• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Diverse soliton solutions and dynamical analysis of the discrete coupled mKdV equation with 4×4 Lax pair

    2023-12-15 11:50:52XueKeLiu劉雪珂andXiaoYongWen聞小永
    Chinese Physics B 2023年12期

    Xue-Ke Liu(劉雪珂) and Xiao-Yong Wen(聞小永)

    School of Applied Science,Beijing Information Science and Technology University,Beijing 100192,China

    Keywords: discrete coupled mKdV equation, continuous limit, discrete generalized (r,N-r)-fold Darboux transformation,multi-soliton solutions,rational soliton solutions

    1.Introduction

    Solitons are a class of nonlinear localized waves with particle-like properties,[1]which have been brought to light in various physical areas, including nonlinear optics, plasma physics, electricity, quantum mechanics, opening up new applications in these fields.[2-5]The history of soliton can be traced back to 1834, the year in which John Scott Russell unexpectedly discovered the phenomenon of solitary wave in a canal.However, it was only with the proposal of the Korteweg-de Vries(KdV)equation from which soliton theory gained massive attention.The most notable feature of solitons is that they can keep the shapes and velocities unaltered while the solitary waves propagate forward.[2]Nonlinear partial differential equations(NPDEs)may model various physical phenomena in optics, biology, plasma, and other research fields.[6-8]However, for some events such as the motion of one-dimensional particles, the propagation of pulses in biological chains and transmission of electrical signals in nonlinear inductance-capacitance circuits,[1,8-11]the discrete nonlinear equations serve as more appropriate descriptions compared with NPDEs.The main motivation for studying the discrete nonlinear equation is that they can keep some characteristics of the original continuous equations unaltered.[12]In Ref.[13],the authors put forward and studied the initial value problem of the followingN-component discrete modified Korteweg-de Vries(mKdV)equation

    Equation (3) can yield Eq.(2) by zero-curvature equationAn,t+AnBn-Bn+1An=0.WhenYn=0, Eq.(2) reduces to the single component discrete mKdV equation, whose solitonic interactions and conservation laws of the discrete mKdV equation have been studied in Ref.[16].This equation is also known as the so-called Volterra equation, which may be in connection with the spectrum of Langmuir wave in plasma physics.[1]In Ref.[15],the generalized symmetry and polynomial conserved densities of Eq.(2)have been obtained.Equation(2)can also be turned into the continuous coupled mKdV equation[15]

    Some methods for obtaining the exact solutions of discrete integrable equations include the inverse scattering method,[20,21]Riemann-Hilbert method,[22,23]algebraic geometry method,[24]Darboux transformation(DT),[16,25,26]and so on.Among them, the DT is one of the available methods,whose basic idea is to keep the Lax pair of discrete equations covariant.Recently, the discrete generalized (r,N-r)-fold DT technique has been proposed and successfully applied to solve some continuous equations, (2+1)-dimensional equations and discrete equations.[27-29]Generally speaking, the discreteN-fold DT can only obtain solitons,while the discrete generalized(r,N-r)-fold DT can obtain more types of exact solutions, including soliton solutions, rational, semi-rational and their mixed interaction solutions.At present, while the discrete generalized(r,N-r)-fold DT has been primarily utilized for addressing the discrete integrable equations related to 2×2 Lax pair,[11,16,30-32]the research on discrete equations pertaining to 4×4 Lax pair is still rare.[33,34]Therefore, it is significant to extend this method from 2×2 Lax pair to 4×4 Lax pair.To our knowledge, the generalized symmetry and polynomial conserved densities of Eq.(2)have been obtained,whereas there is no relevant research on the higher-order exact solutions like multi-soliton,higher-order semi-rational soliton(SRS), higher-order rational soliton (RS) and mixed interaction soliton solution of Eq.(2).Therefore, in this study, our main interest is to consider multi-soliton and higher-order SRS solutions on the vanishing background, higher-order RS and mixed interaction soliton solutions on the non-vanishing background of Eq.(2) through the discrete generalized (r,N-r)-fold DT.Meanwhile, we perform numerical simulation and asymptotic analysis to analyze the dynamical properties and limit states of some exact solutions.

    The rest contents of this paper contain three sections.In Section 2, the continuous limit is used to map Eq.(2) to the coupled KdV equation and a new nonlinear equation without dispersion term.In Section 3, we construct the discrete generalized (r,N-r)-fold DT for Eq.(2), from which the usual multi-soliton,SRS,RS and mixed interaction soliton solutions are given.Moreover,the asymptotic states and numerical simulations of some soliton and rational solutions are also discussed.In Section 4,we give our conclusions.

    2.Continuous limit

    Continuous limit is a powerful tool to connect the discrete and continuous equations.Due to the fact that the discrete single component mKdV equation can converge to the continuous KdV and mKdV equations under the continuous limit,[35]the discrete coupled mKdV equation(2)may also converge to the continuous coupled KdV and mKdV equations.In Ref.[15],Eq.(2)has been mapped to the coupled mKdV equation(4).In what follows,we will construct the new continuous conditions that make Eq.(2)correspond to two continuous equations.

    (i) Equation (2) corresponds to the continuous coupled KdV equation[36,37]

    It should be noted that the coefficients of Eq.(5) are different from the coefficients of the coupled KdV equation in Refs.[36,37].In Ref.[36], when selecting special coefficients, Eq.(5) can be derived from a two-layer fluid system.In Ref.[37], the Lax pair of the coupled KdV equation with different coefficients has been constructed via the prolongation structure technique.WhenY=0, Eq.(5)is transformed into the KdV equation,which has been shown to describe the asymptotic development of shallow water waves[38]and ionacoustic waves.[39]

    (ii)When taking the limit conditions

    can be obtained.Certainly, Eq.(6) can also reduce to a new single component equation without dispersion term ifY=0.

    Therefore, we can conclude that a discrete equation can correspond to different NPDEs under different continuous limits.Equation (6) is a new NPDE without dispersion term,which is worth further research.

    3.Discrete generalized(r,N-r)-fold DT

    In this section, we will build the discrete generalized(r,N-r)-fold DT for Eq.(2).To begin with, we presume thatΨn(λi) = (Ψ1,n(λi),Ψ2,n(λi),Ψ3,n(λi),Ψ4,n(λi))T(i=1, 2, 3,...,r)arerdifferent fundamental solutions of Eq.(3)based on the initial seed solutionsXnandYn.Then we consider the following gauge transformation:

    Remark 1 In the above theorem,ris the number of spectral parameterλi,Nis the order number of DT andN-ris the sum of the order number of the highest derivative of the Darboux matrixGnor the vector eigenfunctionΨn.TheN-fold DT can be derived from Theorem 1 by selectingNspectral parameters and without expandingΨninto Taylor series,from which we can obtain the soliton solutions on zero background.Whenr=1,Theorem 1 reduces to the(1,N-1)-fold DT,which can yield higher-order rational and semi-rational solutions on nonzero background.When 1

    3.1.Multi-soliton and higher-order SRS solutions on the vanishing background

    Based on the zero seed solutionsXn=Yn=0,the fundamental solution of Eq.(2)can be given by

    Figures 1(a) and 1(c) show the 3D structures of onesoliton solutions ~Xnand ~Yn, while Figs.1(b)and 1(d)display the 2D structures of one-soliton solutions ~Xnand ~Yn, respectively.In addition, in order to analyze the dynamical behaviors of one-soliton solutions,we conduct numerical simulation through the finite difference method,[40]as shown in Fig.2.Figures 2(a),2(e)and 2(b),2(f)are the exact and approximate one-soliton solutions without any noise.Figures 2(c),2(g)and 2(d),2(h)are the perturbed solutions with 2%and 5%noises,respectively.By the numerical simulation,the one-soliton solutions have small fluctuations in a short time when adding 2%noise.As the noise increases,the structures of one-soliton exhibit significant fluctuations.

    Table 1.Relations between the parameters and shapes of one-soliton solutions.BS:bright soliton;ABS:anti-bell-shaped soliton.

    Table 2.Physical properties of one-soliton solutions.Energy of ~Xn and~Yn are given by E~Xn=dn and E~Yn=

    Solitons Amplitude Velocity Wave number Width Primary phase Energy~Xn |(λ41-1)(C2C4-C1C3)|images/BZ_211_579_1225_604_1250.png(C21+C22)(C23+C24) - λ41-1 2λ21 2lnλ1 lnλ1+α (λ41-1)2(C2C4-C1C3)2 2λ21 lnλ1 2lnλ1 1 4λ41(C21+C22)(C23+C24)|lnλ1|~Yn |(λ41-1)(C1C4+C2C3)|images/BZ_211_579_1354_604_1379.png(C21+C22)(C23+C24) - λ41-1 2λ21 2lnλ1 lnλ1+α (λ41-1)2(C1C4+C2C3)2 2λ21 lnλ1 2lnλ1 1 4λ41(C21+C22)(C23+C24)|lnλ1|

    Fig.1.One-soliton solutions: [(a),(b)]the component ~Xn;[(c),(d)]the component~Yn.

    Fig.2.One-soliton solutions: [(a),(e)]exact solutions;[(b),(f)]perturbed solutions without noise;[(c),(g)]perturbed solutions with 2%noise;[(d),(h)]perturbed solutions with 5%noise.

    WhenN=r=2 and Taylor expansions are not performed on spectral parametersλ1andλ2,by choosingC1=C3=-C4=1,C2=1/2 and employing the generalized(2,0)-fold DT,the exact two-soliton solutions are arrived at

    Table 3.Physical properties of two-soliton solutions.

    Fig.4.Two-soliton solutions: [(a),(e)]exact solutions;[(b),(f)]perturbed solutions without noise;[(c),(g)]perturbed solutions with 2%noise;[(d),(h)]perturbed solutions with 5%noise.

    From Eqs.(14), (15) and Table 3, we can conclude that the amplitude and velocity of solitons keep unaltered before and after the collision,but their phases are changed.The twosoliton solutions with spectral parametersλ1=2 andλ2=1/3 are drawn in Fig.3.Figures 3(a), 3(c) and 3(b), 3(d) display the 3D and 2D structures of two-soliton solutions respectively.Figure 4 exhibits the numerical simulation of twosoliton.Specifically, Figs.4(a) and 4(e) are the explicit twosoliton solutions, Figs.4(b) and 4(f) are the perturbed solutions without noise,and Figs.4(c),4(g)and 4(d),4(h)are the solutions with 2% and 5% noises, respectively.From Fig.4,we know easily that the two-soliton solutions can only resist minor noise,but when the noise exceeds 5%,they will exhibit significant fluctuations.

    WhenN=r=3 and Taylor expansions are not performed on spectral parametersλ1,λ2andλ3, Theorem 1 degenerates into the (3,0)-fold DT, from which we can obtain the three-soliton solutions with the parametersC1=C3=-C4=1,C2=1/2.The structures of three-soliton solutions with spectral parametersλ1=2,λ2=1/3 andλ3=7/3 are displayed in Fig.5.Figures 5(a) and 5(c) display the 3D structures of three-soliton solutions ~Xnand ~Yn.Figures 5(b) and 5(d)show the 2D structures of ~Xnand~Yn,respectively.

    Fig.5.Three-soliton solutions: [(a),(b)]the component ~Xn;[(c),(d)]the component~Yn.

    3.1.2.Higher-order SRS solutions

    When using the generalized (1,N-1)-fold DT and choosing the parametersC1=C3=-C4=1,C2=1/2, we can obtain some higher-order SRS solutions.Firstly, taking the spectral parameterλ1=2 and expandΨninto the Taylor series withλ=λ1+ε2atε=0:

    WhenN=2,we can also obtain the second-order SRS solutions by Eq.(8),whose structures are displayed in Fig.7.It should be noted that the second-order SRS solutions includes the exponential and polynomial function, which are different from the two-soliton solutions with only exponential function.From Fig.7,it is obvious that both parameterse0ande1have an impact on the position of the second-order SRS solutions interact.

    Fig.6.First-order SRS:[(a),(b)]e0=0,[(b),(d)]e0=5.

    Fig.7.Second-order SRS:[(a),(d)]e0=e1=0;[(b),(e)]e0=3, e1=0;[(c),(f)]e0=0, e1=2.

    Fig.8.Third-order SRS:[(a),(e)]e0=e1=e2=0;[(b),(f)]e0=2, e1=e2=0;[(c),(g)]e1=3, e0=e2=0;[(b),(f)]e2=5, e0=e1=0.

    WhenN=3, the structures of the third-order SRS solutions are shown in Fig.8.Similar to the second-order SRS solutions, the third-order SRS solutions also comprises three controlling parameters:e0,e1ande2.These parameters solely govern the position of these SRSs in interaction but they cannot be individually separated.

    3.2.Higher-order RS solutions on the non-vanishing background

    In this subsection, we select the nonzero seed solutionsXn=a,Yn=band substitute them into Eq.(3) to obtain the following fundamental solution:

    If expandΨnatλ1/=2 into Taylor series, we can also derive the SRS on the non-vanishing background via the discrete generalized(1,N-1)-fold DT.In the following,we will apply the discrete generalized (1,N-1)-fold DT and utilize the above expansions to obtain higher-order RS solutions of Eq.(2).

    3.2.1.First-order RS solutions

    WhenN=1 and employing the generalized (1,0)-fold DT,we can give the first-order RS solutions by Eq.(17),which can be expressed explicitly as

    Fig.9.First-order RS solutions with e0=0: [(a),(b)]the component ~Xn;[(c),(d)]the component~Yn.

    The structures of Eq.(20) are shown in Fig.9.Figures 9(a)and 9(c)are the 3D structures of ~Xnand ~Yn, respectively,and Figs.9(b)and 9(d)are the 2D structures of ~Xnand~Yn, respectively.Comparing Figs.2 and 9, there seems to be no difference in appearance between the usual soliton and RS,except for their different seed backgrounds.In fact,there is a notable contrast in the expressions of these two types of solutions.The usual soliton solutions usually contain exponential function or hyperbolic function, while the RS solutions only consist of rational expressions.

    Like the one-soliton solutions, we perform the numerical simulation on the first-order RS solutions, as shown in Fig.10.Figures 10(a) and 10(e) show the exact first-order RS solutions.Figures 10(b) and 10(f) are the perturbed solutions with no noise.Figures 10(c), 10(g) and 10(d), 10(h)exhibit the solutions with 2% and 10% noises, respectively.From Fig.10,it can be seen that the first-order RS has a small fluctuation when noise is not greater than 2%, whereas the structures of first-order RS may have visible fluctuations if the noise is greater than 2%,such as noise=10%(see Figs.10(d)and 10(h)).Therefore,we can conclude that the first-order RS can resist very small noise.

    Fig.10.First-order RS solutions with e0=0: [(a),(e)]exact solutions;[(b),(f)]perturbed solutions without noise;[(c),(g)]perturbed solutions with 2%noise;[(d),(h)]perturbed solutions with 10%noise.

    3.2.2.Second-order RS solutions

    WhenN=2 and using the generalized(1,1)-fold DT,we can give the second-order RS solutions by

    The numerical simulations of solutions(21)are shown in Fig.12.Figures 12(a), 12(e) and 12(b), 12(f) exhibit the exact solutions and perturbed solutions without noises, respectively.They are almost the same.This indicates that our numerical algorithm is correct, in other words, the wave propagations of solutions (21) are stable in the absence of noise.Figures 12(c), 12(g) and Figures 12(d), 12(h) are the numerical structures when adding 2% and 4% noises, respectively.As seen in Fig.12,the structures of solutions(21)have minor fluctuation with the noise not more than 4% in the range oft ∈(-5, 5).

    Fig.11.Second-order RS solutions: [(a),(c)]e0=e1=0;[(b),(d)]e0=0, e1=2.

    Fig.12.Second-order RS solutions in Figs.11(a)and 11(c): [(a),(e)]exact solutions;[(b),(f)]perturbed solutions without noise;[(c),(g)]perturbed solutions with 2%noise;[(d),(h)]perturbed solutions with 4%noise.

    Fig.13.Third-order RS solutions: [(a),(d)]e0=e1=e2=0;[(b),(e)]e0=e2=0, e1=20;[(c),(f)]e0=e1=0, e2=50.

    3.2.3.Third-order RS solutions

    WhenN=3 and using the generalized(1,2)-fold DT,we can obtain the third-order RS solutions, whose structures are shown in Fig.13.

    Figures 13(a) and 13(d) display the strong interaction of third-order RS solutions.In Figs.13(b) and 13(e), under the effect ofe1,the component ~Xnis shown as three almost parallel RSs in the ranges ofn ∈(-10, 10)andt ∈(-10, 10),where the anti-dark RS appears between two dark RSs.In Fig.13(e),due to the effect ofe1, the component ~Ynis also shown as three almost parallel RSs in the ranges ofn ∈(-10, 10)andt ∈(-10, 10),where the anti-bell shaped RS occurs between two bright RSs.However, they are actually not parallel, and within a certain range,there still exists interaction among three RSs.Figure 13(c) exhibits that the anti-dark RS lies on the right side of two dark RSs,while Fig.13(f)shows that the antibell shaped RS is located on the right side of two bright RSs.However, when the coordinate axis range is large enough,there still exist interactions among these RSs like the secondorder RS.

    3.3.Mixed hyperbolic-rational soliton solutions on nonvanishing background

    WhenN=r=2 and using the generalized(2,0)-fold DT,we will obtain the mixed solutions of the usual soliton (US)and RS, which are also called the mixed hyperbolic-rational soliton solutions.At this point, we need to use two spectral parametersλ1andλ2.Forλ1, we choose the corresponding parameters asM1=M2=1,M3=-M4=1/ε,a=3/4,λ1=2, while forλ2, we choose the corresponding parameters asM1=M3=-M4=1,M2=1/2,a=3/4,λ2=3.If making Taylor expansion for Eq.(19)atλ=λ1,and without Taylor expansion atλ=λ2, from Eq.(8) we can obtain the mixed hyperbolic-rational solutions as

    respectively.The structures of solutions(23)are shown in Fig.14.

    Fig.14.Mixed interaction solutions of US and RS:[(a),(c),(e),(g)]e0=0;[(b),(d),(f),(h)]e0=2.

    Under the effect ofe0, the position of the first-order RS has shifted, while the US keeps the position unchanged, that is to say,the parametere0can change the interaction position of the US and RS, so we can control the occurrence of the interaction position by changing the parameter.

    In theory,the discrete generalized(r,N-r)-fold DT can be extended to give more higher-order mixed interaction solutions among US,SRS and RS,but due to the complexity of actual calculations,further study is needed.

    4.Conclusions

    The discrete coupled mKdV equation (2) with fourthorder Lax pair has been considered systematically,which may describe the motion of shallow water waves, the optical soliton propagation in cubic nonlinear media and the Alfven wave in a cold collision-free plasma.The main innovative results of the present study are as follows:

    (i) Equation (2) has been mapped to the continuous coupled KdV equation and a new nonlinear equation without dispersion term under the continuous limits.

    (ii) The discrete generalized (r,N-r)-fold DT of Eq.(2)has been first established, from which diverse exact solutions including the usual multi-soliton, higherorder SRS,higher-order RS and their mixed hyperbolicrational interaction soliton solutions have been given explicitly.

    (iii) The asymptotic behaviors and related physical quantities of some US and RS solutions have been studied in details.

    (iv) The dynamical behaviors of some exact soliton solutions are investigated via numerical simulations.

    We hope the results given in this paper can provide assistance in understanding more physical phenomena in the field of shallow water wave,optics and plasma.

    Acknowledgments

    We would like to express our sincere thanks to other members of our discussion group for their valuable comments.

    Project supported by the National Natural Science Foundation of China (Grant No.12071042) and Beijing Natural Science Foundation(Grant No.1202006).

    欧美日本亚洲视频在线播放| 久久天躁狠狠躁夜夜2o2o| 能在线免费观看的黄片| 中文字幕人妻熟人妻熟丝袜美| 国产精品乱码一区二三区的特点| 午夜福利18| 变态另类丝袜制服| 好男人在线观看高清免费视频| 国内久久婷婷六月综合欲色啪| 亚洲欧美日韩东京热| 婷婷精品国产亚洲av在线| 国产高清视频在线观看网站| 欧美色视频一区免费| 国产精品永久免费网站| 久久久久国产精品人妻aⅴ院| 一进一出抽搐gif免费好疼| 热99在线观看视频| 中国美女看黄片| 婷婷丁香在线五月| 看十八女毛片水多多多| 婷婷六月久久综合丁香| 久久久久国内视频| 乱码一卡2卡4卡精品| 国产精品1区2区在线观看.| 精品人妻视频免费看| 亚洲狠狠婷婷综合久久图片| 日本黄色片子视频| 人妻制服诱惑在线中文字幕| 一级a爱片免费观看的视频| 偷拍熟女少妇极品色| 午夜激情福利司机影院| 赤兔流量卡办理| 国产精品综合久久久久久久免费| 亚洲18禁久久av| 亚洲va在线va天堂va国产| 国产精品永久免费网站| av.在线天堂| 国产免费av片在线观看野外av| 99国产精品一区二区蜜桃av| 欧美高清性xxxxhd video| 久久久久国产精品人妻aⅴ院| av国产免费在线观看| 亚洲av一区综合| 亚洲成a人片在线一区二区| 人人妻人人看人人澡| 男女啪啪激烈高潮av片| 免费看美女性在线毛片视频| 特大巨黑吊av在线直播| 国产精品98久久久久久宅男小说| 丰满人妻一区二区三区视频av| 久久久久国内视频| 亚洲av成人精品一区久久| 夜夜看夜夜爽夜夜摸| 国产精品免费一区二区三区在线| 精品一区二区三区视频在线| 在线播放无遮挡| av在线观看视频网站免费| 久久久精品欧美日韩精品| 无人区码免费观看不卡| 国产精品一区二区免费欧美| 三级国产精品欧美在线观看| 天堂√8在线中文| 欧美色视频一区免费| 啦啦啦观看免费观看视频高清| 永久网站在线| 久久人人爽人人爽人人片va| 国内精品久久久久久久电影| 一个人看视频在线观看www免费| 亚洲自拍偷在线| 日本免费a在线| 成年女人毛片免费观看观看9| 不卡视频在线观看欧美| www.色视频.com| 久久天躁狠狠躁夜夜2o2o| 精品人妻一区二区三区麻豆 | 国产女主播在线喷水免费视频网站 | 亚洲熟妇熟女久久| 欧美xxxx性猛交bbbb| 小蜜桃在线观看免费完整版高清| 亚洲欧美日韩无卡精品| 欧美成人a在线观看| 国产精品永久免费网站| 一区二区三区高清视频在线| 哪里可以看免费的av片| bbb黄色大片| 日韩欧美在线乱码| 一a级毛片在线观看| 日韩av在线大香蕉| 亚洲美女搞黄在线观看 | 久久久久久久久大av| 俺也久久电影网| 亚洲人成网站高清观看| 嫩草影视91久久| 国产精品精品国产色婷婷| 一级av片app| 黄色配什么色好看| 亚洲精品色激情综合| 亚洲四区av| 日日摸夜夜添夜夜添小说| 97碰自拍视频| 欧美在线一区亚洲| 黄色欧美视频在线观看| 波多野结衣高清无吗| 深爱激情五月婷婷| 国产精品永久免费网站| 久久精品91蜜桃| 桃色一区二区三区在线观看| 国产亚洲精品av在线| 国产一区二区三区av在线 | 国产高清视频在线观看网站| 欧美色欧美亚洲另类二区| 伦精品一区二区三区| 久久国产乱子免费精品| 久久午夜福利片| 国产在视频线在精品| 国产一级毛片七仙女欲春2| 久久精品影院6| 韩国av在线不卡| 日韩,欧美,国产一区二区三区 | 美女被艹到高潮喷水动态| 欧美一区二区精品小视频在线| 淫秽高清视频在线观看| 美女高潮的动态| 一个人看视频在线观看www免费| 一区福利在线观看| 国产成人aa在线观看| 国产亚洲精品av在线| 18禁黄网站禁片免费观看直播| 毛片一级片免费看久久久久 | 少妇人妻一区二区三区视频| 嫁个100分男人电影在线观看| 大又大粗又爽又黄少妇毛片口| 91午夜精品亚洲一区二区三区 | 动漫黄色视频在线观看| 欧美一区二区国产精品久久精品| 老司机福利观看| 中文亚洲av片在线观看爽| 床上黄色一级片| 99热这里只有是精品在线观看| 内射极品少妇av片p| 午夜福利欧美成人| 俺也久久电影网| 日日夜夜操网爽| 人人妻人人澡欧美一区二区| 高清毛片免费观看视频网站| 久久久久久久久中文| 日韩中字成人| 人妻少妇偷人精品九色| 白带黄色成豆腐渣| 成人特级av手机在线观看| 成人鲁丝片一二三区免费| 国产黄片美女视频| 九色成人免费人妻av| 欧美色欧美亚洲另类二区| 亚洲色图av天堂| 99热只有精品国产| 又爽又黄无遮挡网站| 亚洲av二区三区四区| 欧美精品国产亚洲| 成熟少妇高潮喷水视频| 亚洲一区二区三区色噜噜| 亚洲内射少妇av| 啦啦啦啦在线视频资源| 身体一侧抽搐| 久久久久久久精品吃奶| 午夜免费男女啪啪视频观看 | 狠狠狠狠99中文字幕| 中文在线观看免费www的网站| 午夜福利高清视频| 国产精品久久久久久av不卡| 人人妻人人看人人澡| 最新中文字幕久久久久| 别揉我奶头~嗯~啊~动态视频| 欧美+日韩+精品| 久久久久久伊人网av| 国产精品美女特级片免费视频播放器| 亚洲专区国产一区二区| 欧美一区二区国产精品久久精品| 天堂影院成人在线观看| 国产 一区精品| 午夜福利视频1000在线观看| 亚洲欧美日韩东京热| 国产精品人妻久久久影院| 日本撒尿小便嘘嘘汇集6| 国产精品1区2区在线观看.| 哪里可以看免费的av片| 亚洲av不卡在线观看| av.在线天堂| 美女xxoo啪啪120秒动态图| 中文字幕人妻熟人妻熟丝袜美| 久久精品人妻少妇| 春色校园在线视频观看| 亚洲国产精品合色在线| 露出奶头的视频| 亚洲第一电影网av| 日本与韩国留学比较| 在线观看午夜福利视频| 日本熟妇午夜| 十八禁网站免费在线| 在线看三级毛片| 一级黄色大片毛片| 一个人免费在线观看电影| 黄色丝袜av网址大全| 亚洲精品亚洲一区二区| 毛片一级片免费看久久久久 | 他把我摸到了高潮在线观看| 国产精品伦人一区二区| 日韩一本色道免费dvd| av视频在线观看入口| 99热这里只有是精品50| 少妇丰满av| 在现免费观看毛片| 黄色日韩在线| 日本免费a在线| 国产v大片淫在线免费观看| 亚洲午夜理论影院| 国产精品久久久久久精品电影| 日日干狠狠操夜夜爽| 国产v大片淫在线免费观看| 不卡一级毛片| 最近最新免费中文字幕在线| 欧美日韩国产亚洲二区| 丰满人妻一区二区三区视频av| 久久久久性生活片| 麻豆久久精品国产亚洲av| 国产黄色小视频在线观看| 国产精品永久免费网站| 12—13女人毛片做爰片一| 亚洲av第一区精品v没综合| 国产色婷婷99| 日日撸夜夜添| 欧美色欧美亚洲另类二区| 日本黄色视频三级网站网址| 欧美激情在线99| 亚洲欧美日韩高清在线视频| 久久99热这里只有精品18| 国产视频内射| 日本-黄色视频高清免费观看| 国产伦人伦偷精品视频| 欧美最黄视频在线播放免费| 免费av毛片视频| 99热这里只有是精品在线观看| 免费观看在线日韩| 嫩草影院入口| 国产精品乱码一区二三区的特点| 成人特级av手机在线观看| 免费黄网站久久成人精品| 两个人的视频大全免费| 亚洲精品久久国产高清桃花| 亚洲,欧美,日韩| 长腿黑丝高跟| 久久久久久久亚洲中文字幕| 久久亚洲精品不卡| 中出人妻视频一区二区| 久久欧美精品欧美久久欧美| 国内久久婷婷六月综合欲色啪| 男人舔奶头视频| 一边摸一边抽搐一进一小说| 韩国av一区二区三区四区| 国产精品国产三级国产av玫瑰| 又爽又黄无遮挡网站| 国产女主播在线喷水免费视频网站 | 亚洲aⅴ乱码一区二区在线播放| 日韩大尺度精品在线看网址| 免费电影在线观看免费观看| 别揉我奶头 嗯啊视频| 最好的美女福利视频网| 午夜激情欧美在线| 国产精品综合久久久久久久免费| 国产亚洲av嫩草精品影院| 欧美绝顶高潮抽搐喷水| 亚洲最大成人av| 久久久久精品国产欧美久久久| 此物有八面人人有两片| 人妻少妇偷人精品九色| 成年女人看的毛片在线观看| 久久久久九九精品影院| 少妇高潮的动态图| 亚洲七黄色美女视频| 精品久久久久久久人妻蜜臀av| 国产精品,欧美在线| 欧美成人免费av一区二区三区| 国产精品久久久久久亚洲av鲁大| 国产精品美女特级片免费视频播放器| 999久久久精品免费观看国产| 丝袜美腿在线中文| 熟妇人妻久久中文字幕3abv| 欧美性猛交╳xxx乱大交人| 中文字幕人妻熟人妻熟丝袜美| 婷婷色综合大香蕉| 久久久国产成人精品二区| 亚洲一区二区三区色噜噜| 男女视频在线观看网站免费| 婷婷亚洲欧美| 校园人妻丝袜中文字幕| 国产亚洲精品av在线| 99热只有精品国产| 日韩欧美国产在线观看| 国产精品久久久久久精品电影| 又爽又黄无遮挡网站| 两个人的视频大全免费| 免费观看的影片在线观看| 成年版毛片免费区| 两个人视频免费观看高清| 国产亚洲精品综合一区在线观看| 成人特级av手机在线观看| 人妻丰满熟妇av一区二区三区| 亚洲成人精品中文字幕电影| 亚洲欧美日韩高清专用| 小说图片视频综合网站| 日日干狠狠操夜夜爽| 色5月婷婷丁香| 床上黄色一级片| av在线老鸭窝| 国产精品人妻久久久影院| 亚洲第一电影网av| 亚洲综合色惰| 精品久久久久久久久久久久久| 亚洲精品成人久久久久久| 欧美色欧美亚洲另类二区| 亚洲 国产 在线| 真人一进一出gif抽搐免费| 国产老妇女一区| 毛片一级片免费看久久久久 | 亚洲无线在线观看| 精品久久久久久久人妻蜜臀av| 久久人人爽人人爽人人片va| 成人一区二区视频在线观看| 精品久久国产蜜桃| 国产在线男女| 淫秽高清视频在线观看| 国产精品不卡视频一区二区| 欧美性感艳星| 18+在线观看网站| 国产一区二区在线av高清观看| 国产成人a区在线观看| 久久中文看片网| 黄色丝袜av网址大全| 国产精品av视频在线免费观看| 人妻久久中文字幕网| 成人三级黄色视频| 成人亚洲精品av一区二区| 一级a爱片免费观看的视频| 亚洲一区高清亚洲精品| 亚洲成人中文字幕在线播放| 亚洲av电影不卡..在线观看| 搡女人真爽免费视频火全软件 | 精品国内亚洲2022精品成人| 女生性感内裤真人,穿戴方法视频| 人妻丰满熟妇av一区二区三区| 国产成年人精品一区二区| 乱码一卡2卡4卡精品| 亚洲综合色惰| 久久久久久久亚洲中文字幕| 亚洲国产欧洲综合997久久,| 成人综合一区亚洲| 亚洲精品粉嫩美女一区| 色综合婷婷激情| 日韩强制内射视频| 日日摸夜夜添夜夜添av毛片 | 婷婷精品国产亚洲av| 91久久精品国产一区二区成人| 国产探花极品一区二区| 一区二区三区四区激情视频 | 日日摸夜夜添夜夜添av毛片 | 精品不卡国产一区二区三区| 久久久久九九精品影院| av.在线天堂| 桃红色精品国产亚洲av| 免费在线观看影片大全网站| 18禁黄网站禁片午夜丰满| 91午夜精品亚洲一区二区三区 | 一区福利在线观看| 尤物成人国产欧美一区二区三区| 美女黄网站色视频| 欧美最黄视频在线播放免费| 国产精品爽爽va在线观看网站| 欧美高清成人免费视频www| 久久久精品欧美日韩精品| netflix在线观看网站| 亚洲狠狠婷婷综合久久图片| 久久精品国产亚洲av涩爱 | 欧美性猛交黑人性爽| 国产激情偷乱视频一区二区| 极品教师在线免费播放| 伊人久久精品亚洲午夜| 亚洲五月天丁香| 亚洲专区国产一区二区| 成年人黄色毛片网站| 成人特级黄色片久久久久久久| 一本久久中文字幕| 亚洲人与动物交配视频| 亚洲三级黄色毛片| 免费高清视频大片| 午夜日韩欧美国产| 我要搜黄色片| 精品福利观看| 日韩高清综合在线| 色哟哟哟哟哟哟| 乱系列少妇在线播放| 久久热精品热| 久久精品国产亚洲网站| 五月伊人婷婷丁香| 久久精品国产鲁丝片午夜精品 | 成人精品一区二区免费| 欧美性感艳星| 亚洲色图av天堂| 日韩欧美精品免费久久| 亚洲一区二区三区色噜噜| 简卡轻食公司| 亚洲乱码一区二区免费版| 如何舔出高潮| 国产私拍福利视频在线观看| 精品国内亚洲2022精品成人| 听说在线观看完整版免费高清| 尾随美女入室| 一个人免费在线观看电影| 少妇高潮的动态图| 国产精华一区二区三区| 男女啪啪激烈高潮av片| 蜜桃亚洲精品一区二区三区| 99久久精品热视频| 国内精品久久久久精免费| 国产一区二区亚洲精品在线观看| 亚洲无线观看免费| 99久久无色码亚洲精品果冻| 日本-黄色视频高清免费观看| 在线免费十八禁| 此物有八面人人有两片| 精品午夜福利视频在线观看一区| 久久久成人免费电影| 久久国产精品人妻蜜桃| 嫩草影院入口| 一区二区三区激情视频| 国产美女午夜福利| 亚洲美女黄片视频| 精品久久久久久成人av| 88av欧美| netflix在线观看网站| 最近中文字幕高清免费大全6 | av在线天堂中文字幕| 久久久久久久久久成人| 精品久久久久久久末码| 国产高潮美女av| 97超级碰碰碰精品色视频在线观看| 亚洲精品日韩av片在线观看| 久久久久精品国产欧美久久久| 亚洲熟妇中文字幕五十中出| 在线观看舔阴道视频| 欧美zozozo另类| 啦啦啦韩国在线观看视频| 他把我摸到了高潮在线观看| 又黄又爽又刺激的免费视频.| 国产男人的电影天堂91| 久久久久免费精品人妻一区二区| 欧美黑人巨大hd| 在线天堂最新版资源| 乱系列少妇在线播放| 无遮挡黄片免费观看| 日本在线视频免费播放| 精品久久久久久久久av| 日韩国内少妇激情av| 欧美成人一区二区免费高清观看| 99久久久亚洲精品蜜臀av| 久久久久性生活片| 男女做爰动态图高潮gif福利片| 国产成人a区在线观看| 久久久久久大精品| 欧美激情久久久久久爽电影| 禁无遮挡网站| 亚洲精品一区av在线观看| 午夜福利成人在线免费观看| 日本精品一区二区三区蜜桃| 国产精品不卡视频一区二区| 日本 欧美在线| 免费在线观看影片大全网站| 国产单亲对白刺激| 日韩欧美三级三区| 韩国av一区二区三区四区| 少妇猛男粗大的猛烈进出视频 | 亚洲专区国产一区二区| 人妻少妇偷人精品九色| 精品久久久久久久久亚洲 | 国产一区二区三区在线臀色熟女| 老熟妇乱子伦视频在线观看| 麻豆成人午夜福利视频| 97人妻精品一区二区三区麻豆| 亚洲图色成人| 久久久久久国产a免费观看| 天天一区二区日本电影三级| 嫁个100分男人电影在线观看| 日韩精品青青久久久久久| 欧美日韩亚洲国产一区二区在线观看| 亚洲熟妇中文字幕五十中出| 91狼人影院| 中亚洲国语对白在线视频| 国产高清视频在线播放一区| 久久精品国产99精品国产亚洲性色| www.色视频.com| 麻豆一二三区av精品| 亚洲aⅴ乱码一区二区在线播放| 亚洲一区二区三区色噜噜| 麻豆av噜噜一区二区三区| 他把我摸到了高潮在线观看| 人人妻人人看人人澡| 少妇猛男粗大的猛烈进出视频 | av.在线天堂| xxxwww97欧美| 久久久久久伊人网av| 亚洲中文日韩欧美视频| 最近最新免费中文字幕在线| 欧美+亚洲+日韩+国产| 免费黄网站久久成人精品| 亚洲内射少妇av| 国内精品一区二区在线观看| 国产精品嫩草影院av在线观看 | 亚洲成人久久爱视频| 亚洲精品成人久久久久久| 亚洲在线观看片| 免费大片18禁| 午夜福利在线观看免费完整高清在 | 最近视频中文字幕2019在线8| 白带黄色成豆腐渣| 一进一出抽搐动态| 国产伦精品一区二区三区视频9| 啦啦啦韩国在线观看视频| av视频在线观看入口| 我的老师免费观看完整版| 成年女人毛片免费观看观看9| 亚洲av免费在线观看| 搡老熟女国产l中国老女人| 午夜福利在线观看吧| 亚洲av中文av极速乱 | 麻豆国产97在线/欧美| 黄色一级大片看看| 简卡轻食公司| 国产精品av视频在线免费观看| 麻豆一二三区av精品| 欧美成人a在线观看| 欧美+亚洲+日韩+国产| 色尼玛亚洲综合影院| 亚洲精品国产成人久久av| 黄色日韩在线| aaaaa片日本免费| 日韩欧美一区二区三区在线观看| 波多野结衣巨乳人妻| 午夜福利在线观看吧| av天堂在线播放| 精品人妻一区二区三区麻豆 | 中国美女看黄片| 日本五十路高清| 国产色爽女视频免费观看| 偷拍熟女少妇极品色| 亚洲第一区二区三区不卡| 亚洲精品456在线播放app | 欧美绝顶高潮抽搐喷水| 1024手机看黄色片| avwww免费| 天堂av国产一区二区熟女人妻| 免费人成视频x8x8入口观看| 嫩草影视91久久| 日韩欧美国产在线观看| 亚洲av一区综合| 免费在线观看影片大全网站| 国产精品久久电影中文字幕| 国产精品爽爽va在线观看网站| 国产亚洲精品久久久久久毛片| 欧美丝袜亚洲另类 | netflix在线观看网站| 亚洲欧美清纯卡通| 美女免费视频网站| 成人一区二区视频在线观看| 性插视频无遮挡在线免费观看| 日日啪夜夜撸| 亚洲人成网站高清观看| 岛国在线免费视频观看| 男女啪啪激烈高潮av片| 国产综合懂色| 一区二区三区四区激情视频 | 动漫黄色视频在线观看| 婷婷丁香在线五月| 欧美一区二区国产精品久久精品| 欧美日韩综合久久久久久 | 久久久久久九九精品二区国产| 欧美国产日韩亚洲一区| 俄罗斯特黄特色一大片| 三级国产精品欧美在线观看| 欧洲精品卡2卡3卡4卡5卡区| 欧美性猛交╳xxx乱大交人| 欧美日韩黄片免| 成人亚洲精品av一区二区| 综合色av麻豆| 国产午夜福利久久久久久| 欧美另类亚洲清纯唯美| 舔av片在线| 精品一区二区三区视频在线观看免费| 极品教师在线视频| 欧美性猛交黑人性爽| av.在线天堂| 中文字幕免费在线视频6| 欧美日韩中文字幕国产精品一区二区三区| 国产视频一区二区在线看| 国产v大片淫在线免费观看| 久久久久久久午夜电影| 成人特级黄色片久久久久久久| 人妻久久中文字幕网| 中文字幕熟女人妻在线| 国产视频一区二区在线看| 女的被弄到高潮叫床怎么办 | .国产精品久久| 欧美中文日本在线观看视频| 亚洲国产欧美人成| 国产精品久久久久久久电影| 校园春色视频在线观看| 欧美性感艳星|