• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ultra-broadband acoustic ventilation barrier based on multi-cavity resonators

    2023-12-15 11:48:02YuWeiXu許雨薇YiJunGuan管義鈞ChengHaoWu吳成昊YongGe葛勇QiaoRuiSi司喬瑞ShouQiYuan袁壽其andHongXiangSun孫宏祥
    Chinese Physics B 2023年12期

    Yu-Wei Xu(許雨薇), Yi-Jun Guan(管義鈞),2,?, Cheng-Hao Wu(吳成昊), Yong Ge(葛勇),Qiao-Rui Si(司喬瑞), Shou-Qi Yuan(袁壽其),?, and Hong-Xiang Sun(孫宏祥),2,§

    1Research Center of Fluid Machinery Engineering and Technology,School of Physics and Electronic Engineering,Jiangsu University,Zhenjiang 212013,China

    2State Key Laboratory of Acoustics,Institute of Acoustics,Chinese Academy of Sciences,Beijing 100190,China

    Keywords: acoustic metamaterials,ultra-broadband sound reduction,acoustic barrier,ventilation

    1.Introduction

    Sound reduction has always attracted a great deal of attention due to its practical applications in the fields of noise control, environmental protection and architectural acoustics.Recent development of acoustic metamaterials[1-9]and metasurfaces[10-17]provides alternative methods for designing various sound insulation and sound absorption systems based on different types of unit cells, such as Helmholtz resonators,[18-24]coiled Fabry-Perot resonators,[25-27]sound membranes,[28-31]metasurface-based structures,[32-40]and split-ring-resonators.[41,42]Generally, these systems have the advantages of high-performance sound insulation and absorption.However,most of them are designed as closed structures,and it is difficult to use them in the application scenarios requiring an additional feature of ventilation.

    To overcome it, a variety of ventilation structures with sound insulation and absorption based on different mechanisms have been realized sequentially,[43-48]which mainly include sound absorber based on weak coupling of two identical oppositely oriented split tube resonators,[43]open sound silencer based on Fano-like interference,[45-47]and ultra-sparse open sound-insulation wall based on artificial Mie resonances.[48]Beyond that, ultrathin metasurfacebased structures[49]have been proposed to design ventilated sound insulation systems based on phased modulation, such as acoustic metacages,[50]open tunnels,[51]and windows.[52]These types of structures can realize sound insulation/absorption and ventilation simultaneously, however,the working bandwidths are narrow owing to resonance nature.In order to solve this problem, several researches[53-59]have been devoted to optimizing working bandwidths of sound insulation/sound absorption, such as ultra-wideband ventilation barrier[53]based on sound dissipation mechanism and interference mechanism,and ventilated sound metamaterial and sound absorption metamaterial based on the coupling modulation of resonance energy leakage and loss.[59]However,it still poses a great challenge to further increasing the bandwidth of ventilated sound-reduction structures.

    In this work,we propose an ultra-broadband acoustic ventilation barrier composed of periodic unit cells.The designed single-layer ventilation barrier can realize broadband sound reduction with a bandwidth of 1560 Hz.Such a phenomenon arises from sound absorption caused by the eigenmode of the unit cell and sound reflection by the plate structure on upper surface of the unit cell.The measured and simulated results accord well with each other.Moreover, by designing two types of three-layer ventilation barriers composed of the unit cells with different values ofa(the length of the hollow square region) andw(the width of the channel between the adjacent cavities),we can increase the working bandwidths of both barriers to 3160 Hz and 3230 Hz,respectively,which are demonstrated by the experimental measurement.

    2.Design of acoustic ventilation barrier

    Fig.1.(a)Schematic diagram of acoustic ventilation barrier composed of periodically arranged unit cells.Photograph of (b) upper surface,(c)bottom surface,and(d)cross section of the unit cell,(e)schematic diagram of cross section of the unit cell.

    3.Performance and mechanism of acoustic ventilation barrier

    To demonstrate the performance of the designed ventilation barrier,we conducted an experiment to measure transmittance spectra of a unit cell in a straight waveguide made of acrylic plates with a size of 2 m×0.1 m×0.1 m [as shown in Fig.2(a)],in which the sound-absorbing foams are placed on both sides of the waveguide to eliminate reflected sound energy.The sample is placed in the middle of the waveguide,and the width of the waveguide is the same as the length of the unit cell.Beyond that, a loudspeaker driven by a power amplifier is placed on the left side to generate incident sound signals.Four 0.25-inch(1 inch=2.54 cm)microphones(Br¨uel&Kj?r type-4954,marked as Mic.1,2,3,and 4)are inserted into the waveguide from four holes with the same size to detect sound signals.The measured data are recorded by the module of Br¨uel & Kj?r 3160-A-042, and they are analyzed by the software of PULSE Labshop.

    The acoustic pressure on the left of the sample in the waveguide is the superposition of the incident sound signal and reflected sound signal, and that on the right of the sample is the superposition of the transmitted sound signal and reflected sound signal.Thus,the sound pressures at the positions 1,2,3,and 4 can be expressed as

    wherekis the wave number of air, andpiandptare the incident acoustic pressure and transmitted acoustic pressure,respectively, andprandptrare the reflected sound pressure in the left region and that in the right region of the waveguide,respectively, andd1andd2are the distance between Mic.1 and Mic.2,and that between Mic.3 and Mic.4,respectively,andl1andl2are the distance from Mic.2 to the left surface and that from Mic.3 to the right surface of the sample,respectively.Here,we selectd1=d2=10 cm,andl1=l2=13.5 cm.According to Eqs.(1)and(2),we can obtain

    Thus,the transmitted coefficient can be expressed as

    From Eqs.(7) and (9), we can calculate the transmittance,reflectance, and absorptance of the sample to bet=|T|2,r=|R|2,andα=1-|R|2-|T|2,respectively.

    Figure 2(b) shows the measured transmittance spectra caused by the unit cell, in which the simulated results for the unit cell under the conditions of the hard and periodic boundary are also provided for comparisons.We can see that in the range of 834 Hz-2395 Hz (black shaded region), the transmittances are lower than 0.1,and thus the working bandwidth can reach about 1560 Hz, showing a typical characteristic of broadband sound reduction.Both types of simulated transmittance spectra are almost the same, and thus we can use the performance of a single unit cell to characterize that of the designed acoustic barrier.Beyond that,the measured and simulated results are basically in agreement with each other, in which the disagreement between both results may arise from the leakage of sound energy from the acrylic plates of the waveguide and the structural deviation of sample caused by the three-dimensional (3D) printing.Furthermore, according to the proportion of the size of the hollow region in the unit cell, we can obtain that the ventilation ratio of the designed barrier is 16%.

    Fig.2.(a)Experimental set-up.(b)Measured(ME)and simulated(SI)transmittance spectra caused by the unit cell,with solid black line and dashed blue lines denoting simulated results for the unit cell under numerical condition of hard boundary and periodic boundary,respectively.

    To explore the mechanism of the ventilation barrier, we simulate the absorptance and reflectance spectra caused by the unit cell.As shown in Fig.3(a), the broadband sound reduction is closely related to both sound absorption and reflection.To further explain it, we divide the working band into four regions (I: 834 Hz-1150 Hz, II: 1150 Hz-1450 Hz, III:1450 Hz-1700 Hz, and IV: 1700 Hz-2395 Hz) according to different characteristics.In the bands I and III,the absorptance values are both larger than 0.1, and the transmittance values are both lower than 0.1,however,both absorptance value and transmittance value are lower than 0.1 in the bands II and IV.We can see that the band I is determined by both sound absorption and sound reflection simultaneously,and the bands II and IV are mainly caused by sound reflection, which arises from the plate structure on upper surface of each unit cell.However,in the band III,the absorption coefficients are larger than 0.1, and the maximum value can reach a value exceeding 0.9 at 1580 Hz, so the band III is attributed to sound absorption caused by the unit cell.

    Next, to provide an insight into the mechanism of sound absorption in the bands I and III,we simulate the pressure amplitude eigenfunctions of the unit cell around two absorption peaks in the bands I and III.As shown in Fig.3(b), there exist two types of eigenmodes at 920 Hz and 1578 Hz, in which most of the sound energy is absorbed into four cavities at 920 Hz, and it is mainly concentrated into the channel between the cavities and the outer frame at 1578 Hz.Figure 3(c)shows the simulated pressure amplitude distributions in the unit cell excited by the normal incidence of sound at 920 Hz and 1580 Hz.We can see that the field distributions in the unit cell are consistent with those of two eigenmodes in Fig.3(b),indicating that the sound absorption is closely related to the eigenmodes of the unit cell.Moreover, we simulate the distributions of thermoviscous energy loss density in the unit cell at 920 Hz and 1580 Hz.As shown in Fig.3(d),the thermoviscous loss is mainly distributed in the narrow channel between the cavity and the outer frame at 1580 Hz, which is much stronger than that in the channels between the adjacent cavities at 920 Hz.Such a phenomenon can be used to explain the difference between the two absorption peaks in the bands I and III.Therefore,the absorbed sound energy is mainly dissipated by the thermoviscous loss inside the channels of the unit cell in the bands I and III.

    Fig.3.(a)Simulated sound transmittance,reflectance,and absorptance spectra caused by the unit cell.Different colors represent four working bands (I: 834 Hz-1150 Hz, II: 1150 Hz-1450 Hz, III: 1450 Hz-1700 Hz, and IV: 1700-2395 Hz).(b) Simulated pressure amplitude eigenfunctions of the unit cell at 920 Hz and 1578 Hz.Simulated distributions of(c)pressure amplitude and(d)thermoviscous energy loss density in the unit cell excited by normal incidence of sound(red solid arrows)at 920 Hz and 1580 Hz.

    Fig.4.Simulated(a)effective bulk modulus,(b)effective impedance,(c)effective sound velocity,and(d)absorptance spectra of the unit cell around two absorption peaks.

    To further analyze the above phenomena, we also simulate the effective bulk modulus, the effective impedance, the effective sound velocity of the unit cell,which are presented in Figs.4(a)-4(c),respectively,and the absorptance spectrum of the unit cell[as shown in Fig.4(d)]is also exhibited for comparisons.We can see that the real part of the effective bulk modulus is close to zero at 920 Hz and 1578 Hz[as shown in Fig.4(a)] owing to the excitation of the eigenmodes at both frequencies.Additionally, the imaginary part of the effective impedance and sound velocity at 1578 Hz are larger than those at 920 Hz[as shown in Figs.4(b)and 4(c)],indicating the high concentration and dissipation of sound energy in the unit cell at 1578 Hz.[39]The theoretical analysis of these effective parameters accords well with the characteristics of the unit cell in Fig.3.

    Fig.5.Simulated transmittance spectra through unit cell under the excitation of acoustic waves at different incident angles.

    Figure 5 shows the simulated transmittance spectra through the unit cell under the excitation of the acoustic waves at the incident angleθ=30?, 45?, and 60?.We can see that the simulated transmittance spectra are almost the same at different incident angles of sound, indicating high-performance broadband sound insulation in a wide range of incident angle for the designed ventilation barrier.

    4.Bandwidth optimization of acoustic ventilation barrier

    To optimize the bandwidth of the designed ventilation barrier,we also study and measure the transmission characteristics caused by the unit cell with different values ofaandw,which is shown in Fig.6.We can observe that by adjusting the parameteraorw,the ventilation barrier has high-performance sound reduction below 3000 Hz,and the measured results are in good agreement with the numerical results.

    Fig.7.(a)Schematic diagram of the first type of three-layer ventilation barrier composed of unit cells with the same value of w(w=10 mm)but different values of a(a=5 cm for N =1; a=4 cm for N =2; a=3 cm for N =3).(b)Measured and simulated transmittance spectra caused by the three-layer ventilation barrier.(c)Schematic diagram of the second type of three-layer barrier composed of unit cells with the same value of a(a=4 cm)but different values of w(w=5 mm for N=1;w=10 mm for N=2;w=15 mm for N=3).(d)Measured and simulated transmittance spectra caused by three-layer ventilation barrier.

    Next,we design two types of three-layer ventilation barriers with different values ofaandwto realize an ultrabroadband feature.Figure 7(a) schematically shows the first type of three-layer ventilation barrier with a distance(denoted asd)of 4.5 cm,in which the values of parameteraof the unit cells in layers 1,2,and 3 are selected as 5 cm,4 cm,and 3 cm,respectively,and the other parameters are the same as those in Fig.1(e).Here,it is necessary to point out that the ventilation ratio of the three-layer barrier is 9%owing to different values ofa, which decreases obviously in comparison with that of the single-layer barrier.Figure 6(b) shows the measured and simulated transmittance spectra of the three-layer ventilation barriers.We observed that the transmittance values are all less than 0.1 in the frequency range of 636 Hz-3798 Hz, and the bandwidth can reach about 3160 Hz,demonstrating the ultrabroadband characteristic.The measured and simulated results match well with each other.

    Figure 7(c) presents the second type of three-layer ventilation barrier, in which the values ofwof the unit cells in each layer (N=1, 2, and 3) are selected as 5 mm, 10 mm,and 15 mm, respectively, and the distance between two adjacent layers is the same as that in Fig.7(a).Here, the ventilation ratio of this type of three-layer barrier is 16%, which is consistent with that of the single-layer barrier.The measured and simulated transmittance spectra of the three-layer ventilation barrier are shown in Fig.7(d).It is observed that the transmittance values are all below 0.1 in the frequency range of 660 Hz-3890 Hz (black shaded region), and the working bandwidth can increase to 3230 Hz,indicating the realization of an ultra-broadband characteristic of the ventilation barrier.The measured results show excellent agreement with the numerical results.Such ultra-broadband working bandwidths of both three-layer ventilation barriers are closely related to the bandgaps of the unit cells with different values ofaandw(as shown in Fig.6)and sound scattering and reflection between the adjacent barriers.Thus, we can effectively optimize the bandwidth of the designed ventilation barrier by using multilayer systems.

    5.Conclusions

    In this work,we have designed and demonstrated an ultrabroadband acoustic ventilation barrier.By designing a singlelayer ventilation barrier, we can observe a broadband sound reduction with the working bandwidth of 1560 Hz, which is attributed to the multiple mechanism, such as the sound absorption caused by the eigenmodes of the unit cell and the sound reflection by the plate structure on upper surface of the unit cell.Additionally, we study the sound-reduction performances of the unit cell by adjusting the parametersaandw.As a result,we design two types of three-layer ventilation barriers composed of the unit cells with different values ofaandw,which can achieve the ultra-broadband characteristics with the working bandwidths of 3160 Hz and 3230 Hz,respectively.The performances of these ventilation barriers are verified by experimental measurements.The proposed ventilation barriers with ultra-broadband sound reduction have a great potential in environmental protection and architectural acoustics.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos.12174159, 12274183, and 51976079),the National Key Research and Development Program of China (Grant No.2020YFC1512403), and the Research Project of State Key Laboratory of Mechanical System and Vibration(Grant No.MSV202201).

    天堂动漫精品| 99热只有精品国产| 国产一级毛片七仙女欲春2| 99精品在免费线老司机午夜| 亚洲最大成人手机在线| 变态另类丝袜制服| 日韩中字成人| 欧美+亚洲+日韩+国产| 国产一区二区三区视频了| 精品久久久久久久人妻蜜臀av| 午夜福利视频1000在线观看| 精品人妻偷拍中文字幕| 精品久久久久久成人av| 天堂动漫精品| 免费av不卡在线播放| 久久性视频一级片| 男人舔女人下体高潮全视频| 久久精品国产亚洲av涩爱 | 亚洲精品456在线播放app | 国产伦在线观看视频一区| 69人妻影院| 老司机深夜福利视频在线观看| 久久久久久久精品吃奶| av天堂中文字幕网| 亚洲三级黄色毛片| 欧美日韩亚洲国产一区二区在线观看| av女优亚洲男人天堂| 久久久久久久午夜电影| 亚洲自拍偷在线| 99视频精品全部免费 在线| 9191精品国产免费久久| 蜜桃久久精品国产亚洲av| 简卡轻食公司| 狠狠狠狠99中文字幕| 在线免费观看的www视频| 嫩草影视91久久| 一个人看的www免费观看视频| 淫妇啪啪啪对白视频| 一级黄片播放器| 夜夜爽天天搞| 色精品久久人妻99蜜桃| а√天堂www在线а√下载| 国产黄a三级三级三级人| 午夜影院日韩av| 999久久久精品免费观看国产| 国产伦一二天堂av在线观看| 淫妇啪啪啪对白视频| 亚洲成a人片在线一区二区| 久久天躁狠狠躁夜夜2o2o| 乱人视频在线观看| 亚洲激情在线av| 亚洲,欧美精品.| 国产三级在线视频| 91午夜精品亚洲一区二区三区 | 国产精品永久免费网站| 亚洲五月婷婷丁香| 一个人免费在线观看电影| 麻豆国产97在线/欧美| 国产精品一及| 久久精品久久久久久噜噜老黄 | 无人区码免费观看不卡| 男女视频在线观看网站免费| 国产精品女同一区二区软件 | 久久精品国产自在天天线| 亚洲无线观看免费| 国产真实乱freesex| 91在线精品国自产拍蜜月| 麻豆国产97在线/欧美| 日韩中字成人| 日韩欧美精品v在线| 欧美一区二区精品小视频在线| 欧美区成人在线视频| av福利片在线观看| 91九色精品人成在线观看| 亚洲精品乱码久久久v下载方式| 老司机午夜十八禁免费视频| 18美女黄网站色大片免费观看| 乱人视频在线观看| 国产欧美日韩精品亚洲av| 男女做爰动态图高潮gif福利片| 欧美又色又爽又黄视频| 动漫黄色视频在线观看| 又紧又爽又黄一区二区| 欧美乱色亚洲激情| 少妇的逼水好多| 国产又黄又爽又无遮挡在线| a在线观看视频网站| 国产伦人伦偷精品视频| 国产国拍精品亚洲av在线观看| 国产精品一及| 深夜精品福利| 少妇丰满av| 亚洲成人中文字幕在线播放| 国产真实伦视频高清在线观看 | 国产成+人综合+亚洲专区| 国产精品电影一区二区三区| 99热精品在线国产| 国产在视频线在精品| 中出人妻视频一区二区| 亚洲欧美激情综合另类| 亚洲人成电影免费在线| 亚洲欧美日韩高清专用| 亚洲欧美激情综合另类| 精品欧美国产一区二区三| 男插女下体视频免费在线播放| 欧美成人性av电影在线观看| 听说在线观看完整版免费高清| 亚洲精品色激情综合| 日韩欧美一区二区三区在线观看| 婷婷色综合大香蕉| av中文乱码字幕在线| 97碰自拍视频| av在线蜜桃| 亚洲国产高清在线一区二区三| 亚洲电影在线观看av| 在线天堂最新版资源| 老熟妇乱子伦视频在线观看| 日韩国内少妇激情av| 国产熟女xx| 91狼人影院| 亚洲成av人片在线播放无| 亚洲在线观看片| 人妻丰满熟妇av一区二区三区| 日韩欧美国产在线观看| 亚洲avbb在线观看| 91麻豆av在线| 亚洲一区高清亚洲精品| 国产精品亚洲av一区麻豆| 欧美成人免费av一区二区三区| 男女那种视频在线观看| 男女那种视频在线观看| 尤物成人国产欧美一区二区三区| 如何舔出高潮| 校园春色视频在线观看| 国产精品久久电影中文字幕| 国产久久久一区二区三区| 午夜久久久久精精品| 内地一区二区视频在线| 亚洲欧美精品综合久久99| 成人鲁丝片一二三区免费| 欧美色欧美亚洲另类二区| 中出人妻视频一区二区| 蜜桃久久精品国产亚洲av| 国产成人a区在线观看| 国产探花极品一区二区| 亚洲电影在线观看av| 亚洲成人中文字幕在线播放| 亚洲美女黄片视频| 人人妻人人澡欧美一区二区| 国产不卡一卡二| 日韩欧美一区二区三区在线观看| 久久亚洲精品不卡| 99久久精品热视频| 日本 av在线| 色吧在线观看| 精品久久国产蜜桃| 黄色视频,在线免费观看| 最近中文字幕高清免费大全6 | 悠悠久久av| 国产午夜精品久久久久久一区二区三区 | 男女下面进入的视频免费午夜| 亚洲真实伦在线观看| 一进一出抽搐gif免费好疼| 麻豆久久精品国产亚洲av| 12—13女人毛片做爰片一| 在线观看66精品国产| 在线a可以看的网站| 九九在线视频观看精品| 午夜福利在线观看免费完整高清在 | 国产人妻一区二区三区在| 久久久精品大字幕| 亚洲欧美日韩东京热| 嫩草影视91久久| 国产精品日韩av在线免费观看| 美女cb高潮喷水在线观看| 在线播放国产精品三级| 好看av亚洲va欧美ⅴa在| 欧美精品啪啪一区二区三区| 欧美日韩黄片免| 少妇丰满av| 午夜福利免费观看在线| 国产人妻一区二区三区在| 蜜桃久久精品国产亚洲av| 久久精品国产亚洲av涩爱 | 观看免费一级毛片| 国产精品人妻久久久久久| 亚洲va日本ⅴa欧美va伊人久久| 少妇高潮的动态图| 欧美日韩综合久久久久久 | 美女被艹到高潮喷水动态| 在线观看66精品国产| 国产一区二区三区视频了| 国产野战对白在线观看| 国产精品免费一区二区三区在线| 久久久久久大精品| 日本一二三区视频观看| 欧美中文日本在线观看视频| 波多野结衣巨乳人妻| 神马国产精品三级电影在线观看| 长腿黑丝高跟| 18禁裸乳无遮挡免费网站照片| 亚洲国产精品成人综合色| 午夜福利在线观看吧| 国产精品久久视频播放| 别揉我奶头~嗯~啊~动态视频| 美女高潮的动态| 亚洲欧美日韩高清在线视频| 亚洲成av人片在线播放无| 国产精品98久久久久久宅男小说| 1000部很黄的大片| 深夜a级毛片| 在线免费观看的www视频| or卡值多少钱| 桃红色精品国产亚洲av| 97超级碰碰碰精品色视频在线观看| x7x7x7水蜜桃| 亚洲不卡免费看| 赤兔流量卡办理| 日本熟妇午夜| 亚洲一区二区三区色噜噜| 99国产极品粉嫩在线观看| 中文字幕人成人乱码亚洲影| 欧美午夜高清在线| 一个人免费在线观看的高清视频| 亚洲av一区综合| 亚洲精华国产精华精| 欧美高清性xxxxhd video| 国产精品99久久久久久久久| 国产一区二区激情短视频| 90打野战视频偷拍视频| 搡老妇女老女人老熟妇| 十八禁人妻一区二区| 三级毛片av免费| 精品日产1卡2卡| 九色国产91popny在线| 人人妻人人看人人澡| 国产伦在线观看视频一区| 精品国产亚洲在线| 97人妻精品一区二区三区麻豆| 亚洲av免费在线观看| 极品教师在线免费播放| 成人av在线播放网站| 一本精品99久久精品77| 国产激情偷乱视频一区二区| 欧美不卡视频在线免费观看| 91字幕亚洲| 久久亚洲精品不卡| 国产av不卡久久| 色播亚洲综合网| 国产中年淑女户外野战色| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 真实男女啪啪啪动态图| 欧美日韩国产亚洲二区| 色哟哟哟哟哟哟| 精品国产三级普通话版| 我要搜黄色片| 国模一区二区三区四区视频| xxxwww97欧美| 久久精品影院6| 草草在线视频免费看| 十八禁网站免费在线| 给我免费播放毛片高清在线观看| 日本三级黄在线观看| 国产成+人综合+亚洲专区| 国产探花极品一区二区| av在线蜜桃| avwww免费| 国产高清视频在线观看网站| 久久久久久久精品吃奶| 少妇人妻精品综合一区二区 | 热99在线观看视频| 听说在线观看完整版免费高清| 欧美乱妇无乱码| 亚洲精品乱码久久久v下载方式| 国产精品乱码一区二三区的特点| 欧美又色又爽又黄视频| 亚洲片人在线观看| 一个人免费在线观看电影| 成人av在线播放网站| 亚洲不卡免费看| 欧美高清成人免费视频www| 女同久久另类99精品国产91| 亚洲国产精品sss在线观看| 长腿黑丝高跟| 成人无遮挡网站| 最新在线观看一区二区三区| 成人美女网站在线观看视频| 亚洲欧美日韩东京热| 久久热精品热| 婷婷六月久久综合丁香| 丰满乱子伦码专区| 俺也久久电影网| 国产v大片淫在线免费观看| 国产精品电影一区二区三区| 伦理电影大哥的女人| 午夜福利在线在线| 88av欧美| 免费搜索国产男女视频| 很黄的视频免费| 精品久久久久久久久久免费视频| 久久精品国产亚洲av涩爱 | 白带黄色成豆腐渣| 神马国产精品三级电影在线观看| 丰满人妻一区二区三区视频av| 51午夜福利影视在线观看| 国产人妻一区二区三区在| 99久久成人亚洲精品观看| 国产精品99久久久久久久久| 国内少妇人妻偷人精品xxx网站| 久久久成人免费电影| 国产黄色小视频在线观看| 国产美女午夜福利| 中文字幕人妻熟人妻熟丝袜美| 一个人看视频在线观看www免费| 国产精品一区二区性色av| 他把我摸到了高潮在线观看| 一夜夜www| 午夜激情欧美在线| 精品久久久久久久久久免费视频| 亚洲经典国产精华液单 | 精品人妻熟女av久视频| 天堂影院成人在线观看| 欧美精品啪啪一区二区三区| 2021天堂中文幕一二区在线观| 国产一区二区在线av高清观看| 青草久久国产| 国产大屁股一区二区在线视频| 伊人久久精品亚洲午夜| 久久久久亚洲av毛片大全| 亚洲精品粉嫩美女一区| 国产淫片久久久久久久久 | 日本熟妇午夜| 最好的美女福利视频网| 精品久久国产蜜桃| 成年女人毛片免费观看观看9| 99久久九九国产精品国产免费| 99久久精品热视频| 久久6这里有精品| 91麻豆av在线| 欧美日韩国产亚洲二区| av天堂在线播放| 色综合站精品国产| 狂野欧美白嫩少妇大欣赏| 人妻丰满熟妇av一区二区三区| 日韩欧美免费精品| 三级毛片av免费| 在线观看舔阴道视频| 深夜a级毛片| 制服丝袜大香蕉在线| 欧美国产日韩亚洲一区| 国产精品一区二区性色av| 天堂√8在线中文| 午夜激情福利司机影院| 亚洲午夜理论影院| 亚洲专区中文字幕在线| 天堂动漫精品| 亚洲最大成人手机在线| 欧美一级a爱片免费观看看| 久久香蕉精品热| 波多野结衣高清作品| 99在线视频只有这里精品首页| 男女那种视频在线观看| 每晚都被弄得嗷嗷叫到高潮| 极品教师在线免费播放| 日韩欧美国产在线观看| 99视频精品全部免费 在线| 亚洲综合色惰| 中国美女看黄片| 尤物成人国产欧美一区二区三区| 看十八女毛片水多多多| 欧美午夜高清在线| 十八禁人妻一区二区| 亚洲天堂国产精品一区在线| 亚洲电影在线观看av| 日本一二三区视频观看| 欧美潮喷喷水| 婷婷色综合大香蕉| 一本一本综合久久| 99国产精品一区二区三区| 最好的美女福利视频网| 国产精华一区二区三区| 国产精品亚洲美女久久久| 热99在线观看视频| 在线免费观看不下载黄p国产 | 亚洲av五月六月丁香网| 成年女人永久免费观看视频| 中文字幕免费在线视频6| 国产精品综合久久久久久久免费| 日韩av在线大香蕉| 人人妻人人看人人澡| 久久精品国产清高在天天线| 麻豆av噜噜一区二区三区| 国内精品美女久久久久久| 亚洲国产精品成人综合色| 午夜日韩欧美国产| 亚洲自偷自拍三级| 精品99又大又爽又粗少妇毛片 | 久久精品久久久久久噜噜老黄 | 国产精品98久久久久久宅男小说| 日韩欧美精品免费久久 | 亚洲人成伊人成综合网2020| 婷婷精品国产亚洲av在线| 97超级碰碰碰精品色视频在线观看| 久久欧美精品欧美久久欧美| 亚洲一区高清亚洲精品| 男女下面进入的视频免费午夜| 美女高潮的动态| 国产一区二区三区视频了| 欧美xxxx黑人xx丫x性爽| 亚洲人成网站在线播放欧美日韩| 亚洲精华国产精华精| 好看av亚洲va欧美ⅴa在| a级毛片免费高清观看在线播放| 亚洲av中文字字幕乱码综合| 在线观看美女被高潮喷水网站 | 亚洲av日韩精品久久久久久密| 看片在线看免费视频| 中文字幕熟女人妻在线| 国内精品一区二区在线观看| 中国美女看黄片| 精品国产亚洲在线| 国产成人av教育| 最好的美女福利视频网| 欧美另类亚洲清纯唯美| 国产欧美日韩一区二区三| 国产精品一区二区免费欧美| 久久精品综合一区二区三区| 欧美+日韩+精品| 69av精品久久久久久| 亚洲专区国产一区二区| 国产精品嫩草影院av在线观看 | 18禁黄网站禁片免费观看直播| 精品久久久久久成人av| 我的女老师完整版在线观看| 国产精品野战在线观看| 我要搜黄色片| av福利片在线观看| 麻豆成人午夜福利视频| 自拍偷自拍亚洲精品老妇| 色综合欧美亚洲国产小说| 九九久久精品国产亚洲av麻豆| 天堂√8在线中文| 日本在线视频免费播放| 亚洲熟妇中文字幕五十中出| netflix在线观看网站| 亚洲av一区综合| 亚洲av五月六月丁香网| 欧美乱妇无乱码| 又粗又爽又猛毛片免费看| 国产精品亚洲av一区麻豆| av国产免费在线观看| 黄色丝袜av网址大全| 波多野结衣高清作品| 亚洲中文日韩欧美视频| 一夜夜www| av福利片在线观看| 99精品久久久久人妻精品| 此物有八面人人有两片| 精品日产1卡2卡| 一进一出好大好爽视频| 国产伦精品一区二区三区四那| 18禁在线播放成人免费| 国产精品98久久久久久宅男小说| 精品一区二区三区视频在线| 最好的美女福利视频网| 色尼玛亚洲综合影院| 亚洲国产欧洲综合997久久,| 91九色精品人成在线观看| 国产精品久久久久久人妻精品电影| 日本成人三级电影网站| 18禁黄网站禁片午夜丰满| 午夜福利18| 日本在线视频免费播放| 亚洲精品粉嫩美女一区| 两性午夜刺激爽爽歪歪视频在线观看| 最近最新免费中文字幕在线| 一区二区三区高清视频在线| 国产成人欧美在线观看| 国产精品一及| 18+在线观看网站| 两个人视频免费观看高清| 国产精品亚洲一级av第二区| 狂野欧美白嫩少妇大欣赏| 美女免费视频网站| 中出人妻视频一区二区| 香蕉av资源在线| 天堂av国产一区二区熟女人妻| 一个人免费在线观看电影| av天堂中文字幕网| 国产美女午夜福利| 色噜噜av男人的天堂激情| 国产又黄又爽又无遮挡在线| or卡值多少钱| 亚洲专区国产一区二区| bbb黄色大片| www日本黄色视频网| 老女人水多毛片| 综合色av麻豆| 国产精品98久久久久久宅男小说| 成人性生交大片免费视频hd| 精品久久久久久久久亚洲 | 亚洲电影在线观看av| 非洲黑人性xxxx精品又粗又长| 国产不卡一卡二| 天堂网av新在线| 偷拍熟女少妇极品色| 欧美日韩综合久久久久久 | 婷婷丁香在线五月| 日本精品一区二区三区蜜桃| 久久久久久久久久成人| 高清毛片免费观看视频网站| 国产精品影院久久| 国产成人啪精品午夜网站| 久久人人爽人人爽人人片va | 亚洲精品粉嫩美女一区| 欧美日韩瑟瑟在线播放| 精品欧美国产一区二区三| 亚洲自拍偷在线| 午夜久久久久精精品| 露出奶头的视频| 免费无遮挡裸体视频| 简卡轻食公司| 最新中文字幕久久久久| 成人欧美大片| 两个人视频免费观看高清| 日本黄大片高清| 久久久国产成人精品二区| 在线免费观看的www视频| 午夜免费男女啪啪视频观看 | 舔av片在线| 在线a可以看的网站| 中文字幕精品亚洲无线码一区| 国产主播在线观看一区二区| 麻豆一二三区av精品| 欧美在线一区亚洲| 91久久精品电影网| 中文字幕免费在线视频6| 亚洲熟妇熟女久久| 国产伦在线观看视频一区| 亚洲欧美清纯卡通| 亚洲自拍偷在线| 亚洲av成人精品一区久久| 亚洲av一区综合| 国产午夜福利久久久久久| 欧美中文日本在线观看视频| 88av欧美| 亚洲最大成人中文| 一级作爱视频免费观看| 亚洲片人在线观看| 人人妻人人看人人澡| 欧美成人一区二区免费高清观看| 此物有八面人人有两片| 午夜久久久久精精品| 偷拍熟女少妇极品色| 动漫黄色视频在线观看| 老司机午夜福利在线观看视频| 夜夜躁狠狠躁天天躁| 欧美日韩乱码在线| 人妻夜夜爽99麻豆av| 欧美成人免费av一区二区三区| 哪里可以看免费的av片| 免费无遮挡裸体视频| 国产美女午夜福利| 色综合亚洲欧美另类图片| 韩国av一区二区三区四区| 男人的好看免费观看在线视频| 免费看a级黄色片| 男女那种视频在线观看| 69人妻影院| 久久久久久九九精品二区国产| 日韩欧美在线二视频| 噜噜噜噜噜久久久久久91| 全区人妻精品视频| 男人狂女人下面高潮的视频| 99在线人妻在线中文字幕| 国产精品国产高清国产av| 日韩 亚洲 欧美在线| 日韩欧美一区二区三区在线观看| 搡老熟女国产l中国老女人| 亚洲成av人片免费观看| 日韩中字成人| 成人精品一区二区免费| 国产成人影院久久av| 精品人妻视频免费看| 亚洲欧美日韩高清在线视频| 偷拍熟女少妇极品色| 一个人看的www免费观看视频| 国产精华一区二区三区| 国产三级中文精品| 色av中文字幕| 亚州av有码| 国产亚洲精品综合一区在线观看| 岛国在线免费视频观看| 熟女电影av网| 精品熟女少妇八av免费久了| 久久国产乱子伦精品免费另类| 日韩欧美在线二视频| 亚洲av成人av| 国产午夜精品论理片| 欧美成人a在线观看| 精品一区二区三区视频在线观看免费| 午夜激情欧美在线| 少妇丰满av| 午夜精品一区二区三区免费看| 我要看日韩黄色一级片| h日本视频在线播放| 99在线视频只有这里精品首页| 欧美日本亚洲视频在线播放| 色尼玛亚洲综合影院| 有码 亚洲区| 欧美绝顶高潮抽搐喷水| 精品久久久久久久末码| 欧美一区二区精品小视频在线| 久久精品国产99精品国产亚洲性色| 国产欧美日韩一区二区三|