• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Laser parameters affecting the asymmetric radiation of the electron in tightly focused intense laser pulses

    2023-12-15 11:51:10XingYuLi李星宇WanYuXia夏婉瑜YouWeiTian田友偉andShanLingRen任山令
    Chinese Physics B 2023年12期

    Xing-Yu Li(李星宇), Wan-Yu Xia(夏婉瑜), You-Wei Tian(田友偉), and Shan-Ling Ren(任山令)

    1Bell Honors School,Nanjing University of Posts and Telecommunications,Nanjing 210023,China

    2College of Management,Nanjing University of Posts and Telecommunications,Nanjing 210023,China

    3College of Science,Nanjing University of Posts and Telecommunications,Nanjing 210023,China

    Keywords: laser optics,nonlinear Thomson scattering,tightly focused laser,asymmetric radiation

    1.Introduction

    As an approximation of Compton scattering in the lowenergy region,[1]Thomson scattering refers to the elastic scattering process between a free-charged particle and an electromagnetic field.In the 1980s, Mourouet al.[2]proposed the chirped pulse amplification (CPA) technique, which greatly improved the quality of laser pulses.The CPA technique is able to compress the width of the laser pulse and increase the peak power.[3-5]After proper focusing, a laser with relativistic light intensity can be obtained.[6,7]This great progress has triggered a rethinking of Thomson scattering.Under the action of a laser of relativistic light intensity, the oscillation speed of the electron approaches the speed of light.[8]The effect of the magnetic field on the electron has been greatly enhanced and is already comparable to the electric field, which leads to the nonlinear oscillatory motion of the electron.As a result, Thomson scattering becomes a nonlinear problem,namely, nonlinear Thomson scattering (NTS).High-energy rays (e.g., x-rays) produced using NTS have many applications in medical diagnostics,[9,10]nuclear physics,[11,12]and other fields.[13,14]

    A number of theoretical and experimental studies have been conducted to discuss the radiation properties of the electron under the action of the laser pulse.[15-17]From the perspective of the spatial domain,Leeet al.[18]numerically simulated the spatial characteristics of Thomson scattering from stationary single electron under the action of intense lasers with different polarization states.Changet al.[19]discussed the collimation of electron radiation using tightly focused circularly polarized laser pulses colliding with an ultrahigh energy electron.From the perspective of the frequency domain,POPAet al.[20]gave an exact calculation of Thomson scattering higher harmonics.Hartemannet al.[21]proposed that the use of circularly polarized laser pulses with a planar envelope could effectively improve the monochromatic nature of the electron radiation.However, most of the existing studies focus on the spatial and frequency domains,while ignoring the radiation phenomenon of the electron in the time domain.Today,Caoet al.[22]exploited the nonlinear Thomson scattering to achieve a single attosecond pulse.L¨uet al.[23]used tightly focused laser pulses to interact with the electron and found the phenomenon of asymmetric radiation of the electron.However, the study by L¨uet al.was limited to laser pulses with specific parameters and ignored the discussion in the general case.

    To solve the above problems, the effects of various parameters on electron radiation under the action of a tightly focused linearly polarized laser pulse are comprehensively studied.The results show that although the increase in laser intensity can significantly increase the maximum radiated power,it exacerbates the asymmetry of electron radiation.On the contrary, the increase in the pulse width reduces the maximum radiated power and alleviates the asymmetry of the electron radiation.In addition,the increase in the pulse width expands the radiation range.With the variation in the initial phase,we also find a periodic variation in the electron asymmetric radiation with a period ofπ.In the range of 0-2π, there exist jump points with the phase difference ofπ.Considering the above phenomenon, reasonable explanations are given based on electrodynamics.

    The rest of the paper is organized as follows.In Section 2,based on electrodynamic principles, expressions for the electromagnetic field of laser, equation of motion of the electron,and the electron radiation(i.e.,NTS radiation)are derived.In Section 3,the effects of laser intensity,initial phase,and pulse width on the electron radiation are analyzed.From the perspective of the time domain, we focus on the characteristics of electron asymmetric radiation.In Section 4, the effects of laser parameters on the electron asymmetric radiation are summarized.In addition, the prospects of the application of this research are presented.

    2.Theory and formula

    This paper is based on a single-electron model for numerical simulation,which has the advantage of high accuracy and high speed.The model is beneficial to improve the safety and effectiveness of detecting laser parameters.

    In the numerical simulation,the electron is set at the coordinate origin.The electron interacts with a Gaussian tightly focused linearly polarized laser pulse.The pulse propagates in the+zdirection,as shown in Fig.1.

    Fig.1.Diagram of a tightly focused linearly polarized laser pulse interacting with a stationary electron.

    2.1.Laser pulses

    As mentioned in Section 1,the intensity of the laser pulse can reach the level of relativistic light intensity after focusing on a small dimension.Therefore, a detailed study of the laser electric and magnetic fields near the beam focus is required.[24]However,the field description based on low-order Gaussian beams is not precise enough.Some scholars adopted the near-axis approximation treatment to reduce the computational effort of numerical simulation.[17,19]The method ignored the effect of the longitudinal field,which led to a high error between the simulation results and the actual situation.[17]In contrast, the description of the laser electric and magnetic fields using higher-order field effects is more accurate.

    The laser beam shown in Fig.1 is modeled by a linearly polarized vector potential along the +xaxis.Based on the higher-order field effects of the laser electric field, the three components ofEcan be expressed as[24,26]

    whereξ=x/w0,κ=y/w0,r2=x2+y2, andρ=r/w0.ε=w0/zRis the diffraction angle, which is capable of measuring the divergence of the beam.In tightly focused intense laser pulses,theε5term contributes to ensure the accuracy of describing the electromagnetic field.w0is the waist radius.

    whereE0=a0ω0mc/eis the electric field amplitude.cis the speed of light, andc=3×108m·s-1.η=ω0t-k0z.Lis the pulse width, i.e., half height full width.The phase?=?P+?G-?R+?0.?Pis the plane wave phase.?G=tan-1z/zfis the Gooey phase related to the Rayleigh length.?R=ω0(x2+y2)/(2cR)is the phase relevant to the wavefront curvature.R(z)=z(1+z2R/z2)is the radius of curvature before the pulsed laser.?0is the initial phase,which is determined by the laser.It is worth noting that the fields given should satisfy Maxwell’s equation ?·E=?·B=0.

    2.2.Motion of electron

    Under the action of a tightly focused intense laser pulse,the equation of motion of electron can be determined by the Lorentz equation and the energy equation[25]

    wherep=γmcuis the momentum.W=γmc2is the energy.γ=(1-u2)-1/2refers to the relativistic formula factor,which is used for normalization.uis the speed normalized by the speed ofc.

    By observing Eqs.(11) and (12), both the laser electric field and the laser magnetic field in Subsection 2.1 affects the characteristics of the motion of the electron.[17]Meanwhile,Eqs.(11) and (12) are in the form of differential equations and are highly coupled.Considering the complexity of the equations,it is difficult to derive a general analytical solution.Combining Eqs.(1)-(6),differential equations are solved numerically using the Runge-Kutta-Fehlberg(RKF45)method.Then, we can obtain the trajectories, velocities, and accelerations of the electron.Since the higher order field effects are taken into account in Subsection 2.1,the numerical solution is more accurate.

    2.3.Angular distribution of spatial radiation

    When the electron does relativistic acceleration motion in the intense laser field, it emits electromagnetic radiation in all directions of space.To accurately calculate the angular distribution of the NTS radiation, the right-angle coordinate system in Fig.1 is transformed into a spherical coordinate system.Defining the radiation direction vectorn=(sinθcosΦ,sinθsinΦ,cosθ),Φis the azimuthal angle andθis the polar angle(marked in Fig.2).The electromagnetic radiation power per unit solid angle can be expressed as[23]

    whereP(t) is radiation power and dP(t)/d?is normalized bye2ω20/(4πc).t′is the delay time of the electron.tis the moment when the observer receives the radiation.t=t′+d0-n·D.Note thatd0is the distance between the observation point of the detector and the point of action of the laser and the electron.Dis the position vector of the electron.

    The radiated energy per unit stereo angle of the electron can be considered as the accumulation of radiated power over a period of time.Hence,it can be expressed as the integral of the radiated power per unit stereo angle

    3.Numerical results

    In this paper, the radiation is observed on a sphere with a radius of 1 m centered at the origin of the coordinates.To eliminate the effects due to orders of magnitude, the radiated power of the electron is normalized(i.e.,divided by the maximum radiated power of the electron in the spatial domain).As shown in Fig.2, the color scale from blue to yellow indicates the radiated power of electron gradually increases.The brightest color (i.e., the yellowest place) indicates the maximum radiated power.The direction of the ray from the point of origin through this observation point is defined as the maximum radiation direction.In other words,the maximum radiation direction includes the azimuthal angleφmaxand the polar angleθmax.

    Fig.2.Schematic diagram of the spatial spectrum of electron power radiation.

    It should be noted that the laser wavelengthλ0=1μm in this paper.In this section,the laser intensityIis characterized by the laser amplitudea0(see the beginning of Section 2 for the specific expression).

    3.1.Laser intensity

    According to the expression for the vector potential of a Gaussian laser pulse, the laser intensity is on the exponential term coefficient of the vector potential.Therefore,the increase in the laser intensity makes the vector potential change drastically.This drastic change directly affects the spatial radiation distribution of the electron.

    3.1.1.Motion of the electron

    As can be seen from Fig.3,the motion of the electron under the action of a tightly focused linearly polarized laser consists of two main stages.In the first stage,the electron moves oscillating around the central axis of laser propagation,along the positive direction of thez-axis.The electron’s velocity changes violently between two adjacent deflection points.Finally, the electron reaches the maximum radial distance from the central axis.In the second stage, after the electron experiences a violent acceleration, the rear of the laser is unable to decelerate the electron vertically to the previous situation.Therefore,the electron moves away from the central axis and gains energy.

    Fig.3.Electron motion trajectories under the action of lasers of different laser intensities.The beam waist w0=3λ0,the pulse width L=3λ0,and the initial phase ?0=0.The laser intensity is(a)a0=1,(b)a0=6,(c)a0=10.

    Fig.4.Variation in acceleration of the electron under the action of lasers of different laser intensities.Beam waist radius w0 =3λ0,pulse width L=3λ0,and the initial phase ?0=0.(a)Variation in transverse acceleration dtUx,(b)variation in longitudinal acceleration dtUz.

    The above two stages of motion are closely related to the intensity of the laser.When the laser intensity increases, the maximum radial distance reached by the electron is greater in the first stage.In the second stage, the off-axis motion of the electron becomes more pronounced.The specific reason can be explained based on the changes in the acceleration of the electron.As shown in Fig.4,under the action of more intense laser pulse,the laser interacts with the electron for a longer period of time.The acceleration of the electron increases significantly.The electron is able to gain more energy.Meanwhile,the speed of the electron increases.This also explains the longer distance the electron oscillates in the first stage when the laser intensity increases(see Fig.3).

    In particular,whena0>6,the acceleration of the electron changes extremely drastically,thus intensifying the oscillatory motion of the electron in the first stage.Moreover,the movement of the electron away from the central axis is more pronounced in the second stage.The characteristic of the electron motion leads to a change in the distribution of spatial radiation, i.e., the bifurcation phenomenon.This feature will be described in Subsection 3.1.2.

    3.1.2.Spatial distribution of electron radiation

    The Lorentz force generated by the laser magnetic field causes an enhanced longitudinal motion of the electron.The sharp change of longitudinal velocity causes the nonlinear characteristics of radiation.As depicted in Fig.5,the increase in laser intensity leads to a smaller angular range of radiation.This phenomenon can be explained using the properties of electron motion in Subsection 3.1.1.The radiation produced by the electron is mainly concentrated in the direction of the motion.[8]Under the action of intense laser pulse, the velocity of the electron motion is mainly in the longitudinal direction.When the laser intensity increases, the longitudinal motion of the electron is more pronounced.Therefore,the radiation angle of the electron is subsequently reduced.The phenomenon indirectly indicates the improvement of the collimation of the electron radiation,which is another main characteristic of electron nonlinear radiation.[19]

    In Subsection 3.1.1,we mentioned that the acceleration of the electron changes extremely drastically whena0>6.This drastic change leads to a bifurcation of the electron radiation in the space domain.In Fig.5(b), whena0=6, the electron radiation appears as two peaks in space.Whena0> 6 the spatial distribution of electron radiation bifurcates, as shown in Fig.5(c).The increase in laser intensity leads to a larger vector potential gradient.The velocity and acceleration of the electron at different positions vary considerably.As a result,radiation bifurcation occurs.

    Fig.5.Spatial distribution of electron radiation power under the action of lasers of different laser intensities.The beam waist w0 =3λ0, the pulse width L=3λ0,and the initial phase ?0=0.The laser intensity is(a)a0=1,(b)a0=6,(c)a0=10.

    3.1.3.Asymmetric radiation in the time domain

    The dramatic changes in the electron acceleration lead to large differences in the radiated power from different angles.In this paper, the maximum value of the electron radiated power is defined as the peak power.We have defined the maximum radiation direction at the beginning of Section 3.As vividly shown in Fig.6,in the direction of maximum radiation,a double peak appears on the curve of the radiated power per unit stereo angle versus time for the electron.

    Leeet al.also found a double-peaked phenomenon of electron radiation in the time domain called the double-pulse structure.[27]In this paper,we refer to this phenomenon as the bimodal structure in the time domain for ease of understanding.In the following sections, the bimodal structure refers to the curve of the electron unit stereo angular radiation power versus time in the direction of maximum radiation.The bimodal structure in the time domain is a special phenomenon under the action of a linearly polarized laser.The appearance of the bimodal structure is mainly related to the longitudinal movement of the electron.[8,28]During half a period under the action of a linearly polarized laser (i.e., when the electron moves towardφ=φmax,θ=θmax), there exist zero points in the derivative of the longitudinal momentum of the electron with respect to time.[8,27]The acceleration of the electron produces peaks in radiated power for a brief period of time.The brief time is due to the delay time between the detector and the electron.[18,27]Therefore, the radiated power per unit stereo angle of the electron has two distinct peaks in the time domain.

    Fig.6.In the direction of maximum radiation,the radiated power of the electron per unit stereo angle versus time.The beam waist w0=3λ0,the pulse width L=3λ0,and the initial phase ?0=0.The laser intensity is(a)a0=1,(b)a0=6,(c)a0=10.

    However,compared to Lee’s study,the bimodal structure we found is asymmetric.A tightly focused linearly polarized laser is different from a plane wave laser.The plane wave laser cannot achieve acceleration of the electron.Under the action of a plane wave laser,the acceleration and deceleration of the electron cancel each other out.Thus,the velocity of the electron is not increased.However, under the action of a tightly focused linearly polarized laser, the electron is able to maintain a certain speed and gain energy.Therefore, the bimodal structure we found is asymmetric under the action of a tightly focused linearly polarized laser.

    As shown in Fig.6,the bimodal structure in the time domain is significantly changed under the action of more intense laser pulses.In order to clearly compare the differences in the bimodal structure,we defined three parameters: the maximum radiated power dP(t)/d?max,the symmetry coefficientS, and the bimodal interval ?t.dP(t)/d?maxis the power at the highest peak.The symmetry coefficientSis to measure the symmetry of the bimodal structure defined as the ratio of the secondary peak to the primary peak.Its range is(0,1).The closer the symmetry coefficientSis to 1,the better the symmetry of the bimodal structure is.?tis the difference between the moment of peak appearancetmaxand the moment of secondary peak appearancetsmax,?t=|tmax-tsmax|.

    Table 1.Parameters of the bimodal structure in lasers of different laser intensities.

    The specific data for the above parameters in Fig.6 are shown in Table 1.The peak of electron radiation power increases under the action of more intense laser pulses.According to Eq.(13),it can be found that the radiated power of the electron is related to the acceleration of the electron.The higher the intensity of the laser,the greater the acceleration of the electron,and the consequent increase in the peak power of the radiation.However,under the action of more intense laser pulse,the symmetry of the electron radiation decreases significantly, and the bimodal interval becomes smaller.Note that the increase in laser intensity is unable to increase the maximum radiated power as well as the symmetry of the bimodal structure at the same time.

    As for the higher intensity laser pulses, they will be specifically analyzed in the next section in combination with the initial phase.

    3.2.Initial phase

    In practice,the intensity of the laser is often limited in order to ensure the safety of the experiment.Within the limited laser parameters, the initial phase can be adjusted to obtain a larger radiated power.When the pulse width(i.e.,half height full width) of the intense laser is larger, the number of electron oscillations increases.As a result,the effect of the initial phase on the electron radiation is masked.[29]In this section,the pulse width of the laser is 3λ0,and the effect of the initial phase is well represented.It is important to note that the initial phase of the laser in this section varies from 0 to 2πwith an interval ofπ/18.

    3.2.1.Periodic extension

    Based on Subsection 3.1.1, the motion of the electron mainly consists of two stages.The initial phase can change the maximum radial distance reached by the electron in the first stage.In the second stage, the initial phase is able to change the direction of the electron away from the central axis.As vividly depicted in Fig.7, when the laser intensity is fixed (e.g.,a0=25), the motion trajectory of the electron obeys a periodic variation with a period of 2π.When the initial phase difference isπ,the trajectory of the electron is symmetric about the propagation central axis.In other words, when the initial phase increases byπ, the electron has equal maximum radial distance in the first stage.In the second stage,the electron flips once in the direction away from the central axis.When the initial phase is changed by 2π,the trajectories of the electron almost overlap.

    As can be seen from Fig.8, it can be concluded that the spatial radiation of the electron is mainly concentrated in the plane of polarization(XOZplane).It also indicates that the azimuth angleΦmaxcan only take the value of 0 orπ.In Fig.9,we plotted the variation in azimuthal angleΦmaxand polar angleθmaxunder the action of lasers with different initial phases.The azimuth angleΦmaxis flipped once when the initial phase changes byπ.Interestingly, when the initial phase changes byπ, the electron changes once in the direction away from the central axis in the second stage (as mentioned above).If the azimuthal angleΦmax=0,it means that the maximum radiated power is generated when the velocity of the electron in thex-direction (i.e.,ux) is positive.If the azimuthal angleΦmax=π,it means that the maximum radiated power is generated when the velocity of the electron in thex-direction(i.e.,ux)is negative.Therefore,the maximum radiation direction is closely related to the trajectory of the electron.In addition,it can be found that the polar angleθmaxshows a periodic variation with a period ofπ.Within a period(marked in Fig.9),the polar angleθmaxshows an overall increasing trend.Considering that the polar angleθmaxis less thanπ/2,the radiation of the electron is forward radiation.

    Based on the azimuthal angleΦmaxand polar angleθmaxshown in Fig.9,the maximum radiation direction can be determined.Therefore,we plotted the curve of the radiated power per unit stereo angle of the electron with time in the direction of maximum radiation, as shown in Fig.10.It can be found that there is also a periodic variation in the bimodal structure in the time domain.Due to the large number of selected initial phases,it is not possible to describe each bimodal structure by amplification.Therefore, we still describe the bimodal structure with the parameters in Subsection 3.1.3, i.e., the maximum radiated power dP(t)/d?max,the symmetry coefficientS,and the bimodal interval ?t.

    Fig.7.The trajectories of the electron under the action of lasers with different initial phases.The beam waist w0=3λ0,the pulse width L=3λ0,and the laser intensity a0 =25.The range of the variation in the initial phase ?0 is (a) 0-8π/18, (b) 9π/18-17π/18, (c) 18π/18-26π/18,(d)27π/18-36π/18.

    Fig.8.Spatial distribution of electron radiation power under the action of lasers with different initial phases.The beam waist w0 =3λ0, the pulse width L=3λ0,and the laser intensity a0=25.The initial phase is(a)?0=0,(b)?0=π/3,(c)?0=2π/3,(d)?0=π,(e)?0=4π/3,(f)?0=5π/3.

    Fig.9.Variation in the radiation azimuth angle Φmax and polar angle θmax under the action of lasers with different initial phases.The beam waist w0=3λ0,and the pulse width L=3λ0.The laser intensity is(a)a0=15,(b)a0=20,(c)a0=25,(d)a0=30,(e)a0=35,(f)a0=40.

    Fig.10.In the direction of maximum radiation,the radiated power of the electron per unit stereo angle versus time.The beam waist w0=3λ0,the pulse width L=3λ0, and the laser intensity a0 =25.The range of variation in the initial phase ?0 is (a) 0-8π/18, (b) 9π/18-17π/18,(c)18π/18-26π/18,(d)27π/18-36π/18.

    As shown in Fig.11, the maximum radiated power dP(t)/d?maxshows a periodic variation.Interestingly, the variation period of dP(t)/d?maxisπ,which is half of the period of the electron motion trajectory.According to Eq.(13),it can be found that the radiated power of the electron is nonnegative.Given the above analysis, it can be determined that the trajectory of the electron is symmetric about the central axis when the initial phase differs byπ.In other words,the maximum radial distance is the same, while the direction away from the central axis is different.Therefore,the radiated power per unit stereo angle of the electron is the same when the initial phase differs byπ.The only difference is whether the velocity of the electron in thexdirection (i.e.,ux) is positive or negative when the maximum radiated power is generated.This is why the maximum radiated power dP(t)/d?maxshows a periodic extension with a period ofπ.

    Fig.11.The variation in the maximum radiated power dP(t)/d?max and the symmetry coefficient S under the action of lasers with different initial phases.The beam waist w0=3λ0,and the pulse width L=3λ0.The laser intensity is(a)a0=15,(b)a0=20,(c)a0=25,(d)a0=30,(e)a0=35,(f)a0=40.

    Fig.12.The variation in the bimodal interval ?t and the moment of peak appearance tmax under the action of lasers with different initial phases.The beam waist w0=3λ0,and the pulse width L=3λ0.The laser intensity is(a)a0=15,(b)a0=20,(c)a0=25,(d)a0=30,(e)a0=35,(f)a0=40.

    Combining Figs.11 and 12,it is found that the symmetry coefficientS,the bimodal interval ?t,and the moment of peak appearancetmaxalso show periodic variations with a period ofπ.However, the changes ofS, ?tandtmaxare discontinuous.There are large jumps inS,?tandtmaxat the articulation of some phases.In contrast, the maximum radiated power of electron dP(t)/d?maxis more continuous.The specific cycle intervals have been labeled in Figs.11 and 12.The specific reasons for the jump will be described in Subsection 3.2.2.

    In one cycle, the maximum radiated power of the electron dP(t)/d?maxincreases and then decreases.The maximum value of dP(t)/d?maxis obtained in the middle of a cycle.The symmetry of the bimodal structure shows an overall increasing trend within one cycle.In addition, the peak appearance momenttmaxand the bimodal interval ?tshow an overall decreasing trend within one cycle.Therefore, within the limited laser intensity, the maximum radiated power, or the bimodal structure with better symmetry, can be obtained by adjusting the initial phase.

    3.2.2.Jumping point

    In Subsection 3.2.1,the symmetry coefficientS,the peak appearance momenttmaxand the bimodal interval ?tshow significant changes at some initial phases.Takinga0=25 as an example, it can be found thatS, ?t, andtmaxall change significantly at the same phase.This phase is called the jump point.As the initial phase varies from 0 to 2π,the asymmetric radiation of the electron undergoes two jump points.For example,whena0=25,the jump points are?0=134π/180 and 314π/180 (determined by numerical simulations with higher accuracy).

    Fig.13.In the maximum radiation direction, the bimodal structure in the time domain before and after the jump point.The beam waist w0=3λ0,and the pulse width L=3λ0.The laser intensity is(a)a0=15,(b)a0=20,(c)a0=25,(d)a0=30,(e)a0=35,(f)a0=40.

    Combined with Figs.9-12,the phenomenon of the jump point can be explained.The jump point arises due to the jump in the direction of maximum radiation, i.e., the jump in the azimuthal angleΦmax.To be more precise, the change in velocity of the electron in thex-direction (i.e.,ux) leads to the jump point.In Subsection 3.2.1, we pointed out the specific relationship between the azimuthal angleΦmaxandux.Takinga0=25 as an example, the maximum radiated power of the electron at?0=133π/180 is generated byuxbeing positive.The variation in the initial phase causes a change in the electron velocity.[29,30]When?0=134π/180, the maximum radiated power of the electron whenuxis negative exceeds that whenuxis positive.Therefore,the maximum radiation direction then makes a jump.Meanwhile,the asymmetric radiation of the electron also undergoes a large change, i.e., a jump in the bimodal structure (see Figs.10(b) and 10(d)).The maximum radiated power dP(t)/d?maxis not directly related to the direction ofux,so it is continuous.

    As shown in Fig.13,the bimodal structure is plotted before and after the jump point in the direction of maximum radiation.It can be clearly seen that after the jump point, the bimodal structure of the electron has a worse symmetry.This phenomenon is consistent with the findings in Fig.11.Interestingly, the distance between the two jump points differs byπin the range of 0-2π.This distance is equal to the period of change of the electron asymmetric radiation.

    Note that after extensive numerical simulations, it was found that there is always a jump point in the asymmetric radiation of the electron,regardless of the laser intensity.In other words, the jump point is the necessary point for the effect of the initial phase on the asymmetric radiation of the electron.

    3.3.Effect of laser intensity on electron asymmetric radiation considering the initial phase

    In Subsection 3.2,it can be found that the maximum radiated power or a bimodal structure with optimal symmetry can be obtained by adjusting the initial phase within a finite laser intensity.In particular,the effect of the initial phase cannot be neglected under the action of an intense laser with short pulse width(a0≥15,L=3λ0).Based on the conclusions in Subsection 3.2.1,the effect of laser intensity on electron asymmetric radiation is discussed specifically, in particular, the variation in the bimodal structure.

    Fig.14.The maximum radiated power and the maximum coefficient of symmetry that can be obtained by adjusting the initial phase under the action of lasers with different laser intensities.The beam waist w0=3λ0,and the pulse width L=3λ0.

    It should be declared that dP(t)/d?max|a0is the maximum radiated power that can be obtained by adjusting the initial phase within a finite laser intensity.Intuitively,dP(t)/d?max|a0is the maximum value of dP(t)/d?maxas shown in Fig.11.Similarly,coefficient of symmetrymax|a0is the maximum symmetry coefficient that can be obtained by adjusting the initial phase within a finite laser intensity, i.e., the maximum value of coefficient of symmetry shown in Fig.11.

    As shown in Fig.14, the maximum radiated power that can be achieved under the action of a more intense laser increases.However, the symmetry of the bimodal structure decreases significantly.This conclusion is in agreement with the one in Subsection 3.1.3.

    3.4.Pulse width

    It is emphasized again that the pulse width in this paper is half height full width.Based on Eq.(7), the pulse width of the laser affects the electromagnetic field component of the laser, which in turn affects the motion characteristics of the electron.The maximum acceleration of the electron is defined as the maximum amplitude of the change in acceleration.It can be observed from Fig.15 that the maximum acceleration decreases as the laser pulse increases.Under the action of the short-pulse laser,the acceleration of the electron is greater,and the time required for the electron to accelerate to the speed of light is shorter.

    The increase in pulse width causes a more intensive and violent acceleration change.This change leads to a significant change in the spatial domain of the electron radiation.Under the action of a short-pulse laser,the number of electron accelerations is limited,and thus the radiation range of the electron is smaller.When the pulse width increases,the violent acceleration changes cause the coupling of electron radiation,which increases the radiation range(see Fig.16).

    Fig.16.Spatial distribution of electron radiation power under the action of lasers of different pulse widths.The laser intensity a0 =15, the beam waist w0=3λ0,and the initial phase ?0=0.The pulse width is(a)L=2λ0,(b)L=3λ0,(c)L=4λ0,(d)L=5λ0.

    Similarly, we plotted the asymmetric bimodal structure under the action of lasers of different pulse widths.As depicted in Fig.17, the maximum radiated power of electron dP(t)/d?maxdecreases as the pulse width of the laser increases.From the perspective of electron dynamics, the decrease in the maximum acceleration leads to a decrease in the electron radiated power.Meanwhile,the moment of peak appearancetmaxbecomes longer.This phenomenon is caused,on the one hand,by the increase in the number of radiated attosecond pulses.[8]On the other hand,it is affected by the decrease in the maximum acceleration of the electron.

    Fig.15.Variation in the velocity and acceleration of the electron under the action of lasers of different pulse widths.The laser intensity a0=15,the beam waist w0=3λ0,and the initial phase ?0=0.(a)Variation in total acceleration and its longitudinal and transverse acceleration.(b)Variation in total velocity and its longitudinal and transverse velocity.

    Fig.17.In the direction of maximum radiation,the radiated power of the electron per unit stereo angle versus time.The laser intensity a0=15,the beam waist w0 =3λ0, and the initial phase ?0 =0.(a) Overall comparison diagram.(b)-(d) Enlarged plots of some curves in (a).The pulse width is(b)L=2λ0,(c)L=2.5λ0,(d)L=3λ0.

    Fig.18.The variation in the maximum radiated power dP(t)/d?max and the symmetry coefficient S under the action of laser with different pulse widths.The laser intensity a0=15,the beam waist w0=3λ0,and the initial phase ?0=0.

    As the pulse width of the laser increases, the maximum radiated power of the electron decreases.However,the asymmetry of electron radiation is well mitigated.As shown in Fig.18, when the pulse width of the laser is small (e.g.,L ≤3λ0), there are drastic changes in the maximum radiated power and symmetry coefficient of the electron.When the pulse width of the laser is larger,the variation in both is smaller and stabilizes.

    3.5.Radiation spectrum

    In addition,we investigated the effect of laser parameters on the electron radiation spectrum to deepen the understanding of nonlinear Thomson scattering.As shown in Fig.19,under the action of intense laser pulses,the electronic harmonic radiation energy oscillates decreasingly as the harmonic radiation frequency increases,and finally tends to stabilize.In other words,there appear multiple peaks and near-zero valleys in the electronic harmonic radiated energy.When the laser intensity increases or the pulse width decreases,the maximum energy of the electronic harmonic radiation is increased.Meanwhile,the redshift phenomenon in the frequency domain is present.[31]Based on the properties of the spectrum,it can be inferred that the electron produces coherent radiation.[18,28,32]

    Interestingly,there is also a periodic variation in the maximum energy of the electronic harmonic radiation with a period ofπwhen the initial phase varies(see Fig.20).

    Fig.19.(a)Spectrum in the direction of maximum radiation under the action of lasers with different laser intensities.(b)Spectrum in the direction of maximum radiation under the action of lasers with different pulse widths.The laser intensity a0=15,and the beam waist w0=3λ0.

    Fig.20.Variation in the maximum energy of the electron harmonic radiation under the action of lasers with different initial phases.The beam waist w0=3λ0,and the pulse width L=3λ0.The laser intensity is(a)a0=15,(b)a0=20,(c)a0=25.

    4.Conclusion and perspectives

    Under the framework of the single-electron model, the influence of laser parameters on the electron nonlinear radiation is systematically studied.In the direction of maximum radiation, a bimodal structure exists in the time domain.The increase of laser intensity, while significantly increasing the electron radiation power, intensifies the asymmetry of electron radiation.Especially whena0>6,the oscillatory motion of electron is more violent, which causes the spatial distribution of electron radiation to bifurcate.Based on the view of electron dynamics,an explanation for the asymmetric bimodal structure is given.The variation in the initial phase leads to a periodic variation in the electron motion with a period of 2π.Considering the non-negativity of the electron radiated power,the maximum radiated power of the electron and its observed direction vary periodically with a period ofπ.The existence of jump points with a phase difference ofπin the range of 0-2πis found.Moreover,the increase in pulse width reduces the radiation power,expands the radiation range,and alleviates the asymmetry of the radiation.In the frequency domain,the variation in the electron harmonic radiated energy is analyzed to enhance the understanding of the NTS.The findings of this paper contribute to the understanding and application of the nonlinear radiation of the electron in intense lasers.Based on the above conclusions, by adjusting the laser intensity, initial phase, and pulse width, a radiation source with higher power and better symmetry can be obtained.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos.10947170/A05 and 11104291),Natural Science Fund for Colleges and Universities in Jiangsu Province (Grant No.10KJB140006), Natural Science Foundation of Shanghai (Grant No.11ZR1441300), and Natural Science Foundation of Nanjing University of Posts and Telecommunications (Grant No.NY221098), and sponsored by the Jiangsu Qing Lan Project and STITP Project (Grant No.CXXYB2022516).

    国产亚洲精品综合一区在线观看| a级一级毛片免费在线观看| 男女那种视频在线观看| 国产伦一二天堂av在线观看| 男人舔奶头视频| 深夜精品福利| 久久午夜亚洲精品久久| 老女人水多毛片| 黄色配什么色好看| 少妇人妻一区二区三区视频| 男女之事视频高清在线观看| x7x7x7水蜜桃| 久久久久久久久中文| 国产精品一区二区三区四区免费观看 | 国内揄拍国产精品人妻在线| 日韩欧美精品v在线| 久久人人精品亚洲av| 大型黄色视频在线免费观看| 精品一区二区三区视频在线观看免费| 日本-黄色视频高清免费观看| 国产精品久久久久久久电影| 欧美绝顶高潮抽搐喷水| 韩国av一区二区三区四区| 看片在线看免费视频| 99精品在免费线老司机午夜| 亚洲,欧美,日韩| 国产白丝娇喘喷水9色精品| 一区二区三区激情视频| 亚洲av中文av极速乱 | 天天躁日日操中文字幕| 国产人妻一区二区三区在| 男人狂女人下面高潮的视频| 女的被弄到高潮叫床怎么办 | 嫩草影视91久久| 亚洲欧美日韩无卡精品| 久久婷婷人人爽人人干人人爱| 精品午夜福利在线看| 变态另类丝袜制服| 欧美性感艳星| 国产精品久久久久久av不卡| 久久久久九九精品影院| 精品一区二区三区视频在线| 非洲黑人性xxxx精品又粗又长| 欧美日韩亚洲国产一区二区在线观看| 国产av麻豆久久久久久久| 我的老师免费观看完整版| 久久久久久久久久黄片| 日韩亚洲欧美综合| 成人一区二区视频在线观看| 神马国产精品三级电影在线观看| 少妇裸体淫交视频免费看高清| 麻豆av噜噜一区二区三区| 18+在线观看网站| 亚洲精品亚洲一区二区| 我要看日韩黄色一级片| 精品午夜福利视频在线观看一区| av天堂中文字幕网| 亚洲av成人av| 精品无人区乱码1区二区| 欧美高清成人免费视频www| 91午夜精品亚洲一区二区三区 | 国产精品一区二区三区四区免费观看 | 一级a爱片免费观看的视频| 少妇裸体淫交视频免费看高清| 欧美丝袜亚洲另类 | 国产精品久久视频播放| 天堂网av新在线| 国产精品亚洲一级av第二区| 亚洲av美国av| 欧美xxxx性猛交bbbb| 国产伦精品一区二区三区四那| 午夜福利高清视频| a级毛片a级免费在线| 中文字幕精品亚洲无线码一区| 人人妻人人看人人澡| 此物有八面人人有两片| 国产一区二区在线av高清观看| 国产人妻一区二区三区在| 天堂av国产一区二区熟女人妻| 又粗又爽又猛毛片免费看| 淫秽高清视频在线观看| 成年免费大片在线观看| 国产白丝娇喘喷水9色精品| 国产蜜桃级精品一区二区三区| 色精品久久人妻99蜜桃| 日日夜夜操网爽| 中文字幕av成人在线电影| 亚洲无线在线观看| 极品教师在线视频| 中文亚洲av片在线观看爽| 国产精品一及| 最后的刺客免费高清国语| 色视频www国产| 一卡2卡三卡四卡精品乱码亚洲| 精品久久久久久久久久久久久| 成人精品一区二区免费| 日本-黄色视频高清免费观看| 国产真实伦视频高清在线观看 | 久久久久性生活片| 在线看三级毛片| 亚洲欧美激情综合另类| 色视频www国产| 国产av一区在线观看免费| 精品久久久久久久人妻蜜臀av| 欧美不卡视频在线免费观看| av在线蜜桃| 亚洲精品成人久久久久久| 国产91精品成人一区二区三区| 精品久久久久久久久av| 91久久精品国产一区二区成人| 午夜激情福利司机影院| 观看免费一级毛片| 99国产极品粉嫩在线观看| 极品教师在线免费播放| av黄色大香蕉| 久久欧美精品欧美久久欧美| 日韩av在线大香蕉| 国产色婷婷99| 午夜影院日韩av| 成人午夜高清在线视频| 欧美一级a爱片免费观看看| 精品人妻偷拍中文字幕| 嫩草影院新地址| 九九爱精品视频在线观看| 久久香蕉精品热| 天堂√8在线中文| 日本撒尿小便嘘嘘汇集6| 欧美绝顶高潮抽搐喷水| 欧美精品国产亚洲| 麻豆精品久久久久久蜜桃| 天天一区二区日本电影三级| 十八禁网站免费在线| 国产美女午夜福利| 欧美人与善性xxx| 久久精品久久久久久噜噜老黄 | 精品人妻偷拍中文字幕| 免费搜索国产男女视频| 免费在线观看日本一区| 日日啪夜夜撸| 精品久久久久久久末码| 在线国产一区二区在线| 国产精品久久久久久精品电影| 性插视频无遮挡在线免费观看| 蜜桃亚洲精品一区二区三区| 亚洲不卡免费看| 九色国产91popny在线| 大又大粗又爽又黄少妇毛片口| 亚洲,欧美,日韩| 免费无遮挡裸体视频| 国产亚洲精品久久久久久毛片| 国产精品福利在线免费观看| 搡老岳熟女国产| 日本 av在线| 国产精品人妻久久久影院| 两个人视频免费观看高清| 国产精品嫩草影院av在线观看 | 在线播放无遮挡| 两性午夜刺激爽爽歪歪视频在线观看| 又粗又爽又猛毛片免费看| 精品久久久久久久久av| 国产亚洲av嫩草精品影院| 级片在线观看| 日本成人三级电影网站| 午夜a级毛片| 一个人观看的视频www高清免费观看| 午夜精品久久久久久毛片777| 日韩欧美国产在线观看| 日韩国内少妇激情av| 国产一级毛片七仙女欲春2| 色噜噜av男人的天堂激情| 久久精品综合一区二区三区| 99久久精品国产国产毛片| 黄色丝袜av网址大全| 特级一级黄色大片| 又粗又爽又猛毛片免费看| 国内毛片毛片毛片毛片毛片| 又爽又黄无遮挡网站| 亚洲三级黄色毛片| 亚洲成人免费电影在线观看| 亚洲美女视频黄频| 69人妻影院| 又爽又黄无遮挡网站| 中国美白少妇内射xxxbb| 日韩一本色道免费dvd| 变态另类丝袜制服| 在线免费十八禁| 99精品在免费线老司机午夜| 三级国产精品欧美在线观看| 五月玫瑰六月丁香| 毛片女人毛片| 免费观看精品视频网站| 国产女主播在线喷水免费视频网站 | 欧美bdsm另类| 天堂动漫精品| 国产精华一区二区三区| 亚洲人成网站高清观看| 1000部很黄的大片| 狂野欧美白嫩少妇大欣赏| 精品久久久久久久久久免费视频| 身体一侧抽搐| 成人特级av手机在线观看| 成人鲁丝片一二三区免费| 婷婷精品国产亚洲av| 亚洲18禁久久av| 在现免费观看毛片| 午夜精品一区二区三区免费看| 91午夜精品亚洲一区二区三区 | 老师上课跳d突然被开到最大视频| 国内精品一区二区在线观看| 在线观看一区二区三区| 国产精品爽爽va在线观看网站| 久久久精品欧美日韩精品| 一级黄片播放器| 婷婷亚洲欧美| 五月玫瑰六月丁香| 国产成人aa在线观看| 少妇的逼水好多| 中文字幕av成人在线电影| 变态另类丝袜制服| 国产精品美女特级片免费视频播放器| 99精品在免费线老司机午夜| 免费在线观看影片大全网站| 国产亚洲91精品色在线| 精品一区二区三区视频在线| 高清日韩中文字幕在线| 天堂√8在线中文| 久久久色成人| 国产又黄又爽又无遮挡在线| av女优亚洲男人天堂| 少妇人妻精品综合一区二区 | 亚洲成人久久性| 男女做爰动态图高潮gif福利片| а√天堂www在线а√下载| 别揉我奶头~嗯~啊~动态视频| 国产探花在线观看一区二区| 国内精品美女久久久久久| 国产av不卡久久| 人妻少妇偷人精品九色| 精品国内亚洲2022精品成人| 婷婷精品国产亚洲av在线| 嫩草影院新地址| 九九爱精品视频在线观看| 精品不卡国产一区二区三区| 国产精品国产三级国产av玫瑰| 亚洲四区av| 免费在线观看日本一区| 亚洲 国产 在线| 俄罗斯特黄特色一大片| 如何舔出高潮| .国产精品久久| 亚洲国产欧洲综合997久久,| 成人av在线播放网站| 白带黄色成豆腐渣| 嫩草影院新地址| 99久久精品一区二区三区| 精品一区二区免费观看| 中文字幕免费在线视频6| 午夜福利在线在线| 久久久国产成人免费| 成年版毛片免费区| 精品免费久久久久久久清纯| 日韩在线高清观看一区二区三区 | 亚洲人成网站在线播| 亚洲 国产 在线| 男人的好看免费观看在线视频| 亚洲最大成人中文| 观看美女的网站| 成人欧美大片| 亚洲av成人av| 久久久久久久亚洲中文字幕| 亚洲av.av天堂| 成年女人毛片免费观看观看9| 22中文网久久字幕| 久9热在线精品视频| 又黄又爽又免费观看的视频| 免费观看人在逋| 国产精品电影一区二区三区| 国产成年人精品一区二区| 一卡2卡三卡四卡精品乱码亚洲| 午夜免费成人在线视频| 中文字幕精品亚洲无线码一区| 国产午夜福利久久久久久| 毛片一级片免费看久久久久 | a级毛片免费高清观看在线播放| 天堂影院成人在线观看| 草草在线视频免费看| 成年免费大片在线观看| 日韩一本色道免费dvd| 国产精华一区二区三区| 亚洲中文字幕日韩| 日韩高清综合在线| 人妻制服诱惑在线中文字幕| 国产伦人伦偷精品视频| 亚洲性久久影院| 久久久久久国产a免费观看| 又黄又爽又刺激的免费视频.| 婷婷色综合大香蕉| 又爽又黄无遮挡网站| 此物有八面人人有两片| 狂野欧美白嫩少妇大欣赏| 国产一区二区三区视频了| 嫩草影院入口| 国产乱人伦免费视频| 校园人妻丝袜中文字幕| 在线播放无遮挡| 有码 亚洲区| 国产成人a区在线观看| 99久久精品热视频| 久久久久久久久久久丰满 | 中文字幕精品亚洲无线码一区| 色哟哟哟哟哟哟| 99riav亚洲国产免费| 亚洲国产精品合色在线| 欧美激情在线99| 伦精品一区二区三区| a级毛片免费高清观看在线播放| 国产色婷婷99| АⅤ资源中文在线天堂| 99精品在免费线老司机午夜| 麻豆国产97在线/欧美| 九色国产91popny在线| 黄色女人牲交| 久久精品国产鲁丝片午夜精品 | 大又大粗又爽又黄少妇毛片口| 久久中文看片网| 亚洲图色成人| 久久久久久伊人网av| 亚洲美女搞黄在线观看 | 99国产精品一区二区蜜桃av| 欧美激情久久久久久爽电影| 69av精品久久久久久| 两性午夜刺激爽爽歪歪视频在线观看| 一夜夜www| 成人永久免费在线观看视频| 欧美日韩乱码在线| 久久精品国产亚洲av涩爱 | 麻豆国产97在线/欧美| 亚洲在线观看片| 国产精品国产三级国产av玫瑰| 亚洲第一电影网av| 久久99热这里只有精品18| 如何舔出高潮| 日本 av在线| 一卡2卡三卡四卡精品乱码亚洲| 日本色播在线视频| 特大巨黑吊av在线直播| 3wmmmm亚洲av在线观看| 亚洲国产精品久久男人天堂| 精品一区二区免费观看| 无人区码免费观看不卡| 此物有八面人人有两片| 色视频www国产| 最好的美女福利视频网| 久久久国产成人精品二区| av天堂在线播放| 美女 人体艺术 gogo| 久久热精品热| 在线看三级毛片| 99国产极品粉嫩在线观看| 一级黄片播放器| 国产精品久久久久久亚洲av鲁大| 国产日本99.免费观看| 亚洲精品在线观看二区| 国产视频内射| 精华霜和精华液先用哪个| 国产v大片淫在线免费观看| 亚洲国产精品sss在线观看| 国产亚洲欧美98| 村上凉子中文字幕在线| 欧美成人免费av一区二区三区| www日本黄色视频网| 99久国产av精品| 亚洲精品成人久久久久久| 99久国产av精品| 3wmmmm亚洲av在线观看| 国内久久婷婷六月综合欲色啪| 18禁黄网站禁片免费观看直播| 免费看日本二区| 婷婷色综合大香蕉| 日本在线视频免费播放| 99热只有精品国产| 可以在线观看毛片的网站| 色综合亚洲欧美另类图片| 色视频www国产| 欧美激情国产日韩精品一区| 亚洲在线观看片| 欧美+亚洲+日韩+国产| 亚洲精品影视一区二区三区av| 日韩欧美在线乱码| 香蕉av资源在线| 两人在一起打扑克的视频| 欧美区成人在线视频| 免费看美女性在线毛片视频| 亚洲在线观看片| 国产精品av视频在线免费观看| 美女 人体艺术 gogo| 亚洲中文字幕日韩| 欧美zozozo另类| 色综合婷婷激情| 天堂动漫精品| 亚洲图色成人| 日本与韩国留学比较| 国产亚洲精品久久久com| 少妇高潮的动态图| 综合色av麻豆| 久久国产精品人妻蜜桃| 色噜噜av男人的天堂激情| 夜夜夜夜夜久久久久| 精品久久久久久,| 老司机福利观看| 婷婷六月久久综合丁香| 亚洲在线自拍视频| 亚洲av日韩精品久久久久久密| 亚洲国产日韩欧美精品在线观看| av视频在线观看入口| 国语自产精品视频在线第100页| 中国美女看黄片| 永久网站在线| 热99re8久久精品国产| 亚洲真实伦在线观看| 极品教师在线视频| 男女做爰动态图高潮gif福利片| 国产aⅴ精品一区二区三区波| 亚洲av免费在线观看| 美女被艹到高潮喷水动态| 欧美性猛交黑人性爽| 91在线观看av| 丝袜美腿在线中文| 免费观看在线日韩| 少妇人妻精品综合一区二区 | 黄色欧美视频在线观看| 琪琪午夜伦伦电影理论片6080| 国产亚洲精品综合一区在线观看| 亚洲av熟女| av福利片在线观看| 最近在线观看免费完整版| 此物有八面人人有两片| 人妻久久中文字幕网| 丰满的人妻完整版| 国产av麻豆久久久久久久| 99九九线精品视频在线观看视频| 看十八女毛片水多多多| 精品欧美国产一区二区三| 亚洲精品亚洲一区二区| 亚洲av不卡在线观看| 婷婷六月久久综合丁香| 免费人成在线观看视频色| 嫩草影院精品99| 又黄又爽又免费观看的视频| 国产亚洲精品久久久com| 成人国产一区最新在线观看| 亚洲欧美精品综合久久99| 亚洲综合色惰| 天堂av国产一区二区熟女人妻| 免费观看人在逋| .国产精品久久| 在现免费观看毛片| 国产三级在线视频| 精品日产1卡2卡| 精品久久久久久久久亚洲 | 色综合站精品国产| 亚洲va日本ⅴa欧美va伊人久久| 亚洲精华国产精华精| 亚洲一区二区三区色噜噜| 在线免费观看不下载黄p国产 | 亚洲在线自拍视频| 黄色视频,在线免费观看| 欧美日韩瑟瑟在线播放| 久久九九热精品免费| 久久久午夜欧美精品| 蜜桃亚洲精品一区二区三区| 国产精品国产三级国产av玫瑰| 午夜视频国产福利| 亚洲欧美日韩卡通动漫| 国产一区二区三区视频了| aaaaa片日本免费| 国内揄拍国产精品人妻在线| 免费在线观看日本一区| 嫩草影院新地址| 国产视频一区二区在线看| 18禁黄网站禁片午夜丰满| 美女大奶头视频| 国产综合懂色| 舔av片在线| 一个人看的www免费观看视频| 最近在线观看免费完整版| 亚洲精品亚洲一区二区| 一级黄片播放器| 国产男靠女视频免费网站| aaaaa片日本免费| 99视频精品全部免费 在线| 国内揄拍国产精品人妻在线| 国产精品久久久久久久久免| 男人舔女人下体高潮全视频| 别揉我奶头 嗯啊视频| 一进一出好大好爽视频| 国内精品久久久久精免费| 亚洲熟妇熟女久久| 小蜜桃在线观看免费完整版高清| 久久久久久国产a免费观看| 91在线观看av| 一区二区三区四区激情视频 | 国产亚洲av嫩草精品影院| 一级黄色大片毛片| 久久九九热精品免费| 亚洲一区二区三区色噜噜| 国产美女午夜福利| 久久人人精品亚洲av| 亚洲久久久久久中文字幕| 亚洲一级一片aⅴ在线观看| 日韩大尺度精品在线看网址| 综合色av麻豆| 欧美日韩瑟瑟在线播放| 一边摸一边抽搐一进一小说| 免费观看在线日韩| 国产精品一区www在线观看 | 欧美成人免费av一区二区三区| 国产精品av视频在线免费观看| 又黄又爽又刺激的免费视频.| 床上黄色一级片| 91在线观看av| 亚洲欧美日韩卡通动漫| 熟女电影av网| 可以在线观看的亚洲视频| 村上凉子中文字幕在线| 成熟少妇高潮喷水视频| 亚洲av.av天堂| 日韩大尺度精品在线看网址| 久久久久久久午夜电影| 色5月婷婷丁香| 亚洲七黄色美女视频| 波野结衣二区三区在线| 男人和女人高潮做爰伦理| 国产三级中文精品| 如何舔出高潮| 他把我摸到了高潮在线观看| 黄色欧美视频在线观看| 男女边吃奶边做爰视频| 亚洲av一区综合| 国产精品国产高清国产av| 99riav亚洲国产免费| 麻豆久久精品国产亚洲av| 精品无人区乱码1区二区| 久久国产乱子免费精品| 亚洲avbb在线观看| 久久久久久久久大av| 国产探花在线观看一区二区| 18禁在线播放成人免费| 国产精品1区2区在线观看.| 在线观看午夜福利视频| 亚洲中文字幕日韩| 精品一区二区三区视频在线| 国产高清视频在线播放一区| 成年免费大片在线观看| 午夜a级毛片| 国产在线精品亚洲第一网站| 有码 亚洲区| 真人做人爱边吃奶动态| 日本免费a在线| 免费无遮挡裸体视频| 亚洲欧美日韩高清专用| 精品人妻1区二区| 九九爱精品视频在线观看| 99热网站在线观看| 国产欧美日韩精品一区二区| 欧美性猛交╳xxx乱大交人| 国产精品国产高清国产av| 一本久久中文字幕| 亚洲专区中文字幕在线| 如何舔出高潮| 日日撸夜夜添| 日日夜夜操网爽| 少妇裸体淫交视频免费看高清| 波野结衣二区三区在线| av女优亚洲男人天堂| 91午夜精品亚洲一区二区三区 | 国产精品久久久久久亚洲av鲁大| 中文字幕精品亚洲无线码一区| 亚洲中文字幕一区二区三区有码在线看| 久久午夜亚洲精品久久| 最好的美女福利视频网| 国产亚洲欧美98| 久久精品夜夜夜夜夜久久蜜豆| 亚洲精品乱码久久久v下载方式| 精品午夜福利在线看| 国产精品人妻久久久久久| 国内毛片毛片毛片毛片毛片| 一个人看视频在线观看www免费| 色精品久久人妻99蜜桃| 国产精品综合久久久久久久免费| 成人二区视频| 黄色女人牲交| 欧美潮喷喷水| 校园人妻丝袜中文字幕| 夜夜看夜夜爽夜夜摸| 在线免费观看不下载黄p国产 | 午夜激情欧美在线| 精品久久久久久久久亚洲 | АⅤ资源中文在线天堂| 中国美白少妇内射xxxbb| 欧美在线一区亚洲| 动漫黄色视频在线观看| 麻豆精品久久久久久蜜桃| 午夜福利欧美成人| 精品久久久久久久久久免费视频| 亚洲精品国产成人久久av| 国产伦在线观看视频一区| 琪琪午夜伦伦电影理论片6080| 黄色欧美视频在线观看| 亚洲国产欧美人成| 欧美日韩瑟瑟在线播放| 欧美成人a在线观看| 国产精品98久久久久久宅男小说| 成人无遮挡网站| 亚洲 国产 在线|