| 99热网站在线观看| 久热久热在线精品观看| 大香蕉久久成人网| 少妇 在线观看| 美女大奶头黄色视频| 精品久久久精品久久久| 日本黄色日本黄色录像| 男女高潮啪啪啪动态图| av专区在线播放| 自拍欧美九色日韩亚洲蝌蚪91| 中文字幕亚洲精品专区| 欧美日韩在线观看h| 99热全是精品| 亚洲av国产av综合av卡| 简卡轻食公司| 永久免费av网站大全| 丰满少妇做爰视频| 女性生殖器流出的白浆| 人人澡人人妻人| av视频免费观看在线观看| 免费久久久久久久精品成人欧美视频 | 久久精品人人爽人人爽视色| 日韩成人av中文字幕在线观看| 91精品一卡2卡3卡4卡| 国产视频首页在线观看| 国产亚洲av片在线观看秒播厂| 十分钟在线观看高清视频www| 中文字幕人妻熟人妻熟丝袜美| 精品国产一区二区久久| 久久久久久久国产电影| 国产一区二区三区av在线| 欧美丝袜亚洲另类| 午夜日本视频在线| 免费黄色在线免费观看| 国产女主播在线喷水免费视频网站| 一区二区三区免费毛片| 精品少妇黑人巨大在线播放| 九色成人免费人妻av| av线在线观看网站| av网站免费在线观看视频| 青青草视频在线视频观看| 99热这里只有精品一区| 国产有黄有色有爽视频| 国国产精品蜜臀av免费| 国产视频内射| 久久久欧美国产精品| 久久热精品热| 99久久综合免费| 久久久久久久久久成人| 黑人欧美特级aaaaaa片| 久久狼人影院| 中国三级夫妇交换| 国产日韩欧美亚洲二区| 3wmmmm亚洲av在线观看| 久久久久久久大尺度免费视频| 国产精品成人在线| 性色av一级| 超色免费av| 国产亚洲一区二区精品| 日韩av在线免费看完整版不卡| 水蜜桃什么品种好| 国产黄色免费在线视频| 亚洲精品日本国产第一区| 人妻夜夜爽99麻豆av| 国产精品嫩草影院av在线观看| 狠狠婷婷综合久久久久久88av| 五月天丁香电影| 亚洲国产精品一区二区三区在线| 一本一本综合久久| 美女脱内裤让男人舔精品视频| 夜夜骑夜夜射夜夜干| 久久99一区二区三区| 黄色视频在线播放观看不卡| 中文天堂在线官网| 亚洲欧美中文字幕日韩二区| 久久久亚洲精品成人影院| 在线 av 中文字幕| 永久网站在线| 在线 av 中文字幕| 国产精品 国内视频| 久久久久网色| 亚洲精品乱码久久久久久按摩| 秋霞在线观看毛片| 如日韩欧美国产精品一区二区三区 | 成年人午夜在线观看视频| 欧美精品人与动牲交sv欧美| 国产黄色视频一区二区在线观看| 亚洲精品日韩在线中文字幕| 亚洲欧美日韩另类电影网站| 在线观看免费日韩欧美大片 | 欧美亚洲 丝袜 人妻 在线| 一边摸一边做爽爽视频免费| 婷婷色麻豆天堂久久| 51国产日韩欧美| 国产 一区精品| 亚洲美女搞黄在线观看| 菩萨蛮人人尽说江南好唐韦庄| 亚洲国产精品国产精品| 日韩三级伦理在线观看| 亚洲三级黄色毛片| 97在线视频观看| 欧美老熟妇乱子伦牲交| 国产黄片视频在线免费观看| 欧美激情极品国产一区二区三区 | 丝袜美足系列| 最近中文字幕2019免费版| 一本大道久久a久久精品| 男的添女的下面高潮视频| 51国产日韩欧美| 大香蕉久久成人网| 特大巨黑吊av在线直播| 亚洲怡红院男人天堂| 国产精品麻豆人妻色哟哟久久|