• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Enhancement of the group delay in quadratic coupling optomechanical systems subjected to an external force

    2023-12-15 11:47:54JimmiHervTallaMbUlrichChancelinTiofackDemanouChristianKenfackSademandMartinTchoffo
    Chinese Physics B 2023年12期

    Jimmi Herv′e Talla Mb′e, Ulrich Chancelin Tiofack Demanou,Christian Kenfack-Sadem, and Martin Tchoffo

    1Research Unit of Condensed Matter,Electronics and Signal Processing,Department of Physics,University of Dschang,P.O.Box 67,Dschang,Cameroon

    2African Institute for Mathematical Sciences,P.O.Box 608,Limbe,Cameroon

    Keywords: slow and fast light,optomechanical systems,group delay,quadratic coupling

    1.Introduction

    Optomechanical systems have become one of the most attractive topical research subjects in light-matter interactions,from a fundamental viewpoint and in terms of numerous applications(see Ref.[1]for a review)such as entanglement,[2,3]squeezing states,[4-6]normal mode splitting,[7,8]gravitational wave detection,[9]precision measurement, detection,and sensing.[10-14]Recently, their scope of application has widened to include slow and fast light generation through the concept of optomechanically induced transparency (OMIT).Optomechanically induced transparency is a process analogous to electromagnetically induced transparency(EIT)[16-18]and photon-pressure-induced transparency.[19]One of the most significant achievements in the field of slow light was published by Hauet al.,[18]where they slowed light to 17 m·s-1, using the phenomenon of electromagnetically induced transparency in a condensate of sodium atoms cooled to 50 nK.Since this first experimental observation, research on the subject of slow and fast light has become very diversified.Slow and fast light find practical applications in areas as diverse as interferometry,[20]optical memories,[21,22]all-optical switching and laser radar,[20,23]optical telecommunications,[20]quantum information processing,[24,25]and precision measurements,[26]among others.

    Optomechanically induced transparency provides an effective approach to controlling the electromagnetic fields and optical characteristics of matter, and results from the quantum interference of excitation pathways in optomechanical systems.It was successfully used to store light in a cavity and then induce a delay in the output light from the cavity.[27-32]For instance, slow light with a group delay of 0.8 ms was achieved using an optomechanical cavity combined with Bose-Einstein condensate.[31]Furthermore, with single-ended optomechanical cavities,it was also reported that both slow and fast light can be generated if both a coupled and probe laser are considered in an electromagnetically induced transparency configuration.[32]However,these techniques are expensive and difficult to implement.

    To realize more controllable optomechanical systems that can simultaneously generate slow and fast light,some authors addressed optomechanical cavities with external force applied to the mobile mirror.[15,16]For instance, Hanet al.investigated slow and fast light in a hybrid optomechanical system subjected to a time-varying external force.[15]Wuet al.studied a simple optomechanical cavity with a constant external force that simultaneously generates slow and fast light.[16]They achieved force-induced light transparency and forcedependent conversion between slow and fast light as a result of the involvement of anti-Stokes and Stokes processes,which were controllable by correctly monitoring the effective pump field power or the external force.However, they did not consider the case of strong coupling between the optical and the mechanical degrees of freedom.Conventionally,the strong coupling regime refers to the case where the optomechanical coupling strengthgexceeds the cavity linewidthκ.[1]Strong coupling can induce the optical cavity mode to be proportional to both the displacement(linear coupling)and the square of the displacement (quadratic coupling) of the mobile mirror in optomechanical systems,[19,34-37]and several experimental implementations to measure and monitor the corresponding coupling strengths have been achieved.[33,38,39]For instance, the quadratic coupling can be tuned by adjusting the tilt of a mobile mirror in a dispersive optomechanical system[38]or measured using homodyne detection in a reflective optomechanical system.[39]Various phenomena have been observed in quadratic optomechanical systems, such as optical cooling and squeezing,[39-42]photon blockade,[43]photonphonon entanglement,[44]reduction of hysteresis,[45]induction of large transparency efficiency at larger detuning in a hybrid optomechanical system,[46]and only slow light[47,48]or both slow and fast light if a three-level atom is inserted in the cavity.[49]Since the force-induced slow and fast light optomechanical oscillators are easy to control[16]and do not require additional atoms as in Ref.[49],it would be interesting to study the effect of the quadratic coupling in such a system.

    In this work, we investigate controllable force-induced slow and fast light optomechanical oscillators which simultaneously experience the linear and quadratic optomechanical couplings.We demonstrate that an appropriate selection of the quadratic coupling parameter enhances(in absolute value)the group delay of both the slow and fast light.The enhancement of the group delay of both the slow and fast light was also addressed using a position-dependent mass optomechanical system,and theoretical variations of the group delay of the order of a few 10μs were obtained.[50]In the present paper,we show that quadratic optomechanical coupling in an optomechanical cavity subjected to an external force enables the achievement of a more significant variation of the group delay; that is in the order of several hundreds of μs.Besides, the system can be easily controlled by monitoring the external force and the quadratic coupling strength.

    The paper is structured as follows.In Section 2, we present the theoretical model and compute the expression of the probe output field and the group delay in both the blueand red-sideband regimes.In Section 3, we show how the quadratic coupling strength between the optical and the mechanical degrees of freedom contributes to delaying or accelerating the output light.The conclusion is presented in Section 4.

    2.Model and calculations

    An optomechanical system of the Fabry-Perot type in the presence of an external force acting on the end of the moving mirror and used for the purposes of slow/fast light is presented in Fig.1.The optomechanical cavity is characterized by a frequencyωc, a lengthL(x=0), withxbeing the displacement of the mobile mirror.The optomechanical cavity is driven simultaneously by a strong pumping field of amplitudeεpwith frequencyωp=2πc/λpand powerPp, and by a weak probe field of amplitudeεswith frequencyωs=2πc/λsand powerPs.c,λp,andλsare the velocity of light,and the wavelengths of the pump and the probe fields, respectively.The optical mode characterized by the annihilation operatora(from both the pumping and probe fields)is stored in the cavity at a dissipation rateκ(κis also known as the cavity linewidth) and interacts via the radiation pressure with the mechanical mode.For simplicity, the mobile mirror is described as a harmonic oscillator in quantum mechanics having a massm,a frequencyωm, a damping rateγm, and being subjected to an external forcef.

    Fig.1.Schematic diagram of the optomechanical oscillator with an external force.The pump(subscript p)and the probe(subscript s)lights are characterized by εp,s, ωp,s, and Pp,s which stand for their feild amplitude,frequency,and power,respectively. x is the displacement of the mobile mirror with frequency ωm and damping rate γm.

    When considering strong optomechanical coupling,higher-order terms cannot be neglected in the expansion of the optical resonant frequency in terms of the displacement of the mobile mirror.[37,39-45,47-51]The Hamiltonian of our system yields[16,17,44,45,47-51]

    Because we deal with strong optical driving field, quantum fluctuations are ignored and the position, impulse, and cavity field shift to their mean values.[53,54]Using the meanfield approximation〈Q·a〉?〈Q〉〈a〉 and transforming the cavity field into a rotating frame at the frequencyωp,the mean value equations of our system are[32,53]

    To determine the equilibrium points of the set of Eqs.(6)-(8),the following relationships in terms of the probe field are used:[32,48,49]

    where (z ≡x,p,a).The termsz0andz±are the zerothorder solutions and the first-order perturbation coefficients in the probe field strengthεs, respectively.The three terms in Eq.(9) are in the order associated with the frequenciesωp,ωs,2ωp-ωs.[16,55]Substituting Eq.(9) into Eqs.(6)-(8)and considering only the lower orders ofεs, the equilibrium pointsz0yield

    The expression ofa+is also computed as

    It is important to note that this equation explicitly depends on the pump power throughεp, the external forcef, and the quadratic coupling strengthμ.The fact thatx0can be monitored using these parameters brings the advantage of adjusting the effective detuning(see Eq.(14))by using two external and controllable parametersPpandf, which is necessary to evaluate the field at the exit of the optomechanical cavity.[16]Figure 2 reveals that the equilibrium point of the positionx0increases with the external force but slightly decreases as the value of the quadratic coupling strength grows.This growth is almost linear with a global slope of about 0.2 nm/mN,meaning that the effective detuning can be controlled directly from the external force(see Eq.(14)).Importantly,it is noted from the inset of Fig.2 that higherμallows the variation ofx0to dwell in larger values.It will then result in an important shift of the detuning from the?c(see Eq.(14)).Table 1 shows the deviations of both the equilibrium point of the position and the effective detuning due to the quadratic coupling strength.Indeed, taking into account the effect of the quadratic coupling strength,there occurs a slight increase(in absolute value)of the equilibrium point of the positionx0(in the order of fm) from its value when the effect of the quadratic coupling strength is neglected.Yet, such a slight variation of the equilibrium point of the position results in a rise of the effective detuning (see Table 1).Thus, it is necessary to evaluate its effect on the output field.

    Fig.2.Equilibrium point of the position versus the external force at different values of the quadratic coupling strength.The inset is an enlargement of the plot.In the inset, from top to bottom, μ =(0,0.1,1,3)×10-9 Hz/m2. Pp=6×10-2 W.

    Table 1.Variation of the equilibrium of the position and the effective detuning in terms of the quadratic coupling strength,in an acceptable experimental range.[38]

    2.1.Expression and properties of the light output field

    Analysis of the output field will help to study the performance of the quadratic coupling optomechanical oscillator subjected to an external force to slow down or speed up light.This requires evaluation of the absorption and dispersion properties of the output field.Indeed,the input-output relationship is computed as follows:[32,56]

    where〈a〉is given by Eq.(9)and the inputεin=εp+εse-iδt.Substituting these expressions into Eq.(16)yields

    Remarkably, the expression of the output field (see Eq.(17))is similar to Eq.(9).Therefore,the first and the second terms of Eq.(17) also correspond to the pump and the probe fields at frequenciesωpandωs, respectively.The third term corresponds to the four-wave mixing field at frequency 2ωp-ωsand is generated through the interactions between two pump photons and a probe photon via the mechanical mode.For mathematical convenience and without loss of generality, the probe response can be computed through the quadrature

    such that the real part Re(εT)is responsible for the absorption profile of the output field whereas the imaginary part Im(εT)displays the dispersion profile of the output field.[30,50,56]Using the equilibrium point of Eq.(13), the expression of such an output field yields

    Through the effective detuning,it can be seen thatεTindirectly depends onx0.Accordingly,the light transparency can be built by correctly adjusting the external forcefor the pump powerPpand also the quadratic coupling strengthμ(see Eq.(15)).For this purpose, it is necessary to operate in the neighborhood of the first-order red-sideband resonance, i.e.,??ωm,or alternatively in the first-order blue-sideband resonance,i.e.,??-ωm, since it facilitates obtaining normal mode splitting as well as the strongest radiation coupling of the system due to the approximation of the resolved-sideband limit(ωm?κ).[55]It is important to notice that the first-order redsideband resonance also corresponds toδ ?ωmwhile the firstorder blue-sideband resonance is equivalent toδ ?-ωm.[57]Under these considerations, the termcan be neglected in Eq.(22).

    Thus,when the optomechanical system works in the redsideband regime,it corresponds to the case of a rotating-wave approximation (RWA) and the output field spectra are in the anti-Stokes sideband.[57]Using the approximationδ2-ω2m?2ωm(δ-ωm), the expression of the output is reduced to the following:

    On the other hand, when the optomechanical system operates in the blue-sideband regime, it corresponds to the case of an anti-RWA and the output field spectra are in the Stokes sideband.[57]Now,the approximation yieldsδ2-ω2m?-2ωm(δ+ωm)and the output field becomes

    Having computed the output probe field,the next section deals with the calculation of the group delay experienced by that output field.

    2.2.Evaluation of the group delay

    The group delay experienced in the optomechanical cavities results from the rapid variation in the phaseφ(ωs)of the transmission of the probe field and is defined as[32,57]

    respectively.

    3.Results and discussion

    For our simulations,the values of the parameters are chosen to be within the range of the experimentally accessible values:[16,54]λp=1064 nm,L=25 mm,κ=2π×215 kHz,m=145 ng,ωm=2π×947 kHz,γm=2π×141 Hz, and?c=-10ωm.It is important to mention that with these parameters,strong coupling was achieved from a pumping power of around 0.7×10-2W (g/κ ?1.2).[54]In what follows,κis kept and the pumping powers are made larger to meet the strong coupling condition (g/κ ?1) while maintaining the system in its mean-values state.[1,34,54]

    3.1.The red-sideband regime(??ωm)

    In this regime, the expressions of the output probe field and the corresponding group delay are given by Eqs.(23)and(29),respectively.

    Fig.3.(a) Real part of the output field.(b) Imaginary part of the output field.For the narrow and the thick lines,the values of the quadratic coupling strength are μ =0 and μ =2×10-9 Hz/m2,respectively.For the value of δ/ωm =1, the narrow line compared to the thick line is always longer at(a) the single end and (b) both ends (see the insets, noting that for (b), to avoid congestion,only one end is enlarged).In the insets,the lengths of the narrow and thick lines are (a) 0.154 and 0.2, respectively; (b) -0.92 and-0.85,respectively. f =-4.74×10-3 N and Pp=6×10-2 W.

    The plot of the output probe field is sketched in Fig.3 forf=-4.74×10-3N.Figures 3(a)and 3(b)represent the real and imaginary parts of the cavity output field as a function of the normalized input fields detuningδ/ωm,respectively.The real part is called the absorption spectrum (Fig.3(a)) while the imaginary part is the dispersion spectrum (Fig.3(b)).As shown in Figs.3(a) and 3(b), the real and imaginary parts of the probe output fieldεTredvary strongly in the neighborhood ofδ=ωm.From these spectra, let us note that in the presence of the quadratic coupling,the amplitudes at the resonance(δ/ωm=1)are truncated compared to their values when only the linear coupling is considered (see the insets of Figs.3(a)and 3(b)).It is important to mention that the results withμ=0 of Fig.3 are similar to that obtained in Ref.[16] but with an external force of lower magnitude (f=-4.74×10-6N).The absorption spectrum reveals the appearance of light transparency around the normalized center frequencyδ=ωm(see Fig.3(a)).Meanwhile, the dispersion spectrum first grows very rapidly, then suddenly decreases, and finally undergoes an immediate growth with a positive slope(see Fig.3(b)).This is a prediction of slow light under conditions of OMIT as illustrated in Fig.4.Indeed, for each value of the quadratic coupling strength,the group delay is positive with a peak occurring exactly at the resonanceδ=ωm;the magnitudes of the peaks increase asμincreases(Fig.4).Such an increase originates from the reduction of the negative value of the equilibrium of the position(see Fig.2)that raises the effective detuning accordingly (see Table 1).For instance, atμ=0 Hz/m2,the group delay is equal toτred=0.380 ms while it grows to≈0.615 ms whenμreaches 3×10-9Hz/m2.The difference is estimated to be about 0.235 ms.

    Fig.4.Group delay of the probe field in the red-sideband regime for different values of the quadratic coupling strength in units of Hz/m2.f =-4.74×10-3 N and Pp=6×10-2 W.

    Recall that in the blue-sideband regime the probe output field and the group delay are computed using Eqs.(24) and(30),respectively.

    The absorption and the dispersion spectra also depict similar profiles as in the case of the red-sideband regime (see Fig.5),and with no quadratic coupling it resembles that of the fast light regime of Ref.[16]under weaker force.Nonetheless,it can be seen that the quadratic coupling strength also affects the peak resonances of the absorption and the dispersion profiles as in the case of the red-sideband regime (see Fig.5).The quadratic coupling strength prolongs the length of the absorption spectrum at the resonance between the input fields detuningδand the frequency of the mobile mirrorωm(see the zoomed inset of Fig.5(a) atδ/ωm=-1).Contrariwise, under the effect of the quadratic coupling strength, the lengths of the dispersion spectrum at the transparency window are shortened(see the zoomed inset of Fig.5(b)atδ/ωm=-1).Compared to the red-sideband regime, the dispersion spectrum shows rather a negative slope with a transparency window aroundδ=-ωm, consequently, the group delay is negative(see Fig.6).This is a signature of the fast light induced by OMIT.Withf=-3.88×10-3N, the negative value of the group delay is characterized by a single peak whose magnitude increases (in absolute value) with the quadratic coupling strengthμ.We notice that when the quadratic coupling strength is neglected (μ=0), the group delay is equal to-0.382 ms whereas it changes from about-0.172 ms to reach-0.554 ms when the quadratic coupling strength attains 3×10-9Hz/m2(see Fig.6).As in the red-sideband regime,such an increase is also due to the deviation of the equilibrium of the position of the mobile mirror which results in an augmentation of the effective detuning(see Fig.2 and Table 1).

    Fig.5.(a) Real part of the output field.(b) Imaginary part of the output field.For the narrow and the thick lines,the values of the quadratic coupling strength are μ =0 and μ =2×10-9 Hz/m2, respectively.For the value of δ/ωm =-1, the narrow line compared to the thick line is(a)shorter at the single end, and (b) longer at both ends (see the inset, noting that for (b), to avoid congestion,only one end is enlarged).In the insets,the lengths of the narrow and thick lines are (a) -0.18 and -0.24, respectively; (b) 1.07 and 1.01,respectively. f =-3.88×10-3 N and Pp=6×10-2 W.

    Fig.6.Group delay of the output field in the blue-sideband regime for different values of the quadratic coupling strength in units of Hz/m2.f =-3.88×10-3 N and Pp=6×10-2 W.

    3.2.The blue-sideband regime(??-ωm)

    3.3.Effect of the input pump power

    Another easily tunable parameter of the system is the input pump powerPp.It is important to analyze its effect on the group delay.Tables 2 and 3 display the results in the red-sideband and blue-sideband regimes, respectively.It appears that in both regimes, whether the quadratic coupling strength is considered or not, the group delay is reduced (in absolute value) when the input pump power is increasing as also observed in hybrid optomechanical systems.[57]The results of Tables 2 and 3 also show a similar decrease (in absolute value)when the quadratic coupling strength is present.However,the fact that the quadratic coupling strength magnifies (in absolute value) the group delay as observed in Subsections 3.1 and 3.2 is also confirmed for different values of the input pump power.Indeed, it can be noticed from Tables 2 and 3 that for a given value of the input pump powerPp, the group delay is larger (in absolute value) when the quadratic coupling strength is taken into account as compared to the case where it is neglected.For instance, for a fixed value of the input pump powerPp= 4×10-2W and taking two different values of the quadratic coupling strengthμ=0 Hz/m2andμ=2×10-9Hz/m2:-τred=0.577 ms andτred=0.78 ms,respectively(see Table 2);-τblue=-0.578 ms andτblue=-0.734 ms,respectively(see Table 3).

    Table 2.Variation of the group delay in terms of the input pump power in the red-sideband regime (??ωm) when the quadratic coupling strength is neglected and when it is considered. f =-4.74×10-3 N.

    4.Conclusion

    We have studied the effect of strong optomechanical coupling in the process of slow and fast light generation.Strong optomechanical coupling induces both the linear and the quadratic coupling between the mechanical and the optical degrees of freedom.As demonstrated in Ref.[16], in the absence of external force, the effective detuning is?≈?c=-10ωmwhich is large enough to induce the OMIT expected at the resonance?=±ωm.The effect of the external force and the quadratic coupling strength is to bring?close to±ωm(Eq.(14)).We have demonstrated that the quadratic coupling strength enhances the effective detuning between the pump field and the cavity.It has been shown that such enhancement affects the light transparency by magnifying the amplitude of the absorption profile of the blue-sideband resonance,and also by shortening the amplitude of the dispersion profile of the blue-sideband resonance and the amplitudes of both the absorption and the dispersion profiles of the red-sideband resonance.Consequently, it increases (in absolute value) the group delay in both the red-and blue-sideband regimes.This prominent result may contribute to the potential applications mentioned above.In future work,we envisage exploring some of these applications.

    中文亚洲av片在线观看爽| netflix在线观看网站| 亚洲精品中文字幕一二三四区| 久久久久亚洲av毛片大全| 国产成+人综合+亚洲专区| 亚洲国产精品久久男人天堂| 欧美日韩一级在线毛片| 午夜亚洲福利在线播放| 国产精品一区二区三区四区免费观看 | 观看免费一级毛片| 久久精品国产99精品国产亚洲性色| 中亚洲国语对白在线视频| 夜夜爽天天搞| 99久久无色码亚洲精品果冻| 欧美成人性av电影在线观看| 欧美zozozo另类| 在线观看美女被高潮喷水网站 | avwww免费| 男人舔女人下体高潮全视频| 两个人免费观看高清视频| 又黄又粗又硬又大视频| 亚洲天堂国产精品一区在线| 1024手机看黄色片| 亚洲av电影在线进入| 国产一区在线观看成人免费| 国产伦在线观看视频一区| 亚洲国产精品久久男人天堂| 99在线视频只有这里精品首页| 国产精品九九99| 天天躁狠狠躁夜夜躁狠狠躁| 成人高潮视频无遮挡免费网站| 国内久久婷婷六月综合欲色啪| 麻豆国产av国片精品| 国产一区二区三区在线臀色熟女| 亚洲成人中文字幕在线播放| 中文亚洲av片在线观看爽| 一区二区三区国产精品乱码| 亚洲精品在线美女| 可以在线观看毛片的网站| 国产69精品久久久久777片 | 国产精品日韩av在线免费观看| or卡值多少钱| 久久这里只有精品中国| 三级男女做爰猛烈吃奶摸视频| 脱女人内裤的视频| e午夜精品久久久久久久| 母亲3免费完整高清在线观看| 亚洲精品美女久久av网站| 在线视频色国产色| 久久香蕉精品热| 亚洲av片天天在线观看| 午夜成年电影在线免费观看| 精品熟女少妇八av免费久了| 日本a在线网址| 免费电影在线观看免费观看| 人人妻,人人澡人人爽秒播| 777久久人妻少妇嫩草av网站| 亚洲欧美日韩高清在线视频| 国产69精品久久久久777片 | 欧美成人性av电影在线观看| 国产精品一区二区三区四区久久| av中文乱码字幕在线| 久久国产精品影院| 在线国产一区二区在线| 国内久久婷婷六月综合欲色啪| 国产麻豆成人av免费视频| 久久精品91无色码中文字幕| 久久久国产精品麻豆| 18禁黄网站禁片免费观看直播| 亚洲精品在线美女| 欧美日韩精品网址| 中文字幕av在线有码专区| svipshipincom国产片| 可以在线观看的亚洲视频| 日本一二三区视频观看| 亚洲五月婷婷丁香| 欧美成人一区二区免费高清观看 | 精华霜和精华液先用哪个| 国产精品久久久久久久电影 | 五月玫瑰六月丁香| 国产亚洲精品第一综合不卡| 变态另类成人亚洲欧美熟女| 欧美最黄视频在线播放免费| 人妻久久中文字幕网| 麻豆国产av国片精品| 51午夜福利影视在线观看| 18禁国产床啪视频网站| 午夜福利在线在线| 国产黄片美女视频| 99久久99久久久精品蜜桃| 国产人伦9x9x在线观看| 日韩欧美在线二视频| 夜夜夜夜夜久久久久| 麻豆国产av国片精品| 欧美成人一区二区免费高清观看 | 美女大奶头视频| 国产精品久久久久久亚洲av鲁大| 成人av一区二区三区在线看| 在线观看免费视频日本深夜| 男人舔女人的私密视频| 亚洲成人中文字幕在线播放| 国产av不卡久久| av在线天堂中文字幕| 一个人观看的视频www高清免费观看 | 熟妇人妻久久中文字幕3abv| 国产精品99久久99久久久不卡| 麻豆久久精品国产亚洲av| 精品人妻1区二区| 草草在线视频免费看| 免费高清视频大片| av在线天堂中文字幕| 免费看十八禁软件| 中文字幕精品亚洲无线码一区| 欧美极品一区二区三区四区| 久久热在线av| 久久久久久久久中文| 国产1区2区3区精品| 午夜精品一区二区三区免费看| 久久人妻av系列| 伦理电影免费视频| 伦理电影免费视频| 欧美另类亚洲清纯唯美| 日本成人三级电影网站| 成人精品一区二区免费| 啦啦啦韩国在线观看视频| 欧美大码av| 国产激情久久老熟女| 国产精品 欧美亚洲| 久久久久久久久免费视频了| 欧美 亚洲 国产 日韩一| 香蕉久久夜色| 9191精品国产免费久久| 亚洲 欧美一区二区三区| 国产aⅴ精品一区二区三区波| 精品午夜福利视频在线观看一区| 久久久精品国产亚洲av高清涩受| 禁无遮挡网站| 男插女下体视频免费在线播放| 男女视频在线观看网站免费 | 黄色a级毛片大全视频| 国产av一区在线观看免费| 精品久久久久久成人av| 国产成人啪精品午夜网站| 国内精品久久久久精免费| 国产精品99久久99久久久不卡| 亚洲熟女毛片儿| 欧美3d第一页| 夜夜夜夜夜久久久久| 午夜久久久久精精品| 亚洲va日本ⅴa欧美va伊人久久| 国产精品一区二区三区四区免费观看 | 亚洲 欧美一区二区三区| 精品一区二区三区av网在线观看| 国产探花在线观看一区二区| 小说图片视频综合网站| 巨乳人妻的诱惑在线观看| 久久久久久国产a免费观看| 亚洲人与动物交配视频| 国产精品一区二区免费欧美| 黄色a级毛片大全视频| 熟女电影av网| 亚洲国产欧洲综合997久久,| 高清毛片免费观看视频网站| 午夜久久久久精精品| 老熟妇乱子伦视频在线观看| 久久精品国产亚洲av香蕉五月| 一个人免费在线观看电影 | 神马国产精品三级电影在线观看 | 老汉色av国产亚洲站长工具| 国产一区二区三区在线臀色熟女| 精品免费久久久久久久清纯| 午夜福利在线观看吧| 1024手机看黄色片| 在线看三级毛片| 午夜福利成人在线免费观看| 久久人妻av系列| 日日爽夜夜爽网站| 欧美激情久久久久久爽电影| 日韩中文字幕欧美一区二区| 亚洲av成人不卡在线观看播放网| 亚洲国产精品久久男人天堂| av在线播放免费不卡| 国产精品av视频在线免费观看| 波多野结衣高清作品| 极品教师在线免费播放| 欧美在线一区亚洲| 香蕉国产在线看| 久久久久性生活片| 免费观看精品视频网站| 国产黄片美女视频| 18禁黄网站禁片免费观看直播| 久久久久久大精品| 一级作爱视频免费观看| 色尼玛亚洲综合影院| 天天一区二区日本电影三级| 伊人久久大香线蕉亚洲五| 亚洲,欧美精品.| 亚洲精品中文字幕一二三四区| 国产成人aa在线观看| 国产aⅴ精品一区二区三区波| www日本在线高清视频| 伊人久久大香线蕉亚洲五| 亚洲av美国av| 1024视频免费在线观看| 久久久国产成人精品二区| 久久 成人 亚洲| 三级国产精品欧美在线观看 | 欧美性长视频在线观看| 亚洲欧美日韩东京热| 老汉色∧v一级毛片| 日本五十路高清| 日韩中文字幕欧美一区二区| 婷婷精品国产亚洲av在线| 久久这里只有精品中国| 亚洲av美国av| 成人午夜高清在线视频| 国产av又大| 亚洲av电影不卡..在线观看| 欧美性长视频在线观看| 国产精品久久久久久久电影 | 国产精品美女特级片免费视频播放器 | 国产一区二区三区在线臀色熟女| 亚洲黑人精品在线| 老司机福利观看| netflix在线观看网站| 久久久久久人人人人人| 免费在线观看完整版高清| 免费人成视频x8x8入口观看| 免费在线观看亚洲国产| 国产又黄又爽又无遮挡在线| 久久午夜综合久久蜜桃| 久久国产精品影院| 黄色女人牲交| 久久亚洲真实| 亚洲av电影不卡..在线观看| 亚洲一区中文字幕在线| 美女免费视频网站| 视频区欧美日本亚洲| cao死你这个sao货| 成人av在线播放网站| 成年女人毛片免费观看观看9| 国产精品永久免费网站| 无限看片的www在线观看| 91字幕亚洲| 国产欧美日韩精品亚洲av| 国产精华一区二区三区| 欧美日韩亚洲国产一区二区在线观看| 一级毛片高清免费大全| 亚洲熟女毛片儿| 国产精品久久久人人做人人爽| 在线观看美女被高潮喷水网站 | 亚洲黑人精品在线| 午夜福利成人在线免费观看| 亚洲va日本ⅴa欧美va伊人久久| 亚洲美女黄片视频| 精品国产乱码久久久久久男人| 桃色一区二区三区在线观看| 欧美高清成人免费视频www| 久久精品人妻少妇| 久久精品综合一区二区三区| 欧美日韩福利视频一区二区| 免费观看精品视频网站| 两个人的视频大全免费| 老汉色av国产亚洲站长工具| 真人一进一出gif抽搐免费| 亚洲第一欧美日韩一区二区三区| 国产成人av激情在线播放| 三级男女做爰猛烈吃奶摸视频| 午夜影院日韩av| 国产成年人精品一区二区| 午夜福利视频1000在线观看| 精品午夜福利视频在线观看一区| 亚洲午夜理论影院| 我的老师免费观看完整版| 免费电影在线观看免费观看| 两个人视频免费观看高清| 18禁黄网站禁片午夜丰满| 亚洲av成人一区二区三| 日韩精品青青久久久久久| 91成年电影在线观看| 日本撒尿小便嘘嘘汇集6| 国产午夜精品论理片| 亚洲自拍偷在线| 日本a在线网址| 欧美日韩亚洲国产一区二区在线观看| 婷婷亚洲欧美| 久久婷婷人人爽人人干人人爱| av超薄肉色丝袜交足视频| 亚洲第一电影网av| 亚洲熟女毛片儿| 亚洲熟妇中文字幕五十中出| 久久久国产成人免费| 黄色毛片三级朝国网站| 亚洲av成人不卡在线观看播放网| 舔av片在线| 狂野欧美激情性xxxx| 手机成人av网站| 岛国视频午夜一区免费看| 亚洲人与动物交配视频| 高潮久久久久久久久久久不卡| 伦理电影免费视频| 午夜福利在线在线| 老鸭窝网址在线观看| 看片在线看免费视频| 久久亚洲精品不卡| 中文字幕精品亚洲无线码一区| 亚洲专区国产一区二区| 舔av片在线| 亚洲在线自拍视频| 最好的美女福利视频网| 麻豆av在线久日| 亚洲人成网站高清观看| 午夜视频精品福利| 亚洲精品粉嫩美女一区| 亚洲国产中文字幕在线视频| 少妇粗大呻吟视频| av视频在线观看入口| 观看免费一级毛片| 天天躁狠狠躁夜夜躁狠狠躁| 午夜精品在线福利| 99精品欧美一区二区三区四区| 俺也久久电影网| 91在线观看av| 深夜精品福利| 国产日本99.免费观看| 一级毛片女人18水好多| 色综合欧美亚洲国产小说| 欧美 亚洲 国产 日韩一| 一区福利在线观看| 这个男人来自地球电影免费观看| xxx96com| ponron亚洲| 叶爱在线成人免费视频播放| 国产精华一区二区三区| 九色国产91popny在线| 全区人妻精品视频| 一进一出好大好爽视频| a级毛片在线看网站| 成人亚洲精品av一区二区| 特级一级黄色大片| 亚洲美女视频黄频| 成人手机av| 成人欧美大片| 色在线成人网| 亚洲aⅴ乱码一区二区在线播放 | 国产免费男女视频| avwww免费| 男人的好看免费观看在线视频 | 国产三级中文精品| 亚洲精品国产精品久久久不卡| 99热6这里只有精品| 99国产精品一区二区三区| 亚洲国产看品久久| 黄片大片在线免费观看| 久久久久久久久中文| 丁香欧美五月| 18美女黄网站色大片免费观看| 日本在线视频免费播放| 久久精品91蜜桃| 久久久水蜜桃国产精品网| 亚洲精品久久国产高清桃花| 一级毛片精品| 欧美在线黄色| 亚洲欧美日韩高清专用| 在线观看舔阴道视频| 久久婷婷人人爽人人干人人爱| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品国产高清国产av| 视频区欧美日本亚洲| 黄色丝袜av网址大全| 亚洲成人精品中文字幕电影| a在线观看视频网站| 日日摸夜夜添夜夜添小说| 亚洲成人中文字幕在线播放| 国产精华一区二区三区| 搡老熟女国产l中国老女人| 国产欧美日韩一区二区三| 美女 人体艺术 gogo| 老司机在亚洲福利影院| 九色成人免费人妻av| 成人亚洲精品av一区二区| 身体一侧抽搐| 亚洲七黄色美女视频| 九色国产91popny在线| 亚洲真实伦在线观看| 夜夜爽天天搞| 波多野结衣巨乳人妻| 久久精品国产亚洲av香蕉五月| 后天国语完整版免费观看| 欧美绝顶高潮抽搐喷水| 欧美黑人欧美精品刺激| 热99re8久久精品国产| 又黄又粗又硬又大视频| 久久婷婷人人爽人人干人人爱| 十八禁人妻一区二区| 欧美一级a爱片免费观看看 | 久久中文字幕人妻熟女| 婷婷丁香在线五月| 国语自产精品视频在线第100页| 男女做爰动态图高潮gif福利片| 丝袜人妻中文字幕| 国产1区2区3区精品| 2021天堂中文幕一二区在线观| 国产高清有码在线观看视频 | 熟妇人妻久久中文字幕3abv| 日韩 欧美 亚洲 中文字幕| 最近最新免费中文字幕在线| 欧美大码av| 成人av一区二区三区在线看| 日韩欧美免费精品| 日韩欧美在线二视频| 精品一区二区三区视频在线观看免费| 国产黄a三级三级三级人| 亚洲成a人片在线一区二区| 亚洲最大成人中文| 一区福利在线观看| 午夜福利视频1000在线观看| 可以在线观看毛片的网站| 国产成人精品无人区| 97超级碰碰碰精品色视频在线观看| 免费在线观看视频国产中文字幕亚洲| 巨乳人妻的诱惑在线观看| 中国美女看黄片| 日日夜夜操网爽| 午夜免费成人在线视频| 最近最新免费中文字幕在线| 中文字幕久久专区| 人人妻人人澡欧美一区二区| 母亲3免费完整高清在线观看| 黄色a级毛片大全视频| 国产亚洲精品第一综合不卡| 国产精品 国内视频| 国产av麻豆久久久久久久| www日本黄色视频网| 欧美乱妇无乱码| 国产伦在线观看视频一区| 一进一出好大好爽视频| 中文字幕精品亚洲无线码一区| 欧美日韩瑟瑟在线播放| 亚洲熟妇中文字幕五十中出| 最新在线观看一区二区三区| 久久国产精品影院| 亚洲中文av在线| 午夜福利成人在线免费观看| 国产精品1区2区在线观看.| 在线免费观看的www视频| 国产日本99.免费观看| 一级黄色大片毛片| 舔av片在线| 九色国产91popny在线| 亚洲精品一区av在线观看| 国产精品久久视频播放| 国产激情偷乱视频一区二区| 一a级毛片在线观看| 三级毛片av免费| 久久婷婷成人综合色麻豆| 中亚洲国语对白在线视频| 熟妇人妻久久中文字幕3abv| 欧美日韩中文字幕国产精品一区二区三区| 国产人伦9x9x在线观看| 国产在线观看jvid| 欧美人与性动交α欧美精品济南到| 欧美激情久久久久久爽电影| 欧美性猛交黑人性爽| 91大片在线观看| 人妻夜夜爽99麻豆av| a级毛片在线看网站| 久久久久久久久中文| 国产欧美日韩一区二区三| 国产探花在线观看一区二区| 亚洲 国产 在线| 国产精品久久视频播放| 亚洲一区二区三区不卡视频| 亚洲av美国av| 欧洲精品卡2卡3卡4卡5卡区| 亚洲av成人不卡在线观看播放网| 中国美女看黄片| 亚洲国产日韩欧美精品在线观看 | 首页视频小说图片口味搜索| 精品不卡国产一区二区三区| 久久中文字幕人妻熟女| 啦啦啦观看免费观看视频高清| 久久精品夜夜夜夜夜久久蜜豆 | 一区二区三区国产精品乱码| 亚洲,欧美精品.| 欧美成人免费av一区二区三区| 亚洲专区中文字幕在线| 这个男人来自地球电影免费观看| 欧美乱码精品一区二区三区| 在线免费观看的www视频| 免费看日本二区| 午夜福利在线在线| 在线观看日韩欧美| 亚洲国产高清在线一区二区三| 色播亚洲综合网| 欧美日韩国产亚洲二区| 国产亚洲欧美在线一区二区| 久久人妻av系列| 免费av毛片视频| 亚洲男人的天堂狠狠| 亚洲国产精品sss在线观看| 久久久精品国产亚洲av高清涩受| 动漫黄色视频在线观看| 男女视频在线观看网站免费 | 琪琪午夜伦伦电影理论片6080| 一本精品99久久精品77| 国内揄拍国产精品人妻在线| 亚洲一区高清亚洲精品| 少妇粗大呻吟视频| 久久性视频一级片| 国产黄片美女视频| а√天堂www在线а√下载| 可以在线观看毛片的网站| 1024香蕉在线观看| 国产精品久久电影中文字幕| 欧美av亚洲av综合av国产av| 久久久精品国产亚洲av高清涩受| 欧美三级亚洲精品| 亚洲精华国产精华精| 又黄又爽又免费观看的视频| 黄色视频,在线免费观看| 成人欧美大片| 国产高清视频在线观看网站| 亚洲国产中文字幕在线视频| 久久人人精品亚洲av| 在线看三级毛片| 亚洲全国av大片| 欧美乱妇无乱码| 一级黄色大片毛片| 人成视频在线观看免费观看| 欧美 亚洲 国产 日韩一| 国产一区二区三区在线臀色熟女| 精品国内亚洲2022精品成人| 久久天堂一区二区三区四区| 成熟少妇高潮喷水视频| 亚洲成人精品中文字幕电影| 免费在线观看亚洲国产| 日韩精品青青久久久久久| av福利片在线| 日本黄大片高清| 黄片大片在线免费观看| 久久国产精品影院| 亚洲五月天丁香| 777久久人妻少妇嫩草av网站| 亚洲七黄色美女视频| 国产亚洲精品一区二区www| 久久精品综合一区二区三区| 怎么达到女性高潮| 99精品欧美一区二区三区四区| xxx96com| 亚洲熟妇中文字幕五十中出| xxx96com| 亚洲精品色激情综合| 最新美女视频免费是黄的| 男女下面进入的视频免费午夜| 少妇的丰满在线观看| 村上凉子中文字幕在线| 97超级碰碰碰精品色视频在线观看| 亚洲av成人不卡在线观看播放网| x7x7x7水蜜桃| 婷婷精品国产亚洲av在线| 夜夜夜夜夜久久久久| 无遮挡黄片免费观看| 色av中文字幕| 久久精品国产亚洲av香蕉五月| 久久久久精品国产欧美久久久| 精品国产美女av久久久久小说| 国内久久婷婷六月综合欲色啪| 欧美午夜高清在线| 久久人妻av系列| 久久精品影院6| 亚洲中文日韩欧美视频| 免费看美女性在线毛片视频| 不卡av一区二区三区| 日韩av在线大香蕉| 三级男女做爰猛烈吃奶摸视频| 嫁个100分男人电影在线观看| 精品国产超薄肉色丝袜足j| 午夜精品在线福利| 国产精品综合久久久久久久免费| 可以在线观看的亚洲视频| 午夜福利在线在线| 两人在一起打扑克的视频| 无遮挡黄片免费观看| 亚洲人成伊人成综合网2020| 久热爱精品视频在线9| 免费看十八禁软件| 久久精品91蜜桃| 久久性视频一级片| 亚洲一区二区三区色噜噜| 欧美日韩一级在线毛片| 亚洲成人久久性| 国产成人aa在线观看| 好男人电影高清在线观看| 欧美日韩福利视频一区二区| 国产爱豆传媒在线观看 | 搞女人的毛片| 午夜亚洲福利在线播放| 国产免费男女视频| 岛国在线免费视频观看| 婷婷精品国产亚洲av| 久久久久九九精品影院| 一区二区三区高清视频在线| 亚洲欧美激情综合另类| 亚洲国产精品999在线| 人妻久久中文字幕网| 男女做爰动态图高潮gif福利片| 正在播放国产对白刺激| 深夜精品福利| 亚洲精品av麻豆狂野| 亚洲人成77777在线视频| 黑人操中国人逼视频| 午夜亚洲福利在线播放| 女人高潮潮喷娇喘18禁视频| 亚洲成a人片在线一区二区|