• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Rational solutions of Painlev′e-II equation as Gram determinant

    2023-12-15 11:47:42XiaoenZhang張曉恩andBingYingLu陸冰瀅
    Chinese Physics B 2023年12期

    Xiaoen Zhang(張曉恩) and Bing-Ying Lu(陸冰瀅)

    1College of Mathematics and Systems Science,Shandong University of Science and Technology,Qingdao 266590,China

    2SISSA,Via Bonomea 265,Trieste,Italy

    Keywords: Painlev′e-II equation,Darboux transformation,rational solutions

    1.Introduction

    The six Painlev′e equations(PI-PIV)are a class of nonlinear ordinary differential equations which have long been studied.It originated from when the Painlev′e school tried to answer Picard’s question in Ref.[1]in the late 19th century.Because the general solutions cannot be reduced to elementary or known functions,today it is often regarded as a nonlinear type of special function.Due to transcendency,the solutions to the Painlev′e equations are often called the Painlev′e transcendents.In the late 1970s, Painlev′e equations garnered new attention when they were found to be “integrable”, thus not only extending the tools to analyze their solutions,but also expanding the theory of integrability.Although these Painlev′e equations were first derived from strictly mathematical considerations,these Painlev′e equations have appeared in many physical applications.Perhaps Ref.[2]is the first example of these applications.Subsequently,Painlev′e equations were widely used in many aspects of physics.For example,in Ref.[3],the authors showed that the density matrix of a one-dimensional system of impenetrable Bose gases at zero temperature can be precisely represented by the solution of a nonlinear differential equation: the Painlev′e transcendence and its generalization.In Ref.[4], the authors gave a detailed derivation by using the Painlev′e equation to describe the dynamics of the electrons and holes in a semiconductor.In Ref.[5], by using an auxiliary nonlinear Schr¨odinger equation, the authors found that the second Painlev′e transcendent solution can be used to study the propagation of the optical pulses in single mode dispersive fibers.In addition, the Painlev′e equation also has a good application in the light-matter interaction in nematic liquid crystals,[6]the high-energy physics[7]and the planar fluid flow.[8]

    We are particularly interested in certain pattern formation related to rogue waves in integrable nonlinear waves and their connection to the Painlev′e transcendents.Very recently, the locations of the rogue wave patterns in nonlinear Schr¨odinger equation and the lump patterns in Kadomtsev-Petviashvili equation are found to be determined by the root structure of the Yablonskii-Vorob’ev polynomials hierarchy.[9-11]It has long been observed in Ref.[12] that the Painlev′e-II rational solutions can be represented by the Yablonskii-Vorob’ev polynomials, so the root structure is exactly the pole structure for Painlev′e-II rational solutions.This directly inspired us to add to the ample existing studies of Painlev′e-II rational solutions from a different perspective.

    The general formula of Painlev′e-II equation is given by

    As mentioned,the general solutions of Painlev′e equations are transcendental.However, Painlev′e-II equation is known to have rational solutions for some special parameters.Indeed,in Ref.[12] Yablonskii first found an iteration formula for the rational solutions withm ∈Z in Eq.(1), and Airault[13]showed that the parameter choice is both necessary and sufficient.Like soliton solutions in integrable systems, the rational solutions can be given by B¨acklund transformations.The B¨acklund transformation for Pailev′e-II equation is given by Lukashevich in 1971.[14]In 1985,[15]Murata derived the rational solutions of the second and the fourth Painlev′e equation with different integer parameters,and in particular showed the necessary and sufficient conditions for rational solutions to exist.There are numerous studies of rational solutions[13,16-21]through the B¨acklund transformation.

    Painlev′e equations are considered integrable in the sense that they admit Lax representation.Indeed, Painlev′e-II equation admits the following Flaschka-Newell Lax representation

    yields the Painlev′e-II equation (1).Due to integrability, one powerful tool for analysis of the Painlev′e equations is the Riemann-Hilbert problems.The book[22]is a particularly comprehensive and systematic documentation of this modern subject.The Riemann-Hilbert problem is also used to study the rogue wave patterns that we are interested in.Specifically in literature,[23]the authors found that in semiclassical focusing nonlinear Schr¨odinger equation, near a gradient catastrophe point, universal “rogue wave”-like patterns form can be mapped to the poles of the Painlev′e-I tritronqu′ee solution.In Ref.[24],the authors analyzed the asymptotics of the infinite order rogue waves,and the asymptotics in the transitional region was related to the Tritronqu′ee solutions of Painlev′e-II equation.

    There are many ways to derive Painlev′e-II rational solutions.One standard method is the B¨acklund transformation,given nearly 50 years ago.However,to the best of our knowledge, few has studied the rational solution of Painlev′e equations with the Darboux transformation[25,26]directly.The Darboux transformation for Painlev′e-II rational solutions is still an open problem up to now.Observe that the?y-equation in the Lax pair (2) is similar to the spectral problem in the AKNS system.It is also shown that the Painlev′e-II equation is related the modified Korteweg-de Vries equation via a self-similar transformation.[27-30]Thus it is natural to borrow the idea from the Darboux transformation of AKNS system to construct the solution of the Painlev′e-II equation.

    In the present work,we modify the Darboux transformation to construct the rational Painlev′e-II solutions.Under the same framework, we also derive the rational solution with a Gram determinant representation.With our determinantal formula, we get the asymptotics of largeyby expansion.The rational solutions of Painlev′e-II equation are often compared to the soliton solutions in integrable nonlinear wave equations,since they can be represented by determinantal formula, and correspond to fully discrete spectral data etc.[29]However,the Flaschka-Newell determinantal formula is different from our Gram determinant formula.Indeed, in our Darboux transformation, all of the spectral data are at the same point so we have to employ limiting technique.The process is much more like deriving the rogue wave solutions in integrable nonlinear waves.The Gram determinant representation is also comparable to rogue waves.This also in a way attests to the connection between the roots of Yablonskii-Vorob’ev polynomial(poles of Painlev′e-II rational solutions) and rogue wave patterns found in Refs.[10,11].However, the transformation for Painlev′e-II has even one more difference, the generalized Darboux-B¨acklund transformation we used is not the so called auto-transformation in comparison, which we believe also makes our work even more interesting.

    Ultimately we believe to study the rogue wave pattern,Riemann-Hilbert method can give us a better analytical handle, therefore we always have the Riemann-Hilbert problem in mind.In Ref.[24], the authors studied the asymptotics of infinite order rogue waves via the Riemann-Hilbert method,which was first constructed by using the Darboux transformation.Based on this idea, we are able to solve the Painlev′e-II Riemann-Hilbert problem given in Ref.[31].

    The innovation of this paper consists of the following two points: (i) We derive the rational solutions of Painlev′e-II equation via two types of generalized Darboux transformation.In the first case,from the“seed solution”p=0,m=0,we give the iterated Darboux transformation at the same spectrumλ1=0 and derive the corresponding B¨acklund transformation.Compared to some other rational solutions in integrable systems, the derivation of Painlev′e-II rational solution is more difficult.To achieve it, we would need to use special limiting techniques: the Darboux transformation is iterated at the same spectrum and the spectrumλ1must be chosen at a special point.In the second case, we rewrite the generalized Darboux transformation by another equivalent formula and derive the rational solutions as a Gram determinant.In particular,we can analyze the asymptotics of largeyby this formula.(ii) Our generalized Darboux transformation can be used to construct the solution of Riemann-Hilbert problem given in Ref.[31], which provides a new way for solving the corresponding Riemann-Hilbert problem for the Painlev′e-II equation.

    The outline of this paper is as follows.In Section 2, we give detailed derivation of rational solutions via the generalized Darboux transformation.Then, we also give the corresponding B¨acklund transformation.In Section 3,the generalized Darboux transformation is rewritten as another equivalent formula, which gives the solution in Gram determinant form,and can be used to analyze the asymptotics for largey.In Section 4, we give a brief introduction to the Riemann-Hilbert problem given by Ref.[31] and solve it with the aid of the Darboux transformation.The final part is the conclusion.

    2.The Darboux transformation of Painelve′-II equation

    In this section, we would like to construct the generalized Darboux transformation of Painlev′e-II equation and derive the rational solutions.The rational solutions of Painlev′e-II equation play an analogous role as the solitons of the integrable partial differential equations.However, to the best of our knowledge, the rational solutions of Painlev′e-II equation have never been constructed by the well known Darboux transformation.From the Lax pair of Eq.(2), we can see that the?y-part of Lax pair is the same as the?x-equation, what we usually call the Lax equation,in the Lax pair for the defocusing NLS equation,[22]while the?λ-part is different.It has two types of singularity.One is atλ=∞and the other one is atλ=0.What is more, the?λ-equation contains a constantm, which leads to a new difficulty in the Darboux transformation.To overcome these difficulties, we use two kinds of limiting skills following the original idea of the so-called generalized Darboux transformation.[33,34]We want to emphasize here that there is a difference between the rational solutions of Painlev′e-II equation and the higher order rogue wave of integrable equations.The former ones are meromorphic functions with simple poles in the complex plane but the latter ones are global solutions in the (x,t)-plane.The detailed derivation is shown as follows.

    To construct the rational solutions,we start with the“seed solution”p=0,m=0.Since the?y-part of Lax pair is the spectral problem of AKNS system, we can set the Darboux transformation matrix as

    Equipped with the Darboux transformation defined above, we know that the original Lax pair (2) is converted to a new one by replacingp,mwithp[1],m1.In the transformed Lax pair we use the superscript[1]inp[1]to mean the first order rational solution,and the subscript inm1is the constant in correspondence withp[1].

    In Ref.[34], the authors showed that the?y-equation in the new Lax pair is valid,i.e.,it has the same form except with newpunder this transformation.Therefore we only need to check whether the Darboux transformation also satisfies the?λ-part of Lax pair.Plugging the Darboux matrix Eq.(3)and the original seed solutionp=0,m=0 into the new Lax pair,we have

    which should be a constant independent ofy.Therefore, the spectral parameterλ1is chosen to be zero and the entries ofφ1should satisfy|φ1,1|=|φ1,2|.To achieve this, we can set the constant vectorcasc=(1,-1)T, thenφ1,1φ?1,2=φ?1,1φ1,2and|φ1,1|=|φ1,2|.Note that now both the numerator and the denominator are zero.Expand for infinitesimalλ1,we getm1=1,and the first order rational solutionp[1]is

    Summarizing the above calculation, we obtain rational solutions of all orders.In Ref.[13], Airault pointed out thatm ∈Z is the necessary and sufficient condition for Painlev′e-II solution to be rational.By uniqueness, we conclude all general rational solutions are given by our generalized Darboux transform in Theorem 1.

    Theorem 1 Settingλ1=-λ?1=0, the generalized Darboux transformation matrices for the Painlev′e-II equation(1)are given by

    wherepis the seed solutionp=0 in Eq.(3).

    We remark on the specificity of Painlev′e-II rational solutions in the transformation.

    Remark 1 It is clear that each Painlev′e-II equation (1)involves one constantm, and that from our transformation in each iteration, we take a different value ofmk.Therefore,the B¨acklund transformation between two rational solutions is not the auto-B¨acklund transformation.For each order of the rational solutions,the constantsmkdiffer.This makes our B¨acklund transformation different than what usually appears in integrable partial differential equations.

    We derived the B¨acklund transformation (31) through generalized Darboux transformation.In fact, apart from this method, we can also give a B¨acklund transformation forp[k]from Eq.(1)itself.Before discussing it,we first give a proposition about the Schwarzian derivative.

    In the following section, we will prove in Theorem 2 that the constantmkcorresponding to thekth order rational solutionp[k]ismk= (-1)k-1k.If we set (-1)k-2p[k-1]=?p, (-1)k-2p[k]=p, then the two B¨acklund transformations Eqs.(31)and(46)are equivalent.

    3.The asymptotics for large y

    In the last section,through generalized Darboux transformations(32),we obtain the rational solutions in Eq.(34).The B¨acklund transformation(31)is also directly given from iteration.In this section,we will continue to discuss some properties of the rational solutions of Painlev′e-II equation.So far,the rational solutions in Eq.(34) are in abstract form, which does not lend itself to easy analysis of their properties.In this section, following the idea in Ref.[37], we convert the generalized Darboux transformation (32) into another equivalent formulation and rewrite the rational solutions as a Gram determinant.A great benefit of this type of formula is that it can be easily used to analyze the asymptotics for largey.The detailed calculation is shown as follows in Corollary 1.

    Corollary 1 The generalized Darboux transformation matrices(32)can be rewritten as the following equivalent formula:

    Directly substitute the above to the Darboux matrix (52) and take the limitεi →0,i=2,3,...,k, then we can get the formula(48).Correspondingly,the rational solution of Painlev′e-II equation can be given with the following formula:

    which equals to Eq.(51),it completes the proof.

    Apparently the rational solutions in Eqs.(34) and (51)have different forms, each of which has its own advantage.The former can be used to derive the B¨acklund transformation,to which the latter does not have an obvious connection.However, the latter writes all rational Painlev′e-II solution in a compact formula.Moreover, the formula is made up of determinants, which renders analytical properties for largeyasymptotics very accessible.Using the new representation,we find the constantmkin Eq.(1)for thekth order rational solutionp[k], thus also completing the B¨acklund transformation Eq.(31).

    Theorem 2 The constantmkin the Painlev′e-II equation Eq.(1), corresponding to thekth order rational solutionsp[k]in Eq.(51)is equal to(-1)k-1k.

    Proof Following the idea in Ref.[38], we first expandp[k]Eq.(51)at the neighborhood ofy=∞and substitute this series into the Painlev′e-II equation(1).Then the constantmkcan be calculated by comparing the coefficients ofypolynomials.Clearly,the rational solution Eq.(51)is the quotient of two Gram determinants,thus we can look at the denominator and the numerator separately.Firstly, we discuss the asymptotics of the denominator det(M).From the definition ofMijin Eq.(50),we know that whileMijdoes not generally admit simple formula, the leading behavior for largeyis quite easy to compute:

    Based on this asymptotical expression in Eq.(55),whenyis large andkis even, the denominator det(M)can be expanded in the following formula:

    Similarly,whenyis large,the numerator det(G)can be expanded as

    Therefore,

    The upper left block ofHeis a Hilbert matrix,while the lower right block is the negative of a Hilbert matrix.Employing basic property of Hilbert matrices, we can derive the following identity:

    A similar asymptotic formula as Eq.(60) forp[k]with oddkcan also be obtained,withHereplaced byHo.The subscript o indicates the odd case.In the odd case,Hois instead given by

    Consequently, the asymptotics ofp[k]becomesp[k]=k/y+O(y-2).Substituting this expression into Eq.(1),then we obtain that the constantmkis equal tok.

    Example Next,we compute here the first several rational solutions derived from the generalized Darboux transformation.Whenk=1, the Darboux transformationT1(λ;y) and the first order solutionp[1]are

    Whenk=2, the Darboux transformationT[2](λ;y) and the second order rational solutionp[2]are

    Obviously, the first order rational solutionp[1]satisfies the Painlev′e-II equation (1) withm1=1 and the second order rational solutionp[2]satisfies it withm2=-2.Similar to the rational solutions of KdV equation,[39]both the rational solutionsp[1]andp[2]are meromorphic functions with simple poles.Indeed these solutions have different analytic properties from the rogue waves, even though in Ref.[11] the authors showed the close connection of the two,which is an important motivation for our study.In Fig.1, we show the location of zeros and poles of higher order rational solutions.

    Fig.1.The poles (green) and the zeros (blue) of the rational solutions of Painlev′e-II equation.The corresponding parameters are m9 =9 (a),m14=-14(b)and m18=-18(c),respectively.

    4.Riemann-Hilbert representation about the rational solutions of Painleve′-II equation

    In the previous two sections, we constructed two types of Darboux transformations about the rational solutions and derived the corresponding B¨acklund transformation.Both of them are studied under the Flaschka-Newell Lax representation Eq.(2).It is well known that the Painlev′e-II equation has three different Lax representations,i.e.,the Flaschka-Newell Lax representation, the Jimbo-Miwa Lax representation and Bortola-Bothner representation.In Ref.[31],the authors gave a detailed introduction of the three representations and constructed three different Riemann-Hilbert problems accordingly.In this section,we will give the solution of the first(Flaschka-Newell) Riemann-Hilbert problem for Painlev′e-II equation.

    First we give a brief review of the Riemann-Hilbert problem corresponding to the Flaschka-Newell Lax representation from Ref.[31].Firstly, the authors constructed two types of fundamental solution matricesV∞(λ;y) andV0(λ;y) of the Flaschka-Newell Lax pair Eq.(2).The former solutionV∞(λ;y)has a convergent expansion when|λ|is large and the latter solution is given in the neighborhood ofλ=0.Then there exists a so-called monodromy matrixGm(λ;y)such that

    whereθ(λ;y) =λy+2λ3.This immediately gives a Riemann-Hilbert problem forMm(λ;y).

    Riemann-Hilbert problem 1[31]Letm ∈Z andy ∈C,seekMm(λ;y)satisfying the following conditions.

    (i) AnalyticityMm(λ;y) is analytic for|λ|/= 1, andMm,+(λ;y),Mm,-(λ;y)are the continuous boundary values from the interior and the exterior.

    (ii) Jump condition When|λ|=1,Mm(λ;y) satisfies the following jump condition:

    To solve this Riemann-Hilbert problem,in Sections 2 and 3,we constructed two types of generalized Darboux transformation and derived the general rational solutions of Painlev′e-II equation.The solution of the Riemann-Hilbert problem 1 can be directly given by the Darboux transformation.

    Theorem 3 The solution of Riemann-Hilbert problem 1 can be given by

    whereT[m](λ;y) is the generalized Darboux transformation defined in Eq.(48).

    Proof Based on the basic property of Darboux transformation, we know thatT[m](λ;y)e-iθσ3can solve the Lax pair Eq.(6) withptaken as themth order rational solutionp[m]and the constant as (-1)m-1m.From the symmetry in the?y-equation of the Lax pair,we haveσ1BFN(-λ;y)σ1=BFN(λ;y).Therefore,the Darboux transformation matrix also have symmetry

    In addition, the Darboux transformation matrix has a convergent series expansion forλ →∞.Notice thatT[m]almost coincides with the fundamental solutionV∞(λ;y) defined in Ref.[31], except for a sign difference for evenm.With the discrete symmetry of the Painlev′e-II equation(p(y),m)→(-p(y),-m), we can take a simple transformation toT[m](λ;y),and now the formula is valid for allm ∈Z.Thus,we have derived the connection between the generalized Darboux transformation and the Riemann-Hilbert problem 1 when|λ|>1.For|λ|<1,the solution of the Riemann Hilbert problem 1 can also be given by the jump condition.Therefore,the solution of the Riemann-Hilbert problem 1 is given in the whole complex plane C,that is,

    5.Discussion and conclusion

    In this paper, we construct the general rational solutions to Painlev′e-II equation by the generalized Darboux transformation.We are able to compactly write the rational solutions as Gram determinant.In the generalized Darboux transformation,the spectral parameterλ1is chosen as a special valueλ1=0.Under this condition, the fundamental solutionφ1becomes a polynomial.In particular,the spectrum in the Darboux transformation is a removable singularity,which is similar to the study of rogue wave.In Section 2,we use two methods to derive the B¨acklund transformation of the rational solutions.One is directly from the Painlev′e-II equation itself,and the other one is derived from the iteration steps in the Darboux transformation.The two transformations are shown to be equivalent by a simple transformation.In addition, from the exact form of rational solutions simply represented by Gram determinants,we can also analyze the asymptotics of largey.In Section 4, we prove that our Darboux transformation can solve the Riemann-Hilbert problem in Ref.[31], which has never been reported before.

    It is known that the generalized Darboux transformation can be used to derive the rogue wave of NLS equation and the rational solutions of Painlev′e-II equation,both written as a Gram determinant.In view of the result in Ref.[10],we conjecture that there exist certain connections between these two kinds of solutions.Our goal is to continue the study of this topic via the Riemann-Hilbert problem in the future.

    Acknowledgments

    The authors sincerely thank Professor Liming Ling for his guidance and help.Project supported by the National Natural Science Foundation of China(Grant No.12101246).

    久久久国产精品麻豆| 成人黄色视频免费在线看| 欧美一级a爱片免费观看看| 大香蕉97超碰在线| 亚洲av福利一区| 日本与韩国留学比较| 在线观看免费日韩欧美大片 | 丰满饥渴人妻一区二区三| 在线观看国产h片| 国产精品女同一区二区软件| 国产成人免费无遮挡视频| 少妇裸体淫交视频免费看高清| 日韩亚洲欧美综合| 美女中出高潮动态图| 亚洲成人av在线免费| 久久精品国产自在天天线| 久久综合国产亚洲精品| 一级av片app| 精品亚洲乱码少妇综合久久| 国产有黄有色有爽视频| 少妇人妻 视频| 啦啦啦中文免费视频观看日本| 国产视频内射| 日韩,欧美,国产一区二区三区| 亚洲精品久久久久久婷婷小说| 啦啦啦在线观看免费高清www| 国产免费视频播放在线视频| 亚洲av综合色区一区| 蜜桃在线观看..| a级毛片在线看网站| 国产男女内射视频| 久久精品夜色国产| 亚洲人成网站在线观看播放| 日本与韩国留学比较| 中国国产av一级| 最近的中文字幕免费完整| 日韩电影二区| 久久久亚洲精品成人影院| 亚洲内射少妇av| 中文乱码字字幕精品一区二区三区| 免费黄频网站在线观看国产| 人人妻人人看人人澡| 久久热精品热| 久久久精品94久久精品| 建设人人有责人人尽责人人享有的| 国产在线男女| 国产精品成人在线| 亚洲,一卡二卡三卡| 女性被躁到高潮视频| 午夜影院在线不卡| 久久久亚洲精品成人影院| 免费av中文字幕在线| 卡戴珊不雅视频在线播放| 丝袜在线中文字幕| 午夜视频国产福利| 黄色日韩在线| 秋霞伦理黄片| 另类精品久久| 欧美一级a爱片免费观看看| 十八禁网站网址无遮挡 | 99精国产麻豆久久婷婷| 成人毛片60女人毛片免费| 三级国产精品欧美在线观看| av免费观看日本| 一级a做视频免费观看| 日本猛色少妇xxxxx猛交久久| 国产亚洲午夜精品一区二区久久| 有码 亚洲区| 毛片一级片免费看久久久久| 插阴视频在线观看视频| 国产成人精品一,二区| 亚洲欧美精品自产自拍| av一本久久久久| 午夜激情福利司机影院| 伊人久久精品亚洲午夜| 丰满人妻一区二区三区视频av| 国语对白做爰xxxⅹ性视频网站| 极品少妇高潮喷水抽搐| 国产av码专区亚洲av| 中国三级夫妇交换| 最近的中文字幕免费完整| 欧美高清成人免费视频www| 最新的欧美精品一区二区| av天堂久久9| 另类精品久久| 精品国产一区二区三区久久久樱花| 亚洲av.av天堂| 夜夜骑夜夜射夜夜干| 国产日韩欧美在线精品| 国产亚洲5aaaaa淫片| 视频中文字幕在线观看| 久久精品国产亚洲av天美| 99精国产麻豆久久婷婷| 男女国产视频网站| 极品教师在线视频| av福利片在线观看| 男女边吃奶边做爰视频| 极品教师在线视频| 精品熟女少妇av免费看| 丰满乱子伦码专区| 亚洲av不卡在线观看| 国产精品一区二区三区四区免费观看| av免费在线看不卡| 精品一区二区三区视频在线| 在线精品无人区一区二区三| 色吧在线观看| 国产中年淑女户外野战色| 国产伦理片在线播放av一区| 美女主播在线视频| 一本一本综合久久| 亚洲,欧美,日韩| 最黄视频免费看| 王馨瑶露胸无遮挡在线观看| 久久久精品免费免费高清| 国产精品国产三级专区第一集| 人人澡人人妻人| 如何舔出高潮| 寂寞人妻少妇视频99o| 有码 亚洲区| 韩国高清视频一区二区三区| 熟女电影av网| 18禁在线播放成人免费| 新久久久久国产一级毛片| 久久99一区二区三区| 97在线视频观看| 国产精品国产三级国产专区5o| 不卡视频在线观看欧美| 五月玫瑰六月丁香| 男人狂女人下面高潮的视频| 亚洲电影在线观看av| 亚洲欧洲日产国产| 中文字幕制服av| 精品国产露脸久久av麻豆| 自拍欧美九色日韩亚洲蝌蚪91 | 久久久午夜欧美精品| 激情五月婷婷亚洲| 丝瓜视频免费看黄片| 亚洲欧美精品自产自拍| 丰满迷人的少妇在线观看| 亚洲国产成人一精品久久久| 美女脱内裤让男人舔精品视频| 777米奇影视久久| 免费在线观看成人毛片| 老司机影院毛片| 中文精品一卡2卡3卡4更新| 天天躁夜夜躁狠狠久久av| 精品一区在线观看国产| 蜜桃久久精品国产亚洲av| 一级毛片黄色毛片免费观看视频| 国国产精品蜜臀av免费| 97在线人人人人妻| 国产黄频视频在线观看| av不卡在线播放| 久久亚洲国产成人精品v| 久久久久精品久久久久真实原创| 人妻少妇偷人精品九色| 在线精品无人区一区二区三| 自拍欧美九色日韩亚洲蝌蚪91 | 日韩不卡一区二区三区视频在线| 国产黄色视频一区二区在线观看| 久久久国产精品麻豆| 午夜激情久久久久久久| 欧美成人精品欧美一级黄| 精品国产露脸久久av麻豆| 黑人猛操日本美女一级片| 最近的中文字幕免费完整| 免费大片黄手机在线观看| 中国三级夫妇交换| 欧美成人精品欧美一级黄| 欧美日韩一区二区视频在线观看视频在线| 在线观看美女被高潮喷水网站| 99久久人妻综合| 边亲边吃奶的免费视频| 我要看日韩黄色一级片| 99久久人妻综合| 久久久久久久久久久久大奶| 人人妻人人添人人爽欧美一区卜| 日韩视频在线欧美| 欧美精品一区二区免费开放| 简卡轻食公司| 久久女婷五月综合色啪小说| 国国产精品蜜臀av免费| 午夜精品国产一区二区电影| 成人毛片60女人毛片免费| 少妇裸体淫交视频免费看高清| 亚洲国产精品国产精品| 久久99蜜桃精品久久| 插阴视频在线观看视频| 尾随美女入室| 日本vs欧美在线观看视频 | 日韩中字成人| 水蜜桃什么品种好| 美女脱内裤让男人舔精品视频| 国国产精品蜜臀av免费| 久久久国产欧美日韩av| 看非洲黑人一级黄片| 日韩亚洲欧美综合| 免费看光身美女| 久久久久视频综合| 亚洲人成网站在线播| 边亲边吃奶的免费视频| 一级毛片我不卡| 在线播放无遮挡| 亚洲国产精品专区欧美| 国产精品久久久久久精品古装| 在线天堂最新版资源| 国产精品一区二区在线不卡| 国产免费又黄又爽又色| 亚洲怡红院男人天堂| 狂野欧美激情性bbbbbb| 欧美三级亚洲精品| 91精品国产国语对白视频| 欧美一级a爱片免费观看看| 欧美日韩视频精品一区| 国产美女午夜福利| 免费观看av网站的网址| 亚洲成人手机| 国产在线视频一区二区| 国产亚洲最大av| 丝瓜视频免费看黄片| 亚洲一区二区三区欧美精品| 在现免费观看毛片| 亚洲中文av在线| 精品久久国产蜜桃| 丝袜喷水一区| 搡女人真爽免费视频火全软件| 乱系列少妇在线播放| 久久女婷五月综合色啪小说| 国产黄片视频在线免费观看| 久久久欧美国产精品| 日日撸夜夜添| 99热这里只有精品一区| 日本av免费视频播放| 在现免费观看毛片| 插逼视频在线观看| 久久国产亚洲av麻豆专区| 午夜免费观看性视频| 国产精品秋霞免费鲁丝片| 51国产日韩欧美| 欧美日韩综合久久久久久| 一级毛片久久久久久久久女| 少妇被粗大的猛进出69影院 | 国产男女超爽视频在线观看| 中国国产av一级| 国产成人精品一,二区| 欧美bdsm另类| 亚洲精品456在线播放app| 成人毛片a级毛片在线播放| 99久久综合免费| 日日摸夜夜添夜夜添av毛片| 夫妻午夜视频| 中文字幕久久专区| 丰满人妻一区二区三区视频av| 欧美3d第一页| 免费高清在线观看视频在线观看| 亚洲av免费高清在线观看| 成人免费观看视频高清| 亚洲精品久久午夜乱码| 中文资源天堂在线| 欧美国产精品一级二级三级 | 夫妻午夜视频| 大又大粗又爽又黄少妇毛片口| 人人妻人人澡人人看| 免费在线观看成人毛片| 久久免费观看电影| 国产老妇伦熟女老妇高清| 亚洲成色77777| 久久综合国产亚洲精品| 在线播放无遮挡| 在线观看三级黄色| 观看免费一级毛片| 99久久精品热视频| 狠狠精品人妻久久久久久综合| 在线观看av片永久免费下载| 亚洲国产精品成人久久小说| 亚洲国产精品一区二区三区在线| 一区二区三区乱码不卡18| 亚洲在久久综合| 国产精品免费大片| 国产淫语在线视频| av又黄又爽大尺度在线免费看| 亚洲av不卡在线观看| 日产精品乱码卡一卡2卡三| 一级毛片我不卡| 岛国毛片在线播放| 亚洲,一卡二卡三卡| 欧美老熟妇乱子伦牲交| 伦理电影免费视频| 80岁老熟妇乱子伦牲交| 国产精品免费大片| 国产淫语在线视频| 777米奇影视久久| 高清在线视频一区二区三区| 亚洲伊人久久精品综合| 欧美成人午夜免费资源| 亚洲欧美成人综合另类久久久| 国产视频内射| freevideosex欧美| 99热全是精品| a级毛片在线看网站| 亚洲av免费高清在线观看| .国产精品久久| av国产精品久久久久影院| 国产精品人妻久久久久久| 久久人人爽人人爽人人片va| 中文字幕久久专区| 国产欧美另类精品又又久久亚洲欧美| 伊人久久国产一区二区| 99热网站在线观看| 又爽又黄a免费视频| 久久精品国产自在天天线| 丰满饥渴人妻一区二区三| 久久免费观看电影| 免费人妻精品一区二区三区视频| 亚洲欧美一区二区三区国产| 日韩av不卡免费在线播放| 日本欧美国产在线视频| 精品熟女少妇av免费看| 亚洲av免费高清在线观看| 美女脱内裤让男人舔精品视频| 国产成人免费无遮挡视频| 制服丝袜香蕉在线| 男人和女人高潮做爰伦理| 性高湖久久久久久久久免费观看| 黄色毛片三级朝国网站 | 一区二区三区四区激情视频| 十八禁网站网址无遮挡 | 成人亚洲欧美一区二区av| 一二三四中文在线观看免费高清| 国产又色又爽无遮挡免| 国产精品欧美亚洲77777| 欧美一级a爱片免费观看看| 色吧在线观看| 91成人精品电影| 亚洲伊人久久精品综合| 91成人精品电影| 精品一区二区免费观看| 黑人巨大精品欧美一区二区蜜桃 | 男人舔奶头视频| av女优亚洲男人天堂| 亚洲第一区二区三区不卡| 99九九在线精品视频 | 女性被躁到高潮视频| 精品熟女少妇av免费看| 免费观看的影片在线观看| 波野结衣二区三区在线| 精品卡一卡二卡四卡免费| 三级经典国产精品| 大片免费播放器 马上看| 性高湖久久久久久久久免费观看| av卡一久久| 成年人免费黄色播放视频 | 日韩精品免费视频一区二区三区 | 国产女主播在线喷水免费视频网站| 一本大道久久a久久精品| 欧美日韩综合久久久久久| 亚洲高清免费不卡视频| av天堂中文字幕网| 91精品国产国语对白视频| 大香蕉久久网| 美女内射精品一级片tv| 久久国产精品大桥未久av | 纵有疾风起免费观看全集完整版| 欧美日韩av久久| 亚洲av欧美aⅴ国产| 成年人午夜在线观看视频| 三级国产精品欧美在线观看| 欧美精品亚洲一区二区| 2022亚洲国产成人精品| 韩国高清视频一区二区三区| 精华霜和精华液先用哪个| 免费看日本二区| 五月伊人婷婷丁香| 久久精品国产亚洲av天美| 国产精品秋霞免费鲁丝片| av线在线观看网站| 丰满人妻一区二区三区视频av| av在线app专区| 亚洲av男天堂| 精品一区二区三卡| a级毛片免费高清观看在线播放| 日韩欧美一区视频在线观看 | 亚洲在久久综合| 日本爱情动作片www.在线观看| 亚洲在久久综合| 国产黄片视频在线免费观看| 国产黄片美女视频| 夜夜骑夜夜射夜夜干| 午夜福利在线观看免费完整高清在| 欧美 亚洲 国产 日韩一| 中文字幕人妻丝袜制服| 国产淫片久久久久久久久| 欧美精品人与动牲交sv欧美| 99热全是精品| 免费人妻精品一区二区三区视频| 中文乱码字字幕精品一区二区三区| a级一级毛片免费在线观看| 成人午夜精彩视频在线观看| 亚洲av成人精品一二三区| 在线免费观看不下载黄p国产| 少妇高潮的动态图| 丰满乱子伦码专区| 中文字幕人妻熟人妻熟丝袜美| 欧美精品人与动牲交sv欧美| 亚洲成人手机| 熟妇人妻不卡中文字幕| 国产黄频视频在线观看| 久久久久久久国产电影| 少妇人妻久久综合中文| 国产成人精品一,二区| 国产男女内射视频| 午夜福利,免费看| 国产黄片视频在线免费观看| 伦理电影大哥的女人| videossex国产| 日本免费在线观看一区| 国产成人aa在线观看| 欧美亚洲 丝袜 人妻 在线| 免费看av在线观看网站| 亚洲国产av新网站| 国产成人精品一,二区| √禁漫天堂资源中文www| 欧美老熟妇乱子伦牲交| 91精品国产国语对白视频| 欧美区成人在线视频| 日本欧美国产在线视频| 2022亚洲国产成人精品| 国产欧美日韩一区二区三区在线 | 亚洲国产欧美在线一区| 免费看不卡的av| 天美传媒精品一区二区| 亚洲成人av在线免费| 99久国产av精品国产电影| 男的添女的下面高潮视频| 久久精品国产亚洲网站| 日本午夜av视频| 久久精品国产a三级三级三级| 中国三级夫妇交换| 国产在线男女| av在线播放精品| 国产男女超爽视频在线观看| 久久久久精品性色| 如日韩欧美国产精品一区二区三区 | 美女国产视频在线观看| 国产免费又黄又爽又色| 成人18禁高潮啪啪吃奶动态图 | 亚洲经典国产精华液单| 我要看黄色一级片免费的| 精品人妻偷拍中文字幕| 妹子高潮喷水视频| 亚洲伊人久久精品综合| av专区在线播放| 综合色丁香网| 99视频精品全部免费 在线| 国产精品久久久久久精品电影小说| 男女边摸边吃奶| 在线观看www视频免费| 最黄视频免费看| 国产亚洲av片在线观看秒播厂| 国产欧美另类精品又又久久亚洲欧美| 久久久精品免费免费高清| 在线观看美女被高潮喷水网站| 国产白丝娇喘喷水9色精品| 婷婷色综合www| 久久久亚洲精品成人影院| 亚洲精品中文字幕在线视频 | 啦啦啦啦在线视频资源| 亚洲怡红院男人天堂| 成人综合一区亚洲| 一级毛片久久久久久久久女| 亚洲成人av在线免费| 久久久久精品性色| 亚洲熟女精品中文字幕| 精品亚洲成国产av| 狂野欧美激情性xxxx在线观看| 亚洲国产日韩一区二区| 亚洲精品国产av成人精品| 在线观看av片永久免费下载| 中文字幕制服av| 亚洲精品色激情综合| 日韩在线高清观看一区二区三区| 少妇猛男粗大的猛烈进出视频| 成年美女黄网站色视频大全免费 | 欧美高清成人免费视频www| 久久97久久精品| 肉色欧美久久久久久久蜜桃| 麻豆精品久久久久久蜜桃| 少妇人妻 视频| 精品视频人人做人人爽| 国产黄色视频一区二区在线观看| 亚洲熟女精品中文字幕| 又黄又爽又刺激的免费视频.| 国产精品免费大片| 看免费成人av毛片| 亚洲av免费高清在线观看| 在线观看免费日韩欧美大片 | 最近中文字幕2019免费版| 国产精品久久久久久精品电影小说| 久久99蜜桃精品久久| 高清在线视频一区二区三区| 91久久精品国产一区二区三区| 九草在线视频观看| 成年人午夜在线观看视频| 少妇人妻一区二区三区视频| 国产亚洲av片在线观看秒播厂| a级毛片免费高清观看在线播放| 亚洲国产日韩一区二区| 亚洲精品日本国产第一区| 黄片无遮挡物在线观看| 中文在线观看免费www的网站| √禁漫天堂资源中文www| 大香蕉久久网| 国产 精品1| 精品国产乱码久久久久久小说| 国产成人精品一,二区| 免费大片18禁| 夜夜看夜夜爽夜夜摸| 建设人人有责人人尽责人人享有的| 精品一区二区免费观看| 欧美高清成人免费视频www| 18禁在线无遮挡免费观看视频| 美女大奶头黄色视频| 18禁动态无遮挡网站| 亚洲怡红院男人天堂| 午夜视频国产福利| 六月丁香七月| 91午夜精品亚洲一区二区三区| 国产91av在线免费观看| 男女边吃奶边做爰视频| h日本视频在线播放| 日韩 亚洲 欧美在线| 成人国产麻豆网| 国产免费福利视频在线观看| 麻豆乱淫一区二区| 我的女老师完整版在线观看| 熟女av电影| 一级毛片我不卡| 只有这里有精品99| 丝袜喷水一区| 日本av手机在线免费观看| 成年美女黄网站色视频大全免费 | 麻豆成人av视频| 高清欧美精品videossex| 91aial.com中文字幕在线观看| 老女人水多毛片| 久久影院123| 大陆偷拍与自拍| 天堂俺去俺来也www色官网| 色吧在线观看| 精品少妇黑人巨大在线播放| 成年人午夜在线观看视频| 日韩伦理黄色片| 一级毛片aaaaaa免费看小| 91精品伊人久久大香线蕉| 久久热精品热| 高清在线视频一区二区三区| 亚洲情色 制服丝袜| 亚洲欧美精品自产自拍| 亚洲国产成人一精品久久久| 97在线视频观看| 国产高清不卡午夜福利| 韩国高清视频一区二区三区| 五月玫瑰六月丁香| 国产成人精品福利久久| 狂野欧美激情性bbbbbb| 国产成人免费观看mmmm| 亚洲久久久国产精品| 国产淫片久久久久久久久| 人人妻人人澡人人看| 久久久欧美国产精品| 日韩免费高清中文字幕av| 成人黄色视频免费在线看| 一级毛片aaaaaa免费看小| 美女内射精品一级片tv| 国产精品偷伦视频观看了| 免费少妇av软件| 国产成人免费无遮挡视频| 日韩一本色道免费dvd| av卡一久久| 国产精品久久久久久av不卡| 国产成人一区二区在线| 亚洲av福利一区| 国产在线一区二区三区精| 欧美精品人与动牲交sv欧美| 亚洲va在线va天堂va国产| 欧美三级亚洲精品| 国产在视频线精品| 一级毛片电影观看| 亚洲图色成人| 视频区图区小说| 少妇人妻精品综合一区二区| 国产精品国产三级专区第一集| 男女边摸边吃奶| 男人狂女人下面高潮的视频| 草草在线视频免费看| 成年av动漫网址| 国产精品秋霞免费鲁丝片| 中文字幕人妻熟人妻熟丝袜美| 丰满人妻一区二区三区视频av| 国产成人精品一,二区| 免费av中文字幕在线| 精品少妇黑人巨大在线播放| 美女福利国产在线| 亚洲电影在线观看av| 国产精品一区www在线观看| 免费高清在线观看视频在线观看| 亚洲精品456在线播放app| 日韩制服骚丝袜av| 国产一区有黄有色的免费视频| 亚洲内射少妇av| 99re6热这里在线精品视频| 国产av国产精品国产| av福利片在线观看| 老司机亚洲免费影院| 亚洲激情五月婷婷啪啪|