• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Performance of entanglement-assisted quantum codes with noisy ebits over asymmetric and memory channels

    2023-12-15 11:51:00JiHaoFan樊繼豪PeiWenXia夏沛文DiKangDai戴迪康andYiXiaoChen陳一驍
    Chinese Physics B 2023年12期
    關鍵詞:環(huán)境護理

    Ji-Hao Fan(樊繼豪), Pei-Wen Xia(夏沛文), Di-Kang Dai(戴迪康), and Yi-Xiao Chen(陳一驍)

    School of Cyber Science and Engineering,Nanjing University of Science and Technology,Nanjing 210094,China

    Keywords: asymmetric quantum channel,entanglement fidelity,entanglement-assisted quantum error correction code,quantum memory channel

    1.Introduction

    Quantum error correction (QEC) is crucial to realization of quantum communications and the building of quantum computers.[1,2]The stabilizer code formalism[3]is one of the most successful schemes in quantum information theory for realizing QEC.Stabilizer codes can be constructed by classical error correction codes with certain dual-containing conditions.Such constraint is not easy to be satisfied in many situations.[4]The entanglement-assisted (EA) quantum error correction codes(EAQECCs)[5-8]generalize the standard stabilizer codes, and EAQECCs can be constructed by any classical linear code without the dual-containing constraint.The price is that some ebits need to be preshared between the sender(Alice)and the receiver(Bob)before the transmission.In general, the preshared ebits need to be carefully preserved and thus they are assumed to exist without error.However,maintaining a number of ebits in perfect condition is usually difficult in practical applications.Such a phenomenon is crucial to the entanglement-assisted quantum communication formalism since imperfect ebits may degrade the performance of EAQECCs largely.[9]In Refs.[9,10], performance of EAQECCs with imperfect ebits was evaluated in entanglement fidelity.In Ref.[11], the entanglement fidelity of entanglement-assisted concatenated quantum codes was computed based on the concatenation scheme.

    In most quantum channels, the probabilities of different types of quantum noise usually exhibit a large asymmetry.It was shown that the phase-flip errors (Zerrors) happen much more frequently than the bit-flip (Xerrors).[12]Asymmetric quantum codes (AQCs) which have a more biased error correction towardsZerrors thanXerrors,were constructed to better cope the significant asymmetry in quantum channels.[13-17]Moreover, in fault-tolerant quantum computation, asymmetric errors have been further explored to help improve the fault-tolerant thresholds.[18-22]What’s more, the standard discretization error model[23]supposed that quantum errors are independent of each other.However, correlated errors are more practical in reality.[24-26]So far, the asymmetry and memory effect on the performance of EAQECCs with noisy ebtis are still unknown.

    In this work,we study the performance of EAQECCs with noisy ebits over asymmetric quantum channels and quantum memory channels by computing the entanglement fidelity of several EAQECCs.For aQE=[[n,k,d;c]]EAQECC,we consider that asymmetric and correlated noises exist not only in thenphysical qubits but also in thecebits.We compute the entanglement fidelity of the[[3,1,3;2]]entanglement-assisted repetition code and Bowen’s[[3,1,3;2]]EAQECC over asymmetric quantum channels.We know that the [[3,1,3;2]] repetition code is also an asymmetric quantum code,[13]which is assumed to be more powerful than the standard stabilizer codes.Our computation results suggest that the performance of the two EAQECCs is quite diverse and is related not only to the channel asymmetry but also to the ratio(denoted byω)of the error probabilities of ebits and qubits.Specifically, if the asymmetry of quantum channels is sufficiently large and the error probability of ebits is much smaller than that of qubits,then the [[3,1,3;2]] repetition code will perform much better than Bowen’s[[3,1,3;2]]EAQECC and the[[5,1,3]]stabilizer code.

    In quantum memory channels,the numerical results suggest that the entanglement fidelity of the two EAQECCs is lowered down in most range of depolarizing probabilities.Moreover,the performance of the two EAQECCs is related not only to the channel memoryμbut also to the ratioω.We show that the two EAQECCs can outperform the[[5,1,3]]stabilizer code over quantum memory channels as the ratioωbecomes smaller and smaller.For the two EAQECCs, we show that Bowen’s[[3,1,3;2]]EAQECC can outperform the[[3,1,3;2]]repetition code over quantum memory channels if the ratioωis relatively large,e.g.,ω ≥0.5.However,if the ratio is small,e.g.,ω=0.01, the performance of the two EAQECCs is diverse and is effected largely by the channel memory.In such a case, the numerical results suggest that the[[3,1,3;2]]repetition code can outperform Bowen’s[[3,1,3;2]]EAQECC if the channel memoryμis small,e.g.,μ ≤0.1.However,Bowen’s[[3,1,3;2]] EAQECC can beat the [[3,1,3;2]] repetition code if the channel memoryμis large,e.g.,μ=0.5.

    The rest of this article is given as follows.In Section 2,we present the needed background about quantum codes.In Section 3, we compute and plot the entanglement fidelity of several EAQECCs over asymmetric quantum channels.In Section 4, we compute and plot the entanglement fidelity of several EAQECCs over Markovian quantum memory channels.The conclusion is given in Section 5.

    2.Preliminaries

    In this section, we present some background knowledge about quantum channels and entanglement-assisted quantum codes.

    We use Pauli channels as the basic channel models to perform the computation of entanglement fidelity.Denote a two-dimensional Hilbert space by C2.For a qubit|x〉 in C2,we suppose|x〉=a|0〉+b|1〉,whereaandbare two complex numbers anda2+b2=1.Define the Pauli operators

    The quantum stabilizer codeQ= [[n,k]] is a 2kdimensional subspace of the Hilbert space C2n,andQis specified by a stabilizer groupSwith stabilizer generatorsSi(1≤i ≤n-k), i.e.,S=〈S1,...,Sn-k〉.Denote the parity check matrix ofQbyH=(HX|HZ).ThenHcan be obtained from Eq.(3)accordingly.Qhas minimum distancedif and only if it can detect any error of weight less than or equal tod-1,but cannot detect some error of weightd.

    DefineQE= [[n,k,d;c]] as an entanglement-assisted quantum stabilizer code(EAQSC)which can detect any qubit error of weight less than or equal tod-1.The number of ebits isc.Consider the Pauli operators given by

    Combining Eqs.(3) and (6), we can derive the parity check matrix ofQE.We denote the parity check matrix ofQEbyHE= (HX|HZ).Moreover, we denote the set of syndrome representatives that correspond to the parity check matrix ofHE=(HX|HZ) byTE.ThenTEis a set of correctable error operators ofQEand|TE|=2n-k+c.

    The Pauli channel on a single qubit can be written as

    whereφis a single qubit,0≤p0,px,py,pz ≤1,andp0+px+py+pz=1.Letp=1-p0be the error probability of a Pauli channel.Ifpx=py=pz=p/3,then the standard depolarizing channel is given by

    Moreover, quantum channels usually have memories in practice.[24]The standard discretization error model in Ref.[12] supposes that quantum errors are independent of each other.However, correlated errors are more practical in reality.Similarly to classical information theory, an important family of quantum memory channels is specified by the channels with Markovian correlated errors.Thus we use a Markovian correlated depolarizing quantum channel model(see Refs.[17,24]) to present the behavior of quantum channels with memory.For ann-qubits quantum system,we denote

    wherep0=1-p,p1,2,3=p/3,pl|i=(1-μ)pl+μδ(i,l)for 0≤i,l ≤3 and 1≤j ≤n,andμ∈[0,1]is the degree of memory.

    3.Fidelity of entanglement-assisted concatenated quantum codes over asymmetric quantum channels

    Entanglement fidelity of quantum codes is a reasonable measure of how well the qubits and entanglement of a subsystem of a larger quantum system are preserved.In practice,quantum codes with very high entanglement fidelity are preferred.In Ref.[11],entanglement fidelity of several EAQSCs over depolorizing channels was computed.In this section,we compute and compare the entanglement fidelity of several EACQCs over asymmetric quantum channels.

    Let H be a Hilbert space of dimensionn.Let?be a quantum operator acting on a mixed stateρ=∑i piρi=TrHR|α〉〈α|in terms of a purification|α〉∈H?HR, where HRis a reference system.The output state?(ρ) also lies in the Hilbert space H.Then the entanglement fidelity is defined as

    For aQE=[[n,k,d;c]]EAQSC,denote the encoding and decoding operations ofQEbyUandU?,respectively.DenoteTandDby the encoding and decoding channels,respectively.Let{Mj}be the syndrome measurement operations and let{Dj}be the correction operations.Let the channelNbe the encoded quantum information transmitted.During the decodingU?, denote the basis of then-k-cancillas andcebits by{|l〉}and{|s}, respectively.Let|Φ+〉ABbe the Bell state shared between Alice and Bob.We define

    whereTEis a set of syndrome representatives andSEis the stabilizer group.

    For EAQSCs over asymmetric quantum channels, we have the following result about the computation of entanglement fidelity.

    Theorem 1 LetQEbe an an EAQSC code, with a stabilizer groupSEand a set of syndrome representativesTE.Forqwx,wzandrvx,vzdefined in Eqs.(18) and (19), denoteΛ={qwx,wzrvx,vz}by the probability distribution of elements inTE×SE.The entanglement fidelity ofQEover asymmetric depolarizing channelsNA?NBis the weight enumerator ofΛ.

    Proof According to Eq.(15)and Lemma 1,the entanglement fidelity ofQE=[[n,k,d;c]]is given by

    whereλwx,wz,vx,vzis the number of error operators inTE?SEof weight distribution{wx,wz,vx,vz}.

    In most quantum systems, there exists a large asymmetry between the occurrence probabilities ofXerrors,Yerrors,andZerrors.[13,14,16]Furthermore, it was shown that the occurrence probability ofZerrors is much larger than that ofXerrors.Since theYoperator can be formulated byY=iXZ,aYerror can be seen as a combination of anXerror and aZerror.Therefore we letpy=px.Moreover, we suppose that Alice and Bob transmit quantum information through two independent quantum channelsNAandNB.[9]Suppose that bothNAandNBare depolarizing channels.Letpx,py,andpzbe the occurrence probabilities ofX,Y, andZerrors inNA, respectively.Denotepa=px+py+pz=2px+pz.Letrx,ry, andrzbe the occurrence probabilities ofX,Y,andZerrors inNB,respectively.Denotera=rx+ry+rz=2rx+rz.We have

    where 0≤wx+wz ≤n,and denote by

    where 0≤vx+vz ≤c.Defineω=ra/paas the ratio of the error probabilities of ebits and qubits.In asymmetric quantum channels,we takeη=pz/px=rz/rxas the channel asymmetry.It is reasonable to set the same channel asymmetry for the qubit and ebit channels.There may exist quantum channels that qubtis and ebits suffer from different channel asymmetry.But in this paper we do not consider that case.Therefore we haveω=ra/pa=rx/px=rz/pz.

    觀察組在此基礎上人性化護理:(1)為患者營造良好的病房環(huán)境,保證環(huán)境感情整潔,減少家屬探視保證患者睡眠充足;(2)針對患者的發(fā)病時間、病情狀況進行溝通,向患者講解關于疾病治療的方法及注意事項,讓患者清楚的了解疾病,并積極主動配合治療;(3)與患者交流過程中,關注患者內心活動,引導其自行傾訴內心苦惱,疏導其消極情緒,放松身心;(4)以護士長為首的護理小組要定期對患者情況進行匯總,針對其中存在的問題及時護理,保證患者早日康復。

    LetQE1=[[3,1,3;2]]be an entanglement-assisted quantum repetition code.The parity check matrix ofQE1=[[3,1,3;2]](see Ref.[9])is given by

    According to Eqs.(3) and (4), the stabilizer group ofQE1is given as follows:

    LetQE2=[[3,1,3;2]] be an EAQSC given by Bowen in Ref.[27].The parity check matrix ofQE2= [[3,1,3;2]] is given by

    According to Eqs.(3) and (4), the stabilizer group ofQE2is given as follows:

    and the syndrome representives ofQE2is given as

    In asymmetric Pauli channels,we rewriteSE2andTE1as

    LetQE= [[5,1,3]] be the quantum stabilizer code.[3,9]The stabilizer group ofQEis given by

    Since theQE= [[5,1,3]] stabilizer code is equivalent to Bowen’sQE2=[[3,1,3;2]] EAQSC, the syndrome representive ofQEis the same as that of Bowen’s code.

    According to Theorem 1,the entanglement fidelity ofQE1over asymmetric quantum Pauli channels is given by

    The entanglement fidelity ofQE2over asymmetric quantum Pauli channels is given by

    In Fig.1, we plot the entanglement fidelity of several EAQSCs over asymmetric quantum channels with different asymmetryη, and we choose different ratiosω.For all the three codes in Fig.1, it is shown that the entanglement fidelity of each code gets improved as the channel asymmetryηgrows.In particular, the effect of channel asymmetry is more obvious to theQE1=[[3,1,3;2]] repetition code.For example, the entanglement fidelity ofQE1withη= 100 is much higher than that ofQE2withη=10 andη=1.Moreover, the three codes perform diversely under different ratiosω.In particular, theQE1=[[3,1,3;2]] repetition code performs much better than Bowen’sQE2=[[3,1,3;2]] EAQSC and the[[5,1,3]]stabilizer code whenω=0.01.It should be noted that the curve of Bowen’sQE2=[[3,1,3;2]]EAQSC coincides with that of the [[5,1,3]] stabilizer code whenω=1 in Fig.1.The reason is that the stabilizer group of Bowen’sQE2=[[3,1,3;2]]EAQSC is equivalent to that of the[[5,1,3]]stabilizer code.Whenω= 1, the entanglement fidelity of Bowen’sQE2= [[3,1,3;2]] EAQSC is equal to that of the[[5,1,3]]stabilizer code.

    Fig.1.Entanglement fidelity of EAQSCs and the[[5,1,3]]stabilizer code over asymmetric quantum channels.The channel asymmetry is denoted by η=pz/px=rz/rx.The ratio of the error probabilities of ebits and qubits is denoted by ω=ra/pa=rx/px=rz/pz.We use the error probability pz and the entanglement fidelity as the X and Y axes,respectively.

    4.Fidelity of entanglement-assisted quantum codes over quantum memory channels

    In practical quantum channels, errors in qubits are usually not absolutely independent of each other.In this section,we compute and compare the entanglement fidelity of several entanglement-assisted quantum codes over Markovian quantum memory channels.We not only consider the memory in qubits but also consider the memory in ebits.Since qubits and ebits are usually stored in different space or in different time,we assume that errors in qubits are independent of those in ebits.Therefore Alice and Bob transmit quantum information through two independent quantum channelsMAandMB.[9]Suppose thatMAandMBare two independent Markovian depolarizing channels.The conditional probability ofMAsatisfies

    wherep0=1-p,p1,2,3=p/3,pl|i=(1-μA)pl+μAδ(i,l)for 0≤i,l ≤3,andμA∈[0,1]is the degree of memory of channelMA.The conditional probabilities ofMBsatisfy

    wheret0= 1-t,t1,2,3=t/3,tl|i= (1-μB)tl+μBδ(i,l)for 0≤i,l ≤3,andμB∈[0,1]is the degree of memory of channelMB.

    LetSEandTEbe the stabilizer group and the set of syndrome representatives of an EAQSC, respectively.According to Lemma 1 and Theorem 1, the entanglement fidelity of EAQSCs over Markovian depolarizing channels is the weight enumerator of the corresponding probability distribution of elements inTE×SE.We not only consider the memory in the qubits but also consider that in the ebits.For simplicity,we let the degree of channelMAbe the same as the degree of channelMB, i.e., we letμ=μA=μB.Moreover, from Eqs.(27) and(28),we have

    Then the entanglement fidelity of theQE1= [[3,1,3;2]]entanglement-assisted repetition code is given by

    The entanglement fidelity of Bowen’sQE2=[[3,1,3;2]]EAQSC is given by

    For comparison with standard quantum stabilizer codes,we also compute the entanglement fidelity of the[[5,1,3]]stabilizer codes as follows:

    In Fig.2, we plot the entanglement fidelity of several EAQSCs over Markovian quantum memory channels.From Fig.2, we know that the channel memory lowers down the performance of EAQSCs in most range of the depolarizing probability.Moreover, theQE1=[[3,1,3;2]] repetition code and Bowen’sQE2=[[3,1,3;2]] EAQSC can outperform the[[5,1,3]] stabilizer code provided that the error probability of ebits is sufficiently smaller than that of qubits.Whenω=1, the [[5,1,3]] stabilizer code performs better than the two EAQSCs over quantum memory channels;whileω=0.5,Bowen’sQE2=[[3,1,3;2]]EAQSC can outperform theQE1=[[3,1,3;2]]repetition code and the[[5,1,3]]stabilizer code.As the ratioωis smaller, e.g.,ω= 0.1,0.01, the performance of the two EAQSCs becomes much better than the [[5,1,3]]stabilizer code over quantum memory channels.Specifically,whenω=0.01, the performance of the two EAQSCs is diverse and is effected largely by the channel memory.In such a case, theQE1=[[3,1,3;2]] repetition code can outperform Bowen’sQE2=[[3,1,3;2]]EAQSC if the channel memoryμis small,e.g.,μ=0,0.1.However,Bowen’sQE2=[[3,1,3;2]]EAQSC can beat theQE1=[[3,1,3;2]] repetition code if the channel memoryμis large, e.g.,μ= 0.5.It should be noted that the curve of Bowen’sQE2= [[3,1,3;2]] EAQSC does not coincides with that of the [[5,1,3]] stabilizer code whenω=1 (μ/=0) in Fig.2.Here the situation is different from that in asymmetric quantum channels.For Bowen’sQE2= [[3,1,3;2]] EAQSC over Markovian quantum memory channels, we separate the three qubits and the two ebits.The two parts are independent of each other.However, for the[[5,1,3]]stabilizer code over Markovian quantum memory channels,the five qubits are considered as a whole.

    Fig.2.Entanglement fidelity of EAQSCs and the[[5,1,3]]stabilizer code over Markovian quantum memory channels.The channel memory is denoted byμ.The ratio of the error probabilities of ebits and qubits is denoted by ω=ra/pa=rx/px=rz/pz.We use the error probability p and the entanglement fidelity as the X axis and the Y axis,respectively.

    5.Conclusion

    In summary,we have computed the entanglement fidelity of two entanglement-assisted quantum stabilizer codes over asymmetric quantum channels and quantum memory channels.Moreover, we have not only considered asymmetric errors and correlated errors in qubits but also in ebits.In asymmetric quantum channels, we have shown that the performance of the two EAQSCs is quite diverse and is related not only to the channel asymmetry but also to the ratio of the error probabilities of ebits and qubits.We have shown that the[[3,1,3;2]]repetition code performs much better than Bowen’s[[3,1,3;2]]EAQECCs and the[[5,1,3]]stabilize code if the asymmetry is sufficiently large and the error probability of ebits is much smaller than that of qubits.In Markovian quantum memory channels, we have shown that the entanglement fidelity of the two EAQSCs is lowered down by the channel memory.We have shown that the performance of the two EAQSCs is not only related to the channel memoryμbut also to the ratio of the error probabilities of ebits and qubits.We have shown that the two EAQSCs can outperform the [[5,1,3]] stabilizer code over quantum memory channels if the ratio is small.We have shown that Bowen’s[[3,1,3;2]] EAQSC can outperform the [[3,1,3;2]] repetition code over quantum memory channels if the ratio of the error probabilities of ebits and qubits is relatively large.However,if the ratio is small,we have shown that the performance of the two EAQSCs is diverse and is effected greatly by the channel memory.We have shown that the [[3,1,3;2]] repetition code can outperform Bowen’s[[3,1,3;2]]EAQSC if the channel memory is small.However, Bowen’s [[3,1,3;2]] EAQSC can beat the[[3,1,3;2]]repetition code if the channel memory becomes larger.How to compute the entanglement fidelity of other EAQSCs over asymmetric quantum channels and quantum memory channels needs further research.However, the exact computation is extremely difficult as the code length becomes longer.One possible method is to approximate the computation of the entanglement fidelity.The other method is to use the entanglement-assisted concatenated quantum codes scheme.However,the exact computation of the entanglement fidelity of entanglement-assisted concatenated quantum codes is not a direct generalization and needs further research in the future work.Moreover,how to use entanglement-assisted quantum codes in quantum key distribution[28,29]to improve the entanglement fidelity is one important future work which needs further studied.

    Acknowledgments

    Project supported by the National Key R&D Program of China (Grant No.2022YFB3103802), the National Natural Science Foundation of China (Grant Nos.62371240 and 61802175),and the Fundamental Research Funds for the Central Universities(Grant No.30923011014).

    猜你喜歡
    環(huán)境護理
    長期鍛煉創(chuàng)造體內抑癌環(huán)境
    一種用于自主學習的虛擬仿真環(huán)境
    舒適護理在ICU護理中的應用效果
    孕期遠離容易致畸的環(huán)境
    不能改變環(huán)境,那就改變心境
    上消化道出血的護理與養(yǎng)生
    急腹癥的急診觀察與護理
    環(huán)境
    孕期遠離容易致畸的環(huán)境
    建立長期護理險迫在眉睫
    晚上一个人看的免费电影| 国产一区二区在线av高清观看| АⅤ资源中文在线天堂| 美女xxoo啪啪120秒动态图| 日韩av在线大香蕉| 99久久无色码亚洲精品果冻| 日本一二三区视频观看| 久久久久久久亚洲中文字幕| 人人妻人人澡人人爽人人夜夜 | 大香蕉久久网| 精品久久久久久久久亚洲| АⅤ资源中文在线天堂| 欧美一区二区亚洲| 能在线免费看毛片的网站| 欧美成人a在线观看| 亚洲四区av| 高清在线视频一区二区三区 | 久久久精品94久久精品| 久久久色成人| 99热精品在线国产| 一区二区三区高清视频在线| 日韩人妻高清精品专区| 黄片无遮挡物在线观看| 欧美不卡视频在线免费观看| av.在线天堂| 菩萨蛮人人尽说江南好唐韦庄 | 国产成人午夜福利电影在线观看| 日产精品乱码卡一卡2卡三| 麻豆国产97在线/欧美| 国产亚洲91精品色在线| 欧美性猛交╳xxx乱大交人| 2021少妇久久久久久久久久久| 中文字幕人妻熟人妻熟丝袜美| 色综合色国产| 波多野结衣高清无吗| www日本黄色视频网| 看十八女毛片水多多多| 亚洲人成网站高清观看| 夫妻性生交免费视频一级片| 免费av不卡在线播放| 插逼视频在线观看| 亚洲激情五月婷婷啪啪| 在线观看av片永久免费下载| 少妇被粗大猛烈的视频| 我要看日韩黄色一级片| 亚洲欧美清纯卡通| 一卡2卡三卡四卡精品乱码亚洲| 看片在线看免费视频| 黄色配什么色好看| 中文天堂在线官网| 在线观看一区二区三区| 久久精品影院6| 午夜亚洲福利在线播放| 毛片女人毛片| 男人狂女人下面高潮的视频| 可以在线观看毛片的网站| 精品国产一区二区三区久久久樱花 | 成人性生交大片免费视频hd| 一级av片app| 国产成人精品一,二区| 国产探花极品一区二区| 成人毛片60女人毛片免费| av国产免费在线观看| 色哟哟·www| 日韩av在线大香蕉| 51国产日韩欧美| 精品久久久久久久久久久久久| 成人午夜精彩视频在线观看| 国产老妇女一区| 亚洲成人中文字幕在线播放| 久久精品影院6| 一区二区三区四区激情视频| 国产视频内射| 又黄又爽又刺激的免费视频.| 国产探花极品一区二区| 日本免费一区二区三区高清不卡| 久久亚洲精品不卡| or卡值多少钱| 精品欧美国产一区二区三| 极品教师在线视频| 可以在线观看毛片的网站| 亚洲中文字幕日韩| 亚洲av男天堂| 国国产精品蜜臀av免费| 亚洲五月天丁香| 99热这里只有是精品在线观看| 啦啦啦韩国在线观看视频| 色网站视频免费| 中文欧美无线码| 日韩欧美三级三区| 女人十人毛片免费观看3o分钟| 日韩 亚洲 欧美在线| 啦啦啦观看免费观看视频高清| 欧美最新免费一区二区三区| 国产精品国产三级专区第一集| 国产私拍福利视频在线观看| 我要搜黄色片| 美女cb高潮喷水在线观看| 欧美成人午夜免费资源| av在线亚洲专区| 黄色日韩在线| av播播在线观看一区| 国产精品一区二区三区四区久久| 欧美zozozo另类| 人妻系列 视频| 男女那种视频在线观看| 熟妇人妻久久中文字幕3abv| 欧美三级亚洲精品| 热99在线观看视频| 亚洲av一区综合| 欧美色视频一区免费| 91精品国产九色| 美女国产视频在线观看| 亚洲av成人av| 国产精华一区二区三区| 老师上课跳d突然被开到最大视频| 欧美不卡视频在线免费观看| 免费观看a级毛片全部| 色综合站精品国产| 简卡轻食公司| 久久久精品大字幕| 精品酒店卫生间| 又粗又爽又猛毛片免费看| 久久久成人免费电影| 大话2 男鬼变身卡| 国产毛片a区久久久久| 国产三级中文精品| 亚洲av成人精品一二三区| 男女啪啪激烈高潮av片| 国产伦精品一区二区三区四那| 色尼玛亚洲综合影院| 91精品一卡2卡3卡4卡| 国产精品.久久久| 日韩av在线免费看完整版不卡| 亚洲国产欧洲综合997久久,| 岛国在线免费视频观看| 日本一二三区视频观看| 精品欧美国产一区二区三| 精品一区二区三区视频在线| av女优亚洲男人天堂| 老司机影院成人| 国产精品美女特级片免费视频播放器| 日本欧美国产在线视频| 久久久国产成人精品二区| 国产在线男女| 99视频精品全部免费 在线| 中文字幕av成人在线电影| 国产不卡一卡二| 一级毛片久久久久久久久女| 99久国产av精品国产电影| 99久久人妻综合| 国产精品一区二区三区四区免费观看| 自拍偷自拍亚洲精品老妇| АⅤ资源中文在线天堂| 国产精品熟女久久久久浪| 老司机福利观看| 啦啦啦观看免费观看视频高清| 大香蕉久久网| 国产精品无大码| 国产精品爽爽va在线观看网站| 又爽又黄无遮挡网站| 国产精品1区2区在线观看.| 国产欧美另类精品又又久久亚洲欧美| 成人二区视频| 插逼视频在线观看| 欧美性感艳星| 欧美97在线视频| 欧美日本亚洲视频在线播放| 国产亚洲午夜精品一区二区久久 | 国产淫语在线视频| 欧美日韩国产亚洲二区| 寂寞人妻少妇视频99o| 久久亚洲精品不卡| 美女xxoo啪啪120秒动态图| 精品欧美国产一区二区三| 午夜精品国产一区二区电影 | 国产成人福利小说| 久久久久网色| 成人一区二区视频在线观看| 日本免费在线观看一区| 老师上课跳d突然被开到最大视频| 亚洲天堂国产精品一区在线| 18+在线观看网站| 国产午夜福利久久久久久| 最近最新中文字幕免费大全7| 男女边吃奶边做爰视频| 99久国产av精品国产电影| 成人一区二区视频在线观看| 小说图片视频综合网站| 村上凉子中文字幕在线| 长腿黑丝高跟| 麻豆成人午夜福利视频| 熟妇人妻久久中文字幕3abv| 男女边吃奶边做爰视频| 国产久久久一区二区三区| 成人毛片a级毛片在线播放| 青青草视频在线视频观看| 老师上课跳d突然被开到最大视频| 亚洲精品乱码久久久久久按摩| 免费搜索国产男女视频| 欧美日本视频| 亚洲熟妇中文字幕五十中出| 如何舔出高潮| 国产精品一区二区性色av| 久久99热这里只频精品6学生 | 寂寞人妻少妇视频99o| 观看美女的网站| 国产高清三级在线| 亚洲av成人精品一二三区| 最近2019中文字幕mv第一页| 精品国产露脸久久av麻豆 | 日韩成人av中文字幕在线观看| a级毛色黄片| 国产精品电影一区二区三区| 黄色欧美视频在线观看| 午夜视频国产福利| 汤姆久久久久久久影院中文字幕 | 中文字幕av成人在线电影| 一级二级三级毛片免费看| 午夜精品国产一区二区电影 | 99九九线精品视频在线观看视频| 久久久久性生活片| 国产伦在线观看视频一区| 蜜臀久久99精品久久宅男| 有码 亚洲区| 狂野欧美白嫩少妇大欣赏| 赤兔流量卡办理| 男人舔奶头视频| 在线观看美女被高潮喷水网站| 麻豆乱淫一区二区| 边亲边吃奶的免费视频| 成人午夜高清在线视频| 国产亚洲精品av在线| 在线免费观看的www视频| 国产精品一二三区在线看| 国产精品久久久久久久电影| 国产成人a∨麻豆精品| 国产又色又爽无遮挡免| 99在线人妻在线中文字幕| 亚洲人成网站在线播| 日本黄大片高清| 两个人视频免费观看高清| 国产精品野战在线观看| 国产高清视频在线观看网站| 天堂影院成人在线观看| 亚洲欧美成人综合另类久久久 | 久久精品夜夜夜夜夜久久蜜豆| 国产美女午夜福利| 九九在线视频观看精品| 少妇裸体淫交视频免费看高清| 少妇被粗大猛烈的视频| 久久久色成人| 女人久久www免费人成看片 | 全区人妻精品视频| 午夜亚洲福利在线播放| 18+在线观看网站| 日韩三级伦理在线观看| 欧美另类亚洲清纯唯美| 国产一区二区三区av在线| 日本欧美国产在线视频| 亚洲成人av在线免费| 免费观看人在逋| 99久久精品一区二区三区| 国产精品久久久久久精品电影| a级毛色黄片| 身体一侧抽搐| 国产亚洲av嫩草精品影院| 国产探花极品一区二区| 欧美一区二区亚洲| 国产精品不卡视频一区二区| 亚洲国产欧美人成| 夜夜爽夜夜爽视频| 国内揄拍国产精品人妻在线| 中文字幕亚洲精品专区| 国产三级在线视频| 精品无人区乱码1区二区| 日本-黄色视频高清免费观看| 搡老妇女老女人老熟妇| 看黄色毛片网站| 亚洲18禁久久av| 免费黄网站久久成人精品| 欧美日本亚洲视频在线播放| 三级国产精品片| 亚洲电影在线观看av| 日日摸夜夜添夜夜爱| 尾随美女入室| 国产欧美另类精品又又久久亚洲欧美| 天堂影院成人在线观看| 亚洲伊人久久精品综合 | 成人毛片a级毛片在线播放| 能在线免费看毛片的网站| 人妻制服诱惑在线中文字幕| 青青草视频在线视频观看| 国产伦精品一区二区三区四那| 美女黄网站色视频| 国产亚洲av片在线观看秒播厂 | 亚洲精品色激情综合| 欧美极品一区二区三区四区| 国产精品久久久久久久电影| 国产一区亚洲一区在线观看| 熟女人妻精品中文字幕| 熟妇人妻久久中文字幕3abv| 日韩精品有码人妻一区| 一二三四中文在线观看免费高清| 国产亚洲av嫩草精品影院| 一级毛片久久久久久久久女| 晚上一个人看的免费电影| 免费无遮挡裸体视频| 久久亚洲精品不卡| 99久久精品国产国产毛片| 少妇的逼水好多| 亚洲国产精品sss在线观看| 亚洲精品国产av成人精品| 国产伦精品一区二区三区四那| 亚洲真实伦在线观看| 国产免费视频播放在线视频 | 久久久久久伊人网av| 国产成人精品婷婷| 少妇被粗大猛烈的视频| 一二三四中文在线观看免费高清| 老司机福利观看| 国产伦理片在线播放av一区| 天堂av国产一区二区熟女人妻| 欧美日韩一区二区视频在线观看视频在线 | 亚洲欧美日韩无卡精品| 午夜老司机福利剧场| 久久这里有精品视频免费| 在线观看一区二区三区| 国产真实乱freesex| 国产精品99久久久久久久久| 高清日韩中文字幕在线| 国产精品一区www在线观看| 国产午夜精品一二区理论片| av国产免费在线观看| 亚洲欧美日韩高清专用| 亚洲精华国产精华液的使用体验| 亚洲成人中文字幕在线播放| 亚洲美女视频黄频| 69人妻影院| 国产免费又黄又爽又色| 国产三级在线视频| 国产精品久久视频播放| 欧美变态另类bdsm刘玥| 日本wwww免费看| 非洲黑人性xxxx精品又粗又长| 人人妻人人澡人人爽人人夜夜 | 国产精品国产三级专区第一集| 一区二区三区免费毛片| 97超碰精品成人国产| 亚洲国产精品专区欧美| 最近的中文字幕免费完整| www.av在线官网国产| 国产精品国产三级国产av玫瑰| 少妇人妻精品综合一区二区| 久久鲁丝午夜福利片| 国产高清视频在线观看网站| 成人鲁丝片一二三区免费| av.在线天堂| 观看美女的网站| 秋霞伦理黄片| 亚洲av成人精品一二三区| 欧美3d第一页| 国产一区二区在线观看日韩| 国产久久久一区二区三区| 亚洲美女视频黄频| 高清在线视频一区二区三区 | 如何舔出高潮| 久久精品夜夜夜夜夜久久蜜豆| 欧美另类亚洲清纯唯美| 亚洲伊人久久精品综合 | 黄片wwwwww| 亚洲国产成人一精品久久久| 草草在线视频免费看| 99热这里只有精品一区| 亚洲av男天堂| 中文字幕久久专区| 男女国产视频网站| 亚洲国产日韩欧美精品在线观看| 国产高清国产精品国产三级 | 天天躁日日操中文字幕| 小说图片视频综合网站| 在现免费观看毛片| 日韩av不卡免费在线播放| 插阴视频在线观看视频| 日韩在线高清观看一区二区三区| 国产熟女欧美一区二区| 又粗又爽又猛毛片免费看| 狠狠狠狠99中文字幕| 亚洲图色成人| 欧美精品一区二区大全| 国产成人a∨麻豆精品| 欧美变态另类bdsm刘玥| 最近最新中文字幕免费大全7| 久久精品久久久久久久性| 寂寞人妻少妇视频99o| 中文精品一卡2卡3卡4更新| 色尼玛亚洲综合影院| 亚洲av男天堂| 久久精品熟女亚洲av麻豆精品 | 亚洲欧美精品专区久久| 国语对白做爰xxxⅹ性视频网站| 两性午夜刺激爽爽歪歪视频在线观看| 我的女老师完整版在线观看| 久久99热6这里只有精品| 22中文网久久字幕| 丰满少妇做爰视频| 一个人看视频在线观看www免费| 久久精品影院6| 18禁动态无遮挡网站| 久久精品人妻少妇| 能在线免费看毛片的网站| 日韩欧美在线乱码| 国产一区亚洲一区在线观看| 亚洲美女搞黄在线观看| 国产精品福利在线免费观看| 国产老妇伦熟女老妇高清| 三级男女做爰猛烈吃奶摸视频| 欧美性感艳星| 亚洲精华国产精华液的使用体验| 免费不卡的大黄色大毛片视频在线观看 | 国产国拍精品亚洲av在线观看| 国产久久久一区二区三区| 91aial.com中文字幕在线观看| 国产精品熟女久久久久浪| 国产精品.久久久| 欧美性感艳星| 秋霞伦理黄片| 国产精品国产三级国产av玫瑰| 久久久久久久国产电影| 人人妻人人澡欧美一区二区| 国产精品一区www在线观看| 精品不卡国产一区二区三区| 亚洲欧美日韩卡通动漫| 97超碰精品成人国产| 免费看日本二区| 小说图片视频综合网站| 久久精品久久精品一区二区三区| 波多野结衣巨乳人妻| 亚洲av福利一区| 免费观看精品视频网站| 高清av免费在线| 国产欧美日韩精品一区二区| 久久人人爽人人爽人人片va| 精品久久久久久久久久久久久| 网址你懂的国产日韩在线| 日本免费在线观看一区| 国产黄片视频在线免费观看| 亚洲在线自拍视频| 在线观看一区二区三区| 51国产日韩欧美| 三级国产精品欧美在线观看| 日韩中字成人| 国产精品爽爽va在线观看网站| videos熟女内射| 国产午夜精品久久久久久一区二区三区| 1024手机看黄色片| 九九在线视频观看精品| 亚洲五月天丁香| 人妻制服诱惑在线中文字幕| 我要看日韩黄色一级片| 麻豆一二三区av精品| 国产男人的电影天堂91| 日本三级黄在线观看| 日韩欧美三级三区| 在线播放无遮挡| 亚洲国产精品成人综合色| 成年版毛片免费区| 男插女下体视频免费在线播放| 国产精品一区二区在线观看99 | 国产成人福利小说| 精品少妇黑人巨大在线播放 | 成人亚洲欧美一区二区av| 女人十人毛片免费观看3o分钟| 三级经典国产精品| 午夜精品在线福利| 国产一级毛片七仙女欲春2| 插阴视频在线观看视频| 国产女主播在线喷水免费视频网站 | 精品无人区乱码1区二区| 精品久久久久久久久亚洲| 久久久a久久爽久久v久久| 成人特级av手机在线观看| 亚洲最大成人中文| 亚洲精品国产av成人精品| 亚洲精品亚洲一区二区| 国产精品久久电影中文字幕| 变态另类丝袜制服| 亚洲最大成人中文| 99久国产av精品国产电影| 国产精品国产三级专区第一集| 免费黄网站久久成人精品| 久久人人爽人人爽人人片va| 一个人看视频在线观看www免费| 午夜老司机福利剧场| 亚洲激情五月婷婷啪啪| 九九爱精品视频在线观看| 天堂√8在线中文| 欧美激情国产日韩精品一区| 春色校园在线视频观看| 亚洲真实伦在线观看| 亚洲精品一区蜜桃| 国国产精品蜜臀av免费| 白带黄色成豆腐渣| 国产淫片久久久久久久久| 国产 一区精品| 亚洲天堂国产精品一区在线| 我要看日韩黄色一级片| 色网站视频免费| 午夜激情欧美在线| 99久久精品热视频| 久久久久久久久中文| 男女视频在线观看网站免费| 中文字幕av成人在线电影| 欧美极品一区二区三区四区| 国产黄a三级三级三级人| 久久鲁丝午夜福利片| 在现免费观看毛片| 91av网一区二区| 观看免费一级毛片| 亚洲av电影在线观看一区二区三区 | 成人亚洲精品av一区二区| 亚洲国产欧美在线一区| 日韩国内少妇激情av| 亚洲四区av| 黄片无遮挡物在线观看| 国产精品麻豆人妻色哟哟久久 | 久热久热在线精品观看| 亚洲av福利一区| 伊人久久精品亚洲午夜| 1024手机看黄色片| www日本黄色视频网| 午夜精品一区二区三区免费看| 天美传媒精品一区二区| 人妻夜夜爽99麻豆av| 如何舔出高潮| 变态另类丝袜制服| 免费无遮挡裸体视频| 亚洲成人久久爱视频| 男女下面进入的视频免费午夜| 99热精品在线国产| 国产高清有码在线观看视频| 纵有疾风起免费观看全集完整版 | 精品久久久噜噜| 日本爱情动作片www.在线观看| 精品一区二区三区人妻视频| 女的被弄到高潮叫床怎么办| 色哟哟·www| 三级经典国产精品| 一级黄片播放器| 国产成人免费观看mmmm| 中国美白少妇内射xxxbb| 亚洲综合精品二区| 国产一区二区三区av在线| 精品久久久噜噜| 两个人视频免费观看高清| 91久久精品电影网| 久久精品国产亚洲av天美| 91久久精品国产一区二区三区| 不卡视频在线观看欧美| av卡一久久| 日本黄色视频三级网站网址| 国产成人精品婷婷| 国产精品国产三级国产专区5o | 天美传媒精品一区二区| 国产精品国产高清国产av| 亚洲aⅴ乱码一区二区在线播放| 国产精品1区2区在线观看.| 日本一二三区视频观看| 国产精品综合久久久久久久免费| 精品无人区乱码1区二区| 亚洲欧美日韩无卡精品| 亚洲久久久久久中文字幕| 国产精品,欧美在线| 美女被艹到高潮喷水动态| 久热久热在线精品观看| АⅤ资源中文在线天堂| 亚洲av二区三区四区| a级毛色黄片| 国产成人免费观看mmmm| 亚洲在久久综合| 午夜爱爱视频在线播放| 亚洲伊人久久精品综合 | 高清av免费在线| 国语自产精品视频在线第100页| 99热6这里只有精品| 日日撸夜夜添| 国产成人freesex在线| 水蜜桃什么品种好| 久久久久久久久大av| 一个人看视频在线观看www免费| 国产真实乱freesex| 精品久久久久久电影网 | 亚洲va在线va天堂va国产| 成人三级黄色视频| 久久这里有精品视频免费| 日韩欧美精品免费久久| 亚洲欧美日韩无卡精品| 99久久精品一区二区三区| 一级毛片我不卡| av国产免费在线观看| 少妇的逼水好多| 亚洲综合精品二区| 精品久久久久久久久亚洲| 国产成人午夜福利电影在线观看| 国产亚洲av嫩草精品影院| 免费播放大片免费观看视频在线观看 | 欧美一区二区精品小视频在线| 久久久久久久久久久丰满| 欧美性猛交╳xxx乱大交人| 1000部很黄的大片| 亚洲精品一区蜜桃| 午夜亚洲福利在线播放| 寂寞人妻少妇视频99o| 亚洲人成网站在线播| 欧美性感艳星|