• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multi-channel terahertz focused beam generator based on shared-aperture metasurface

    2023-12-15 11:51:08JiuShengLi李九生andYiChen陳翊
    Chinese Physics B 2023年12期

    Jiu-Sheng Li(李九生) and Yi Chen(陳翊)

    Centre for THz Research,China Jiliang University,Hangzhou 310018,China

    Keywords: terahertz wave,multi-channel,shared-aperture,focused beam

    1.Introduction

    As a simple and effective method to control electromagnetic waves, coding metasurfaces have attracted extensive attention in recent years.[1-4]By pre-arranging coding elements with different amplitudes and phases based on periodic or aperiodic laws, coding metasurfaces achieve radar cross section(RCS) noise reduction,[5,6]focusing,[7,8]beam splitting,[9,10]vortex,[11,12]etc.For example, in 2020, Hanet al.designed a metasurface composed of an inner rectangular ring and an outer Jerusalem cross structure combining“C”shaped branch to realize the RCS reduction function.[13]Fuet al.proposed a metasurface based on C-shaped symmetric split ring with the central cross-shaped metal structure to generate the suppression of RCS.[14]Shenet al.arranged a silicon column structure with graphene electrode to realize an adjustable focusing imaging.[15]Zhouet al.also used silicon column structure with external graphene electrode to generate adjustable the position and number of focused beams.[16]In 2021, Guet al.demonstrated a multi-layer metasurface made of anisotropic rectangular patches and cross metal strips to produce splitting vortex beam.[17]Zhenget al.used a silicon dielectric square column metasurface based on propagation phase and Pancharatnam-Berry (PB) phase theorem to achieve annular radiation.[18]In 2022, Zhou and Song employed “I” shaped metal structure according to the octagonal spiral sequence to control the vortex beam topological charges by changing the Fermi energy level of graphene.[19]However, the abovementioned metasurfaces usually have only a single channel and limited functions.A few metasurfaces often require complex calculations to achieve multi-channel functionality, and most of these metasurfaces mainly operate in an infrared or microwave frequency band.[20-22]And composite multichannel and multifunctional focused beam generators based on reflective metasurface in a terahertz region are rarely reported.In this article, we propose a coding metasurface with sharedaperture nesting and parallel connection, which can generate any number of focused beams at any position.By changing the size of the shared aperture array, the designed structure can also control the energy intensity of the focused beam.

    Here, the proposed multichannel terahertz focused beam generator consists of a square metal bar layer and a metallic bottom plane layer, between which a silica substrate is sandwiched.The simulation results shows that complete 2πphase coverage can be obtained in a frequency ranging from 0.8 THz to 1.2 THz by independently rotating the metallic strip structures for normally incident RCP (right circularly polarized)wave.And then,we design the vortex focus metasurface with a focus length ofF=1000μm for the topological charges ofl=±1 andl=±2.Furthermore,we also realize four-channel focused beam and vortex focused beam generation with different topological charges.Moreover,by replacing part of the array group with a shared-aperture array method,the designed metasurface generates five-, six-, and eight-channel focused beams with different energy intensities.The numerical simulation results are in good agreement with the theoretical predictions.Our structure provides a new method of designing terahertz multichannel mesurface-based devices, which can greatly extend the functions and the application scope of metasurface.This structure also provides a new method of manipulating the terahertz wave communication and detection.

    2.Structure design

    Figure 1 shows a schematic diagram of the multi-channel terahertz focused beam generator based on a shared-aperture principle.When RCP wave is incident along the-z-axis direction, the matasurface produces multiple channels reflected LCP focusing beams.The unit-cell is composed of a top square metal strip,an intermediate dielectric layer,and a bottom metal plate, as shown in Figs.1(b)and 1(c).The dielectric substrate layer is of silicon dioxide with a dielectric constant of 3.9 and loss angle of 0.0004.[23]The metallic parts in top layer and bottom layers are of gold with a conductivity of 4.6×107S/m and a thickness of 1μm.By using the commercial software CST Microwave Studio,we simulate and optimize the electromagnetic transmission amplitude and phase response of the unit cell.The optimized geometric parameters of our proposed unit-cell are as follows:a= 10 μm,b= 90 μm (Here, the parameter scanning results are displayed in Figs.2(a) and 2(b)), and the period of the unit cellP=100μm.In addition,the thickness of the silicon dioxide is 40μm.[24]In order to meet the gradient phase,eight kinds of coding elements are designed and illustrated in Table 1,where?is the gradient phase of the corresponding unit cell,andαis the rotation angle of the unit cell along theyaxis.The corresponding reflection coefficient (CRC) and phases under RCP wave incidence are shown in Figs.2(c) and 2(d).From the figure, one can see that the reflection coefficients of the eight kinds of unit cells are larger than 0.9 THz at 1 THz, and the phase spectra are parallel to each other with a phase difference of 45?.

    Fig.1.(a)Function sketch,(b)three-dimensional view of unit cell,and(c)top view of unit cell, for proposed multi-channel terahertz focused beam generator.

    Fig.2.Reflection coefficients versus frequency for different values of(a)reflection coefficient a,(b)phase b,(c)reflection coefficient α,and(d)phase versus frequency.

    Table 1.Top-view,gradient phase,rotation angle,corresponding reflection coefficients,and phase of 8 kinds of coding elements at frequency of 1 THz.

    3.Simulation results and analysis

    To generate a focused beam, the phase?A(x,y) of the coding metasurface need to satisfy the following relation:

    Fig.3.(a)Phase distribution,(b)top view,(c)3D view of four-channel focused beam electric field.

    Fig.4.Electric field strength, phase and mode purity of the vortex focused beams with different topological charges at 1 THz,(a)-(c)l=1,(d)-(f)l=-1,(g)-(i)l=2,(j)-(l)l=-2.

    wherexandyrepresent the horizontal coordinate and vertical coordinate of the unit cell,λis the working wavelength,Fdenotes the focal length.Herein, the focal length of the focused beam is set toF=1000 μm, and the structure consists of 48×48 coding elements.Figure 3(a) gives the phase distribution of the designed metasurface structure.The electric field distribution in thexoyplane at the focal point and three-dimensional (3D) electric field distribution are displayed in Figs.3(b) and 3(c), respectively.The scales of the simulated multi-channel focused beam field patterns are all 4800μm×4800μm.Under the RCP wave normal incidence,the designed structure generates a four-channel focused beam,as illustrated in Fig.3.One can see that the reflected fourfocused beams have the same electric field intensity.The electric field efficiency of the focused beamηcan be given by

    whereEORis the incident RCP electric field andERLis the reflected LCP wave electric field.According to Eq.(2),we can obtain that the electric field efficiency of four-channel focused beam is 33.0%.

    Furthermore, we design a four-channel vortex focusing metasurface based on parallel array by combining the convolution theorem.In order to realize the vortex focusing function,the distribution law of the phase?B(x,y)can be expressed as

    wherelis the topological charges of the vortex beam.Figure 4 illustrates the electric field, phase and mode purity of vortex focusing beam for the topological charges ofl=±1 and±2 with a focal length ofF=800 μm at frequency of 1 THz.From the figure,one can see that the phase of the vortex focusing beam rotates counterclockwise as the topological charges are positive.Likewise, when the topological charges are negative value, the phase of the vortex focusing beam rotates clockwise.Furthermore, the mode purities of the vortex focusing beam with topological chargesl=±1 and±2 are 87.46%,87.01%, 86.47%,and 78.31%, respectively.It is worth noting that the electric field diagram of the vortex focused beam is a ring with a dark spot in the center.The more the topological charges, the bigger the dark spot is.It is because the OAM vortex beam has a phase singularity, which causes the center field of the vortex beam to approach to 0.Figure 5(a) shows four vortex focusing metasurface arrays.The electric field and phase at the focal length are displayed in Fig.5(b).Obviously, the topological charges of vortex focusing beam in the upper-left channel, upper-right channel,lower-left channel and lower-right channel arel=1,-1, 2,and-2, respectively.And then, the corresponding electric field intensities are 3.1 V/m,3.0 V/m,2.7 V/m,and 2.6 V/m,respectively.The electric field efficiency of four-channel focused vortex beam is 55.5%.Their corresponding phases are shown in Figs.5(c)-5(f).In addition,from Fig.5(b),one can see that the vortex focusing beam has an annular profile.The diameter of the vortex focusing beam with topological charges ofl=±1 is significantly smaller than that of the vortex focusing beam with topological charges ofl=±2.It also verifies that the size of the vortex focusing beam depends on the topological charges.

    To expand the channel number of the focused beam, a multi-channel terahertz focusing beam metasurface is proposed by combining the shared-aperture interlace cascade and array parallel arrangement.The shared-aperture metasurface consists of multiple interlaced sub-arrays, which share the same aperture of the metasurface.Each sub-array carries a geometric phase profile, which can stimulate different spatial channels for different functions.In order to obtain favorable performance,it is desirable to arrange sub-arrays regularly or randomly in an interlaced manner, rather than aggregate the unit cells of sub-arrays in local areas.Typically, in order to maintain relatively equal energy in each channel,different subarrays need to contain approximately the same number of unit cells.Figure 6 provides a schematic diagram of the principle of multi-channel functional multiplexing metasurface combining array parallel and shared-aperture.Figure 6(b)displays the middlepart phase distribution of the four-channel focused parallel array (see Fig.6(a)), and Fig.6(c) shows the phase distribution of the focusing beam with focal lengthF=1000μm.The two sub-arrays are staggered according to the following relation:

    whereNrepresents the number of sub-arrays which are used to constructe the main array,?1-?Ndenote the phase distribution of the 1st toNth sub-arrays,iandjare the position of the corresponding unit cell alongxaxis andyaxis in the array,respectively.Figure 6(d)gives the phase distribution between the main array and the sub-array forN=2.Here,the sub-array 0 denotes the array in Fig.6(b),and the sub-array 1 is the array in Fig.6(c).The two-dimensional(2D)electric field intensity of the five-channel focused beam generated by the sharedaperture parallel array is shown in Fig.6(g).Figure 6(h)displays 3D electric field distribution of the five-channel focusing beam.As can be seen from the figure,the electric field intensity of the focused beam in upper left, upper right, lower left and lower right channel are 4.4 V/m, 4.2 V/m, 4.3 V/m, and 4.4 V/m respectively.In addition,the electric field intensity of the focused beam in the middle channel equals 3.4 V/m.The electric field efficiency of five-channel focused beam is 43.4%.

    Figure 7(f) illustrates the phase configuration diagram of the six-channel focusing beam metasurface, in which the phase configurations of the middle-up part and middle-low part are shown in Fig.7(e).In fact, the middle-part phase configuration can be obtained by staggered cascade arrangement of the metasurface arrays(i.e.Figs.7(b)and 7(c))based on shared-aperture.The electric field distribution of the sixchannel focusing beam with a focal length of 820μm is given in Fig.7(g).Figure 7(h)shows 3D electric field distribution of the focused beam.One can see that the electric field intensity of the focused beam in upper left,upper-right channel,lowerleft channel, and lower-right channel are 3.7 V/m, 3.7 V/m,3.6 V/m and 3.7 V/m, respectively.In addition, the electric field intensity of the middle and upper channels are 2.84 V/m and 2.83 V/m,respectively.The electric field efficiency of sixchannel focused beam is 24.2%.

    Furthermore,by replacing the intermediate array in Fig.6 with a four-channel focusing parallel array,we obtain an eightchannel focusing beam.Figure 8(f)shows the phase diagram of the eight-channel focusing beam metasurface.The phase distribution of the middle array part is displayed in Fig.8(e).We can find that the array based on 24×24 unit cells is generated by the middle part of the four-channel focusing array(see Fig.8(b)) and the four-channel focusing parallel array(see Fig.8(c)) by using shared-aperture principle.The electric field distribution of the eight-channel focusing beam with a focal length of 760 μm is displayed in Figs.8(g) and 8(h),which is in good agreement with the theoretical result.As can be seen from the figure,the focusing beam electric field intensity of the upper-left channel, upper-right channel, lower-left channel,and lower-right channel of the outer ring are 6.1 V/m,5.8 V/m,5.8 V/m,and 5.9 V/m,respectively.Furthermore,the focused beam electric field intensity of the upper-left channel,upper-right channel,lower-left channel,and lower-right channel of the inner circle are 1.9 V/m, 1.8 V/m, 1.9 V/m, and 1.9 V/m, respectively.The electric field efficiency of eightchannel focused beam is 62.9%.The proposed metasurface arrangement method based on shared-aperture can not only generate any number of focused beams at any position, but also control the energy intensity of focused beams.

    Fig.7.(a)Phase distribution of four-channel focusing metasurface,(b)middle-up-part phase distribution of the four-channel focusing metasurface(black dash-line),(c)single-channel focusing metasurface,(d)dual-channel shared-aperture array pattern,(e)middle-part phase distribution of six-channel focusing metasurface,(f)phase distribution of six-channel focusing metasurface,(g)2D and(h)3D electric field intensities of six-channel focused beam.

    Fig.8.(a)Phase distribution of four-channel focusing metasurface,(b)middle-part phase distribution of the four-channel focusing metasurface(black dash-line),(c)four-channel focusing metasurface(2400μm×2400μm),(d)dual-channel shared-aperture array pattern,(e)middle-part phase distribution of eight-channel focusing metasurface, (f) phase distribution of eight-channel focusing metasurface, (g) 2D and (h) 3D electric field intensity planes of eight-channel focused beam.

    4.Conclusions

    In this work, a metasurface based on shared-aperture is proposed to generate multi-channel terahertz vortex focused beam and multi-channel terahertz non-vortex focused beam.The patterned unit cell structure consists of a top square metal strip layer,a middle silicon dioxide layer,and a bottom metallic plate.Full-wave simulation results and theoretical calculation results show that the metasurface generates multi-channel focused LCP wave at 1 THz for a normally incident RCP wave.Through parallel array arrangement,the proposed metasurface achieves four-channel vortex focused beam generation and four-channel vortex focused beam generation with different topological chargesl=±1, andl=±2.Further, by replacing part of the area in the parallel array group with a shared-aperture array,the proposed metasurface realizes five-,six- and eight-channel focused beam generator with different energy intensities.The shared-aperture metasurface paves the way for designing the multi-channel terahertz devices.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant No.62271460) and the Zhejiang Key Research and Development Project, China (Grant Nos.2021C03153 and 2022C03166).

    女同久久另类99精品国产91| 久久精品aⅴ一区二区三区四区| 男女做爰动态图高潮gif福利片| 亚洲激情在线av| 香蕉av资源在线| a级毛片a级免费在线| 国产亚洲精品第一综合不卡| 久久久水蜜桃国产精品网| 亚洲五月天丁香| 久久精品国产99精品国产亚洲性色| 免费一级毛片在线播放高清视频| 中文亚洲av片在线观看爽| 国产精品香港三级国产av潘金莲| 啪啪无遮挡十八禁网站| 欧美成人免费av一区二区三区| 亚洲国产欧美网| 久久久久久九九精品二区国产 | 日本一区二区免费在线视频| 啦啦啦观看免费观看视频高清| 激情在线观看视频在线高清| avwww免费| 一夜夜www| 97超级碰碰碰精品色视频在线观看| 日日摸夜夜添夜夜添小说| 999久久久精品免费观看国产| av欧美777| 极品教师在线免费播放| 国产97色在线日韩免费| 欧美日本视频| 美女免费视频网站| 一夜夜www| 国产单亲对白刺激| 无限看片的www在线观看| 97碰自拍视频| 91成年电影在线观看| 在线观看日韩欧美| 脱女人内裤的视频| 成人av一区二区三区在线看| 99在线人妻在线中文字幕| 给我免费播放毛片高清在线观看| 啦啦啦观看免费观看视频高清| 国产一区二区三区视频了| 18禁国产床啪视频网站| 又大又爽又粗| 淫妇啪啪啪对白视频| 中文亚洲av片在线观看爽| 91麻豆精品激情在线观看国产| 最近最新免费中文字幕在线| 精品第一国产精品| 女同久久另类99精品国产91| 久久精品影院6| 真人一进一出gif抽搐免费| 精品第一国产精品| 黄色 视频免费看| 免费在线观看完整版高清| 国产一区二区激情短视频| 国内毛片毛片毛片毛片毛片| 狂野欧美激情性xxxx| 国产午夜精品论理片| 亚洲精品在线观看二区| 免费看美女性在线毛片视频| av片东京热男人的天堂| 好看av亚洲va欧美ⅴa在| 美女扒开内裤让男人捅视频| 不卡av一区二区三区| 亚洲乱码一区二区免费版| 国产精品精品国产色婷婷| 久久久久性生活片| 国产精品亚洲美女久久久| 女人高潮潮喷娇喘18禁视频| 99国产综合亚洲精品| 亚洲免费av在线视频| 国产熟女xx| 2021天堂中文幕一二区在线观| 国产精品自产拍在线观看55亚洲| 99久久精品国产亚洲精品| 99久久99久久久精品蜜桃| 国产野战对白在线观看| 91字幕亚洲| 国产蜜桃级精品一区二区三区| 老鸭窝网址在线观看| √禁漫天堂资源中文www| av福利片在线观看| 亚洲,欧美精品.| 男人的好看免费观看在线视频 | 国产午夜精品久久久久久| 一级作爱视频免费观看| 99国产精品99久久久久| 人人妻,人人澡人人爽秒播| 亚洲狠狠婷婷综合久久图片| 亚洲av电影不卡..在线观看| 三级男女做爰猛烈吃奶摸视频| 少妇被粗大的猛进出69影院| 久9热在线精品视频| 久久 成人 亚洲| 香蕉久久夜色| 国产在线观看jvid| 母亲3免费完整高清在线观看| svipshipincom国产片| 在线a可以看的网站| 黄色女人牲交| 麻豆成人午夜福利视频| 看免费av毛片| 无遮挡黄片免费观看| 黄频高清免费视频| 日韩欧美在线二视频| 亚洲熟女毛片儿| 国产成年人精品一区二区| 欧美人与性动交α欧美精品济南到| 国产探花在线观看一区二区| 国产男靠女视频免费网站| 精品国产乱码久久久久久男人| www国产在线视频色| 成人高潮视频无遮挡免费网站| 一a级毛片在线观看| 亚洲五月天丁香| 久久久久久久久免费视频了| 免费在线观看影片大全网站| 视频区欧美日本亚洲| 99久久精品国产亚洲精品| 日本熟妇午夜| 亚洲男人天堂网一区| 欧美成狂野欧美在线观看| 脱女人内裤的视频| 亚洲乱码一区二区免费版| 欧美zozozo另类| 国产av一区在线观看免费| 日本黄色视频三级网站网址| 午夜福利免费观看在线| 成年女人毛片免费观看观看9| 天天一区二区日本电影三级| 十八禁网站免费在线| 中文字幕精品亚洲无线码一区| 女人爽到高潮嗷嗷叫在线视频| 中文字幕人成人乱码亚洲影| 在线观看午夜福利视频| 看免费av毛片| 国产成人系列免费观看| 男插女下体视频免费在线播放| 精品国产乱子伦一区二区三区| 大型黄色视频在线免费观看| 岛国视频午夜一区免费看| 狠狠狠狠99中文字幕| 国产欧美日韩一区二区精品| 两人在一起打扑克的视频| 日本一本二区三区精品| 国产精品亚洲美女久久久| 18禁观看日本| 草草在线视频免费看| 叶爱在线成人免费视频播放| 国产精华一区二区三区| 中出人妻视频一区二区| 亚洲 欧美一区二区三区| 亚洲av片天天在线观看| 一级黄色大片毛片| 国产成人系列免费观看| 视频区欧美日本亚洲| 午夜免费激情av| www.精华液| 亚洲自偷自拍图片 自拍| 999精品在线视频| 国产免费av片在线观看野外av| 国内揄拍国产精品人妻在线| 久久中文看片网| 亚洲国产精品sss在线观看| 一进一出好大好爽视频| 国产精品免费一区二区三区在线| 亚洲一码二码三码区别大吗| 亚洲成人久久爱视频| 色av中文字幕| 久久久久久久久中文| 一边摸一边做爽爽视频免费| 国产乱人伦免费视频| 三级国产精品欧美在线观看 | 免费高清视频大片| 成人av在线播放网站| 两人在一起打扑克的视频| а√天堂www在线а√下载| 久久精品成人免费网站| 女警被强在线播放| 中文字幕高清在线视频| 国产一区在线观看成人免费| 日韩有码中文字幕| 手机成人av网站| 亚洲av成人av| 国产精品久久电影中文字幕| 三级国产精品欧美在线观看 | 久久久久九九精品影院| 久久久久久久久中文| 久久这里只有精品中国| 国产欧美日韩一区二区精品| 亚洲va日本ⅴa欧美va伊人久久| 亚洲成人国产一区在线观看| 亚洲免费av在线视频| 欧美成人午夜精品| 日本免费a在线| 国产在线精品亚洲第一网站| 国产一区二区在线观看日韩 | 十八禁网站免费在线| 女人被狂操c到高潮| 三级男女做爰猛烈吃奶摸视频| 欧美一区二区国产精品久久精品 | av中文乱码字幕在线| 99久久无色码亚洲精品果冻| 亚洲成av人片在线播放无| 国产主播在线观看一区二区| 99久久精品国产亚洲精品| 女同久久另类99精品国产91| 亚洲一码二码三码区别大吗| 久久精品国产综合久久久| 黄色女人牲交| 亚洲欧美精品综合久久99| 久久婷婷成人综合色麻豆| 久久人妻福利社区极品人妻图片| 黄色毛片三级朝国网站| 国产免费av片在线观看野外av| 无人区码免费观看不卡| 久久国产精品影院| 免费观看人在逋| 夜夜躁狠狠躁天天躁| 五月伊人婷婷丁香| 在线观看免费午夜福利视频| 国产视频一区二区在线看| 久久久国产精品麻豆| 国产av一区在线观看免费| 婷婷精品国产亚洲av在线| 18美女黄网站色大片免费观看| 黑人操中国人逼视频| 国产精品久久久久久精品电影| 久久这里只有精品19| 一二三四在线观看免费中文在| 国产激情偷乱视频一区二区| 久久中文看片网| www国产在线视频色| 两个人的视频大全免费| 啪啪无遮挡十八禁网站| 搡老熟女国产l中国老女人| 国产91精品成人一区二区三区| 久久久久久亚洲精品国产蜜桃av| 伊人久久大香线蕉亚洲五| 久久精品成人免费网站| 日韩国内少妇激情av| 麻豆国产97在线/欧美 | 美女午夜性视频免费| 可以在线观看的亚洲视频| 老熟妇乱子伦视频在线观看| 欧美日韩亚洲综合一区二区三区_| 久久人妻av系列| 亚洲成人精品中文字幕电影| 很黄的视频免费| 精品国产超薄肉色丝袜足j| 51午夜福利影视在线观看| 国内精品久久久久精免费| 日韩精品免费视频一区二区三区| 少妇的丰满在线观看| 日韩欧美 国产精品| 色精品久久人妻99蜜桃| 欧美乱色亚洲激情| 国产精品九九99| 色尼玛亚洲综合影院| av天堂在线播放| 桃红色精品国产亚洲av| 国产精品一区二区精品视频观看| 男女之事视频高清在线观看| 香蕉久久夜色| 精品久久久久久久毛片微露脸| 中文在线观看免费www的网站 | 久久人妻av系列| 一a级毛片在线观看| 免费在线观看亚洲国产| 午夜视频精品福利| a在线观看视频网站| 欧美精品啪啪一区二区三区| 91av网站免费观看| 麻豆一二三区av精品| 午夜免费观看网址| 亚洲av电影不卡..在线观看| 美女大奶头视频| 午夜老司机福利片| 少妇粗大呻吟视频| 午夜免费激情av| 老司机在亚洲福利影院| 制服丝袜大香蕉在线| 国产精品电影一区二区三区| 深夜精品福利| 日本一本二区三区精品| 日韩欧美一区二区三区在线观看| 首页视频小说图片口味搜索| www.自偷自拍.com| 在线观看免费午夜福利视频| 99久久久亚洲精品蜜臀av| 99riav亚洲国产免费| 特级一级黄色大片| 欧美性猛交黑人性爽| 欧美一级a爱片免费观看看 | 午夜日韩欧美国产| 国产三级黄色录像| 可以在线观看毛片的网站| 国产精品,欧美在线| 国产精品久久电影中文字幕| 国内揄拍国产精品人妻在线| 国产精品久久电影中文字幕| 亚洲精品久久成人aⅴ小说| 国产精品亚洲av一区麻豆| 又粗又爽又猛毛片免费看| 桃红色精品国产亚洲av| 熟女电影av网| 又大又爽又粗| 国产亚洲精品久久久久久毛片| 亚洲国产精品成人综合色| 久久精品国产综合久久久| 女生性感内裤真人,穿戴方法视频| 一本精品99久久精品77| 久久天堂一区二区三区四区| 日韩欧美国产在线观看| 久久精品国产清高在天天线| 亚洲第一电影网av| 国产蜜桃级精品一区二区三区| 老司机福利观看| 久久国产乱子伦精品免费另类| 操出白浆在线播放| 我的老师免费观看完整版| 男人的好看免费观看在线视频 | 免费在线观看黄色视频的| 精品一区二区三区视频在线观看免费| 两性夫妻黄色片| 亚洲中文字幕日韩| 丝袜人妻中文字幕| 麻豆成人av在线观看| 一个人观看的视频www高清免费观看 | 久久久国产成人免费| 亚洲成人免费电影在线观看| 国产亚洲av嫩草精品影院| 精品少妇一区二区三区视频日本电影| 欧美黑人巨大hd| 少妇熟女aⅴ在线视频| 99国产综合亚洲精品| 欧美最黄视频在线播放免费| www日本黄色视频网| 午夜免费激情av| 欧洲精品卡2卡3卡4卡5卡区| 成年版毛片免费区| 十八禁网站免费在线| 男女那种视频在线观看| 久久中文看片网| 中文字幕最新亚洲高清| 国产欧美日韩一区二区三| svipshipincom国产片| 久久亚洲精品不卡| 日本三级黄在线观看| 啦啦啦免费观看视频1| 又爽又黄无遮挡网站| 久久人人精品亚洲av| 99久久精品国产亚洲精品| 99国产极品粉嫩在线观看| x7x7x7水蜜桃| 无遮挡黄片免费观看| 久久久久久亚洲精品国产蜜桃av| 亚洲国产精品999在线| av片东京热男人的天堂| 少妇人妻一区二区三区视频| 婷婷丁香在线五月| 一级a爱片免费观看的视频| 久久九九热精品免费| bbb黄色大片| 97超级碰碰碰精品色视频在线观看| 欧美性长视频在线观看| 欧美午夜高清在线| 亚洲人成网站高清观看| 床上黄色一级片| 中文字幕久久专区| 99在线人妻在线中文字幕| 免费观看精品视频网站| 亚洲精品粉嫩美女一区| 日韩欧美在线乱码| 性色av乱码一区二区三区2| 亚洲va日本ⅴa欧美va伊人久久| 国产黄色小视频在线观看| 国产午夜精品论理片| av在线天堂中文字幕| 国产亚洲精品av在线| 亚洲性夜色夜夜综合| 99久久99久久久精品蜜桃| 国产精品精品国产色婷婷| 欧美日韩国产亚洲二区| 亚洲av熟女| 国产黄片美女视频| 亚洲精品久久国产高清桃花| 亚洲 欧美 日韩 在线 免费| 精品熟女少妇八av免费久了| 日韩精品青青久久久久久| 三级毛片av免费| 国产av在哪里看| 欧美3d第一页| www日本黄色视频网| 亚洲精品国产一区二区精华液| 国产精品香港三级国产av潘金莲| 日韩欧美国产在线观看| 亚洲熟妇熟女久久| 波多野结衣巨乳人妻| 成在线人永久免费视频| 岛国在线观看网站| 男女视频在线观看网站免费 | 最近最新中文字幕大全免费视频| 在线观看66精品国产| 久久精品成人免费网站| 久久婷婷成人综合色麻豆| 亚洲人成电影免费在线| 亚洲乱码一区二区免费版| 老司机午夜福利在线观看视频| 国产成人系列免费观看| 国产一区二区三区视频了| 国模一区二区三区四区视频 | 草草在线视频免费看| 国产av一区在线观看免费| 国产精品,欧美在线| 亚洲欧美日韩高清在线视频| 色综合站精品国产| 在线观看舔阴道视频| а√天堂www在线а√下载| 色老头精品视频在线观看| 夜夜爽天天搞| 身体一侧抽搐| xxxwww97欧美| 欧美在线黄色| 亚洲欧洲精品一区二区精品久久久| 亚洲男人天堂网一区| 亚洲av成人精品一区久久| 亚洲精品粉嫩美女一区| 久久精品亚洲精品国产色婷小说| 69av精品久久久久久| 国产精品1区2区在线观看.| 亚洲精品久久国产高清桃花| 午夜视频精品福利| 欧美丝袜亚洲另类 | 久久人妻福利社区极品人妻图片| 成年版毛片免费区| 一本一本综合久久| 日韩精品青青久久久久久| 成人国语在线视频| 丰满的人妻完整版| 一级毛片精品| 51午夜福利影视在线观看| 香蕉国产在线看| 成人av一区二区三区在线看| 国产97色在线日韩免费| 黄色女人牲交| 日日爽夜夜爽网站| 性色av乱码一区二区三区2| 婷婷精品国产亚洲av| 香蕉国产在线看| 999久久久国产精品视频| 99久久精品国产亚洲精品| 午夜福利欧美成人| 国产在线精品亚洲第一网站| 舔av片在线| 欧美不卡视频在线免费观看 | 日韩欧美国产一区二区入口| 欧美成人免费av一区二区三区| 香蕉av资源在线| 亚洲精品av麻豆狂野| 日韩欧美免费精品| 精品少妇一区二区三区视频日本电影| 免费在线观看黄色视频的| 日韩成人在线观看一区二区三区| 日本在线视频免费播放| 久久久久久久久久黄片| 黑人操中国人逼视频| 69av精品久久久久久| 久久精品91蜜桃| 99热6这里只有精品| 国产一区二区在线观看日韩 | 国产欧美日韩一区二区精品| 色在线成人网| 欧美大码av| 亚洲av日韩精品久久久久久密| 一本大道久久a久久精品| 人成视频在线观看免费观看| 免费在线观看影片大全网站| 狂野欧美激情性xxxx| 亚洲激情在线av| 麻豆一二三区av精品| 两个人视频免费观看高清| 一级黄色大片毛片| 久久久精品国产亚洲av高清涩受| 国产主播在线观看一区二区| 窝窝影院91人妻| 久久人妻福利社区极品人妻图片| 女同久久另类99精品国产91| 99热6这里只有精品| 午夜a级毛片| 精品久久久久久久久久免费视频| 国内毛片毛片毛片毛片毛片| 国产视频一区二区在线看| 99久久国产精品久久久| 国产高清激情床上av| 久久久精品大字幕| 制服丝袜大香蕉在线| 久久香蕉精品热| 精品无人区乱码1区二区| 国产主播在线观看一区二区| 黄色毛片三级朝国网站| 亚洲黑人精品在线| 日韩免费av在线播放| 精品午夜福利视频在线观看一区| 波多野结衣高清作品| 久久精品亚洲精品国产色婷小说| 日本一二三区视频观看| 午夜影院日韩av| 欧美大码av| 舔av片在线| 日本成人三级电影网站| 久久久久性生活片| 91麻豆精品激情在线观看国产| 国产激情偷乱视频一区二区| 夜夜爽天天搞| 成人国产一区最新在线观看| 精品久久久久久成人av| 久久久久久国产a免费观看| 激情在线观看视频在线高清| 国产真实乱freesex| 国产一区二区在线观看日韩 | 热99re8久久精品国产| 国内揄拍国产精品人妻在线| 看片在线看免费视频| 成人午夜高清在线视频| ponron亚洲| 国产精品久久电影中文字幕| 色综合站精品国产| 亚洲专区国产一区二区| 无人区码免费观看不卡| 他把我摸到了高潮在线观看| 国产成人精品久久二区二区免费| 色播亚洲综合网| 精品电影一区二区在线| 三级毛片av免费| 亚洲精品一区av在线观看| 两人在一起打扑克的视频| 91麻豆av在线| 亚洲av成人不卡在线观看播放网| 别揉我奶头~嗯~啊~动态视频| 少妇粗大呻吟视频| 成人av在线播放网站| 波多野结衣高清无吗| e午夜精品久久久久久久| 婷婷精品国产亚洲av在线| e午夜精品久久久久久久| 2021天堂中文幕一二区在线观| 成年免费大片在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 久久草成人影院| 日韩精品免费视频一区二区三区| 国内久久婷婷六月综合欲色啪| 国产欧美日韩一区二区三| 国产成人av激情在线播放| 亚洲精品国产精品久久久不卡| 人人妻人人看人人澡| 欧美性猛交╳xxx乱大交人| 一本综合久久免费| 狠狠狠狠99中文字幕| 国语自产精品视频在线第100页| 黄片大片在线免费观看| 日本黄大片高清| 美女 人体艺术 gogo| 久久国产乱子伦精品免费另类| 欧美日韩亚洲国产一区二区在线观看| 欧美黑人欧美精品刺激| 日韩精品中文字幕看吧| 亚洲成人久久爱视频| 国产精品久久久久久精品电影| 女人爽到高潮嗷嗷叫在线视频| 久久午夜亚洲精品久久| 五月伊人婷婷丁香| 一级毛片高清免费大全| 十八禁人妻一区二区| 国产野战对白在线观看| 怎么达到女性高潮| 一级片免费观看大全| 嫩草影视91久久| 久久午夜综合久久蜜桃| 亚洲欧美一区二区三区黑人| 老熟妇仑乱视频hdxx| 国产av一区在线观看免费| 香蕉丝袜av| 亚洲一区二区三区色噜噜| 99热这里只有精品一区 | 久久久国产精品麻豆| 国产精品久久久久久久电影 | 日本精品一区二区三区蜜桃| 国产亚洲精品综合一区在线观看 | 在线观看66精品国产| 久久香蕉激情| 亚洲av成人不卡在线观看播放网| 首页视频小说图片口味搜索| 久久精品国产亚洲av香蕉五月| 制服人妻中文乱码| 亚洲中文av在线| 搡老熟女国产l中国老女人| 免费人成视频x8x8入口观看| 国产视频一区二区在线看| 亚洲人成电影免费在线| 欧美av亚洲av综合av国产av| 日本在线视频免费播放| 天堂√8在线中文| 亚洲专区字幕在线| 1024视频免费在线观看| 国产爱豆传媒在线观看 | 97人妻精品一区二区三区麻豆| 国产高清videossex| 久久久久久国产a免费观看| 国产精品乱码一区二三区的特点| 国产精品久久视频播放| 日本免费一区二区三区高清不卡| x7x7x7水蜜桃| 婷婷六月久久综合丁香|