• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Rolling structure from bilayer nanofilm by mismatch

    2023-12-15 11:48:08JianGangLi李建剛XiaoPiGeng耿小丕QianNanGao高倩男JunZhu朱俊ZhiXiangGao高志翔andHongWeiZhu朱弘偉
    Chinese Physics B 2023年12期
    關(guān)鍵詞:高志

    Jian-Gang Li(李建剛), Xiao-Pi Geng(耿小丕), Qian-Nan Gao(高倩男),Jun Zhu(朱俊), Zhi-Xiang Gao(高志翔), and Hong-Wei Zhu(朱弘偉)

    1School of Physics and Electronic Science,Shanxi Datong University&Shanxi Province Key Laboratory of Microstructure Electromagnetic Functional Materials,Shanxi Datong University,Datong 037009,China

    2Department of Mathematics and Physics,Hebei Petroleum University of Technology,Chengde 067000,China

    3School of Physical Science and Technology,Inner Mongolia University,Hohhot 010021,China

    Keywords: nanofilms,nanotubes,surface effects,self rolling

    1.Introduction

    Over the past decade, nanostructures have received a great deal of attention.[1,2]They were widely applied to nanoelectromechanical systems (NEMS).[3]Nanostructures, such as nanoparticles,[4]nanobeams,[5,6]nanowires,[7]nanofilms,[8]and nanotubes,[9]are significantly different from bulk structures in mechanics.As important components of NEMS, nanostructures were usually used as nanoactuators,[10]nanosensors,[11]nanoresonators,[12]nanogenerators,[13,14]drug delivery devices,[15]etc.But on the other hand, the small size of nanostructures means large surface-to-volume ratio, which induces the size-dependent property in mechanics.[16-19]The size-dependent and surfacemodulated properties in mechanics induce significant difference between nanostructure material and bulk material.[20-22]The applicability of continuous medium mechanics on a nano scale was discussed by Zhao.[23]Cheng[23]improved Thomas-Fermi-Dirac (TFD) model to study the generation mechanism of the residual stress within films.By using Thomas-Fermi-Dirac-Cheng (TFDC) model, the nanotube formation and the corresponding residual stress were studied.[23]

    In order to predict the size-dependent elastic properties of nanosized structures theoretically, Gurtin and Murdoch gave a surface elasticity theoretical model.[24]In their theory, the surface slice was considered as an absolutely two-dimensional(2D) slice with elasticity but no thickness.The completely 2D slice with surface elastic coefficient ideally adheres to the bulk-like core of nanofilms.Therefore, their theoretical model is called core-surface model.Miller and Shenoy studied the size-dependent and surface-modulated mechanical behavior of nanofilm by using this core-surface model.[25]In order to develop surface elasticity theory, another theoretical model was established by introducing surface slice thickness,named core-shell model.[26,27]The core-shell model was used to extract nanowire mechanical behavior,[26]nanofilm Young’s modulus,[28]and nanofilm self-equilibrium, and self-bending characteristics, etc.[29]There rises a problem in both coresurface model and core-shell model.These two hybrid models divide a nanofilm into surface area and bulk like area.At interface between these two areas, Young’s modulus changes suddenly.Although this sudden change was delimited by introducing exponential variation Young’s modulus,[30]the Young’s modulus derivative’s sudden change also exists at interface.In order to eliminate the interface,cylindrical theoretical model was introduced to investigate the bending problem,Young’s modulus,Poisson’s ratio,etc.[31,32]

    Researchers showed that nanofilms can be rolled by surface stress and interface mismatch to form nanotubes.[33]Zhang and Ionov reported self-rolling polyurethane film.The reversible self-rolling behavior of the bilayer films may allow development of the actuator.[34]Exploiting physical and mechanical properties in rolled-up structures has inspired numerous applications.[35]The research of mechanical self-rolling behavior can promote the development of techniques for manufacturing rolled-up structure.[36]Stoney gave a bending theory about coating.[37]The thinner film thickness was neglected in Stoney theory.Therefore, Stoney formula can work only when film thickness is much less than its substrate thickness.Timoshemko formula introduced film thickness to explain the thermal expansion-induced bending behavior.[38]The bending of bilayer induced by interface mismatch was also explained by Timoshenko formula.[39,40]For a nanofilm with only several nanometers, surface effects are of great importance for film mechanical behavior.[21]Zang and Liu modified Timoshenko formula by considering surface effects.[41]They studied Si-Si nanotube and InAs-GaAs nanotube by using their modified Timoshenko formula.When explaining Si-Si nanotube radius,surface elasticity was chosen as positive.But experimental detection and simulated calculation indicate that Si nanofilm surface elasticity is minus.[19,21]The opposite sign of Si nanofilm surface elastic constant in Ref.[41] needs to be discussed further.Symmetry lowering effect may be a key to solving the surface elastic problem.Cylindrical theoretical model was established to estimate the radius of rolling-up structure.[31]In cylindrical theoretical model, the surface effect and symmetry lowering effect were introduced to modify Timoshenko formula.But the anisotropic rolling structure was missed in Ref.[31].It is not easy to bend a nanofilm into an isotropic bowl-like object.An ultra-thin nanofilm is usually rolled into a nanotube.[42-44]The formed nanotubes are no longer an isotropic structure as explained by Timoshenko’s theory.Cylindrical direction keeps straight and not any bent theoretically.Isotropic Timoshenko formula should be modified anisotropically.Furthermore, cylindrical strain(i.e.the strain in cylindrical direction) affects nanotube radius and tangential elongation strain obviously.Therefore,the theory should be established to explain the formation of nanotubes from nanofilms.Surface elasticity, surface stress,symmetry-lowering effects, and anisotropic structure (nanoscroll structure)should be included in the theoretical scheme.

    In this paper,a continuum theoretical model for describing self-rolling of strained bilayers is established.The surface elasticity effect,surface stress effect,symmetry-lowering effect, and the anisotropic structure(nanoscroll structure)are considered.The rolling-up nanotube radius,tangential elongation strain,and cylindrical uniform deformation are discussed.Lattice constant, stress, and strain within nanotube wall are also discussed.

    2.Theory and models

    Since a nanofilm is rolled into a nanotube, the in-plane directionxcoordinate is replaced by the tangential directiontcoordinate of nanoscroll.The in-plane directionycoordinate is replaced by the cylindrical directionycoordinate of nanoscroll.And the vertical directionzcoordinate is replaced by the radial directionrcoordinate.

    Fig.1.Schematic representation of the rolled nanotube,with y-t plane fixed at mid-plane of the bilayer system.

    In-plane strains along the tangential direction and cylindrical direction of the nanoscroll are denoted asεtandεy.Radial strain was denoted asεr.Bothεtandεrare dependent onrcoordinate,whileεyis independent ofrcoordinate.The reference plane,i.e.,r=0 is fixed at the mid-plane of the bilayer system,r=(t1+t2)/2 at the top surface,andr=-(t1+t2)/2 at the inner surface,witht1andt2referring to the thickness of nanofilm 1 (inner sublayer) and the thickness of nanofilm 2(top sublayer),respectively.Experiment demonstrates that the rolled nanotube still holds single crystalline structure,and tangential direction lattice parameters vary linearly in their radial direction.[45]Therefore,tangential strain can be given by[42]

    wherek=1/Rrefers to the rolling curvature,Rrepresents the radius of nanoscroll,ε1tandε2tare the tangential strains within nanofilm 1 and nanofilm 2,ε1,0andε2,0are the elongation strains of nanofilm 1 and nanofilm 2, respectively,ε0is the elongation of bilayer system, andmis the mismatch between two sub-layers.

    The variable quantities to determine nanotube states areε0,k,andεy.And they need to be determined from relaxation conditions.Radial direction strainεrdepends on biaxial relaxation sinceσr=0.According to[32]

    wherevbis the effective biaxial Poisson’s ratio,and expressed as

    For a film under biaxial loading (here, the film is assumed to maintain plane to determinevbconveniently),σt=σyandσr=0, one can define this parameter asvb=-εr/ε, whereε=εt=εy.Elastic constants under cylindrical symmetry are[31,46]

    And then,one can obtain the elastic energy density as follows:

    It should be mentioned that the basic principle of elastic energy density is the same as that in Ref.[31],but the expression of Eqs.(10)and(11)are different from those in Ref.[31].This difference is induced by the anisotropic shape of the nanotube.This anisotropy is ignored in Ref.[31].

    Total bulk elastic energy can be obtained by integrating bulk elastic energy density in the bilayer system,-(t1+t2)/2≤r≤(t1+t2)/2.Total elastic energy is the sum of bulk elastic energy and surface elastic energy,specifically,

    whereVandAare the volume and surface area of the bilayer system (V1andV2correspond to nanofilm 1 and nanofilm 2,respectively).One can obtain the parameterskandε0from the principle of minimum energy:

    Stiffness ratioχis dependent on size and surface modulated.Equations (14a) and (14b) describe the rolling curvature and elongation strain in tangential direction,respectively.Elongation strainε0is uniform strain while rolling curvature introduces a gradient of strain.In the cylindrical direction,there is no any rolling(or bending)behavior theoretically.Therefore,cylindrical strainεyremains uniform (independent ofrcoordinate).This anisotropic explanation of nanotubes is different from that of the isotropic Timoshenko formula.[38]Cylindrical strainεyaffects the nanotube radius and tangential elongation deformation.These effects are described in Eqs.(14a)and (14b).The cylindrical strainεycan be taken as a relaxed value (one needs to take the additional condition, i.e.,?Etot/?εy=0).For simplicity,this relaxation can be obtained by uniform deformation (flat condition).Under this condition, there is no difference between tangential direction and cylindrical direction,i.e.,εy=εt=ε.And then,biaxial strain within the flat appears.Then, the elastic energy density reduces into

    Biaxial modulus ratioχ′is dependent on size and surface modulated.Owing to mismatch at interface, the relaxation cannot be the same in two sub-layers.Nanofilm 2 cylindrical direction relaxation should beεy+mas shown in Eqs.(18a)and(18b).

    The constitutive relation of nanofilms can be obtained by using the derivative of elastic energy density

    Owing to straight property, cylindrical strain is identical in each sub-layer and independent ofrcoordinate.But tangential strainεtinduces anr-dependent cylindrical stress via Poisson’s effect as shown in Eq.(20b).

    The relationship between lattice parameter and residual strain is

    whereais the lattice parameter of nanotube wall,a0is the initial lattice constant without any strain of nanofilms, andεis the residual strain within nanotube wall.

    3.Results and discussion

    If a compressed (stretched) film grows on another film,lattice atom relaxes outward(inward).On the other hand,lattice constants of these two sub-layers are different from each other.The difference in lattice constant induces mismatch at interface.The relaxation(mismatch)exerts two effects on the bilayer system.One is force(stress)effect,which tends to expand (compress) the bilayer system, and the other is torque(moment) effect, which tends to bend the bilayer system.If one film’s thickness far outweighs the other film’s, the thinner film thickness effect can be neglected,Stoney formula can explain bending behavior well.When the thickness of thinner film is comparable to the that of thicker one,the effect of thinner film thickness influences the bending behavior obviously.For a nanoscaled bilayer system, two sub-layer thickness values are comparable to each other.The bilayer system bending problem induced by interface mismatch cannot be explained by Stoney formula any more.And then, Timoshenko formula, which takes thinner film thickness effect into consideration, came on stage.[38-40]In order to explain the mechanical behavior of nanofilm rolling structures there are still two problems that must be considered.The first problem is surface effect and the corresponding symmetry-lowering effect.The relative number of atoms at surface increases with film thickness decreasing.The atomic environment of surface atoms is different from that of bulk counterpart.Lattice symmetry at surface should also be different from that bulk counterpart.Outside bonding partners are missing, dangling bonds are combined together.The atoms leave from their original equilibrium positions,and then stay in their new equilibrium positions.Lattice structure and interatomic distance are changed.Since elastic constant is very sensitive to the interatomic distance,[26,29]the elastic property is changed.On the other hand,this surface reconstruction expands(or shrinks)the film along in-plane direction and induces reverse relaxation along vertical direction via Poisson’s effect.The symmetry of the film is broken and lowered.Therefore, surface elasticity, surface stress and symmetry-lowering effect should be considered to modify Timoshenko formula.The other problem is the anisotropic structure of nanotubes.For an ultra-thin nanofilm with only several nanometers in thickness, it usually behaves as anisotropic rolling rather than isotropic bending.The isotropic Timoshenko formula should be modified anisotropically.The anisotropic shape of nanotubes should be taken into consideration.

    Making use of the theory given in this work, the rolling behavior of bilayer Si-Si,InAs-GaAs,and InGaAs-Cr nanofilms under isotropic lattice mismatch will be discussed.Figure 2 shows the comparison between the data from the current theory and and experimental results.The experimental results in Fig.2 are cited from Ref.[43].The results from our theory (Eq.(14a)) are in good agreement with experimental data as shown in Fig.2.Bulk elastic constants areCα=c11+2c12=219 GPa andCα=c11-c12=102 GPa.Surface parameters are listed in Table 1.The surface elastic constants and surface stresses of Si nanofilm are consistent with those from Ref.[19] The results from the classical theory[43]without surface effect are also shown in Fig.2.Owing to the absence of surface effects,the classical theory does not accord with experiment well.Huanget al.studied Si-Si nanotube radius by considering surface stress and surface elasticity effects,showing that the obtained result is in good agreement with experimental results.[40]The fitted surface elastic constant in Ref.[41] is positive.But at the same time, experimental detection and simulated calculation indicate that Si nanofilm surface elasticity is minus.[19,21]The unreasonable positive surface elastic constant in Zang’s theory needs further discussing.We suggest that there are two main reasons of this trouble,one is the missing of both lowered symmetry and

    Other important candidates for rolled-up nanotube are InAs-GaAs and InAGaAs-Cr bilayer systems.The InAs-GaAs and InAGaAs-Cr bilayer systems are underestimated by classical Timoshenko formula.[42,48]The experimental data in Figs.3 and 4 are cited from Refs.[44,47], respectively.Zang and Liu studied the radius of rolled-up nanotube by introducing surface stress effect and surface elasticity effect.[41]The symmetry-lowering effect is introduced to estimate the InAs-GaAs nanotube radius in Ref.[31].In Ref.[31], the anisotropic rolling structure of nanotubes is missed.In the present work, the surface effect, symmetry-lowering effect,and anisotropic rolling structure are considered to explain the rolling behavior of InAs-GaAs bilayer system and InAGaAs-Cr bilayer system.The bulk Young’s moduli and Poisson’s ratios,YInAs=51.42 GPa,vInAs=0.35,andYGaAs=85.06 GPa,vGaAs=0.31,are cited from Refs.[31,41,42,44]and presented in this work.The surface parameters are chosen from Table 1.The InGaAs and Cr nanofilm surface stresses areσInGaAss=1 N/m andσCr

    s = 3 N/m, respectively.The bulk Young’s moduli and Poisson’s ratios,YCr=109 GPa,vCr=0.28, andYInGaAs=71 GPa,vInGaAs=0.32,are cited from Ref.[47]and presented from this work.The mismatch strain at interface between InGaAs and Cr is given bym=2.03% in Ref.[47] In computational material science, it is still a challenging topic to investigate the alloy surface elastic constants.Therefore,there is no data of GaAs or InAs, but InGaAs surface elastic constant has been found.The surface stress of GaAs and InAs are consistent with typical values of solid surfaces.[31,41,49]For InAGaAs-Cr bilayer systems,the results of surface stress are in good agreement with experimental results,with the surface elasticity ignored.Using Eq.(14a), we can see from Figs.3 and 4 that the theoretical lines accord well with experimental data.

    Tangential elongation deformation is another criterion to explain rolled-up nanotube state.The tangential elongation strain as a thickness function is shown in Fig.5.Interface mismatch exerts two effects on bilayer system, force(stress)and torque (moment) effects.Conventionally, the surface stress difference creates a torque on nanofilm and bends it, while surface stress sum generates a force on the nanofilm and expands(or expresses)it.The difference in mechanical property between nanofilm 1 and nanofilm 2 breaks this convention.The difference in surface stress also expands(or expresses)the nanofilm.And surface stress sum also bends nanofilm.Interface mismatch,as well as surface stress,bends nanofilms only along the tangential direction.On the other hand,they expand(or express) the nanofilm not only in the tangential direction but also in the cylindrical direction.The torque effect does not appear owing to the straight property in the cylindrical direction.The cylindrical uniform deformation is also shown in Fig.5.

    Fig.3.Curves of diameter of InAs-GaAs tubes versus GaAs layer thickness,with the thickness of InAs layer fixed at 1.4 ML and experimental data cited from Ref.[44].

    Fig.4.Curves of radius of InGaAs-Cr tubes versus Cr layer thickness,with the thickness of InGaAs layer fixed at 9.6 nm and the experimental data cited from Ref.[47].

    Fig.5.Tangential elongation strain and cylindrical uniform deformation varying with GaAs thickness.

    Cylindrical residual strain affects nanotube diameter and tangential elongation deformation obviously as shown in Figs.6(a)and 6(b).For the sake of discussion,thickness values of the two nanofilms are chosen astGaAs= 4 nm, andtInAs=2 nm, 4 nm, 8 nm, and 16 nm, respectively.Cylindrical direction keeps straight, the uniform residual strain affects nanotube diameter and tangential elongation deformation via Poisson’s effect.According to Eq.(14a), the effect of cylindrical strain on diameter is dependent on the difference in Poisson’s ratio between two nanofilms, (v2-v1).If the two nanofilms have the same Poisson’s ratio,the effect of cylindrical strain on diameter does not exist.But different nanofilms usually have different Poisson’s ratios,especially Poisson’s ratio is influenced by surface effect.[32]No mater whether Poisson’s ratio is equal to each other,the effect of cylindrical strain on tangential direction elongation deformation always exists.Furthermore, if other parameters are fixed, the rolling curvature and tangential elongation deformation will vary linearly with cylindrical strain.This linear dependence can also be found in Eqs.(14a)and(14b).

    Fig.6.(a)Nanotube diameter and(b)tangential elongation strain varying with cylindrical strain for different values of thickness tInAs.

    The mechanical properties of nanotube are affected by residual strain and stress within nanotube wall.The x-ray microdiffraction analysis demonstrates that the strains within nanotube wall along both tangential direction and radial direction vary linearly with position.[45]In other words, the nanotube wall still holds single crystalline structure.The thickness values of GaAs and InAs sublayers in Fig.7 are the same as those in Fig.6.The lattice parameter can be obtained from Eq.(21a).The initial lattice constants of GaAs and InAs nanofilm areaGaAs=0.5650 nm andaInAs=0.6208 nm,[31,44]respectively.Because of rolling behavior, tangential lattice parameter varies linearly in the radial direction.Cylindrical lattice parameter holds constant at any position and is independent ofrcoordinate owing to its straight state.The lattice parameter in the cylindrical direction is very different from that in the tangential direction.This anisotropic property of lattice parameter is lost in the isotropic Timoshenko formula.Because the coherent lattice parameters,cylindrical lattice parameters, and tangential lattice parameters keep continuous and there is no sudden change at interface.However, the radial lattice parameter behaves sudden change at interface.Initial lattice parameters with no residual strain are different from each other(in the two sub-layers).For different initial lattice parameters, the same lattice parameters in the cylindrical direction and tangential direction, at interface, mean different strains as shown in Figs.8(a) and 8(b).Different in-plane strains induce different radial strains in the two sub-layers.Therefore,radial lattice parameter undergoes a sudden change at the interface.On the other hand,the difference in Poisson’s ratio between two sub-layers also induces the sudden change of radial lattice parameter.Strains along the radial direction and tangential direction are shown in Figs.8(a)and 8(b).The InAs interface means the InAs sub-layer side near the interface, while GaAs interface refers to the GaAs sub-layer side near the interface.The strains at the InAs interface and GaAs interface follow different laws as shown in Figs.8(a)and 8(b),which means the sudden change at interface.The tangential strain is composed of elongation strainεi,0and bending strainrkas shown in Eq.(1a).For a relatively low thickness of GaAs(tGaAs

    Fig.7.Lattice parameters within InAs-GaAs nanotube wall versus position at(a)tGaAs=4 nm and tInAs=2 nm,(b)tGaAs=4 nm and tInAs=4 nm,(c)tGaAs=4 nm and tInAs=8 nm,and(d)tGaAs=4 nm and tInAs=16 nm.

    Fig.8.Residual strains within InAs-GaAs nanotube wall versus thickness of DaAs in(a)radial direction and(b)tangential direction.

    Fig.9.Residual stresses within InAs-GaAs nanotube wall versus GaAs thickness in(a)GaAs layer along tangential direction,(b)InAs layer along tangential direction,(c)GaAs layer along cylindrical direction,and(d)InAs layer along cylindrical direction.

    Owing to full relaxation,radial stress does not exist.The tangential stress and cylindrical stress vary linearly in the radial direction owing to rolling behavior.Tangential stresses are shown in Figs.9(a) and 9(b).Various tangential strains fail to induce various cylindrical strains owing to the straight shape.Therefore, various residual stresses emerge as shown in Figs.9(c) and 9(d).The InAs film thickness values in Figs.9(a)-9(d), are the same as those in Fig.3.Stresses at InAs interface and GaAs interface follow different laws (not only in the tangential direction but also in the cylindrical direction), which means the sudden change at interface.Residual stress is dependent on residual strain and film elastic constant.Both different residual strains and different elastic constants induce stress to suddenly change at interface.In other words,the sudden change of strain and the different elastic properties between two sub-layers result in the sudden change of stress.

    4.Conclusions

    In summary, we present a rigorous method of describing the mechanical behavior of rolled-up nanotubes in the framework of continuum theory.The common phenomenon of isotropic bending caused by isotropic mismatch and isotropic surface stress is usually broken by ultrathin nanofilms.Elastic property of nanofilms is influenced by surface elasticity and surface stress.At the same time,symmetry breaking is also of great importance in studying the elastic property of nanofilms.For the formation of rolled-up nanotube, nanoscroll structure affects nanotube radius and tangential elongation deformation via Poisson’s effect.Timoshenko formula should be modified anisotropically to explain the mechanical behavior of anisotropic rolling structure of nanotubes accurately.Because of the straight shape in the cylindrical direction,the strain and the lattice parameter are uniform along this direction (except the sudden change of strain at the interface).The various tangential strains induce various cylindrical residual stresses via Poisson’s effect,although they are straight along the cylindrical direction.

    Acknowledgements

    Project supported by the Natural Science Foundation of Shanxi Province, China (Grant No.201901D111316),the National Natural Science Foundation of China (Grant No.11874245), the Teaching Reform and Innovation Pproject of Colleges and Universities in Shanxi Province, China(Grant No.J2021508), and the Natural Science Foundation of Inner Mongolia Autonomous Region, China (Grant No.2020MS06007).

    猜你喜歡
    高志
    High-performance artificial neurons based on Ag/MXene/GST/Pt threshold switching memristors
    EPB系統(tǒng)在商用重型車上的應(yīng)用
    張良英教授經(jīng)驗(yàn)方更年1號治療更年期綜合征療效觀察
    數(shù)控機(jī)床故障檢測與維修
    九品蓮臺
    寶藏(2021年8期)2021-09-15 02:19:46
    本期名家—高志祥
    陳爐印象
    寶藏(2021年11期)2021-01-01 06:17:18
    高志剛
    Shallow-water sloshing motions in rectangular tank in general motions based on Boussinesq-type equations *
    The dynamics of the floodwater and the damaged ship in waves*
    久久精品夜色国产| 日本猛色少妇xxxxx猛交久久| 男的添女的下面高潮视频| 少妇被粗大的猛进出69影院 | 九色亚洲精品在线播放| 亚洲精品国产色婷婷电影| 少妇被粗大猛烈的视频| 久久国产精品大桥未久av| 国产精品不卡视频一区二区| 一级爰片在线观看| 午夜精品国产一区二区电影| a 毛片基地| 9191精品国产免费久久| 观看美女的网站| 久久人人爽av亚洲精品天堂| 久久久国产一区二区| 波多野结衣一区麻豆| 日韩av在线免费看完整版不卡| 日本黄大片高清| 亚洲在久久综合| 亚洲图色成人| 欧美丝袜亚洲另类| 亚洲欧美清纯卡通| 男女国产视频网站| 99热网站在线观看| 国产 一区精品| 亚洲精品视频女| 在线看a的网站| 熟女电影av网| 精品酒店卫生间| 宅男免费午夜| 天天影视国产精品| 日日啪夜夜爽| 久久精品久久久久久久性| 我要看黄色一级片免费的| 天堂8中文在线网| 夫妻午夜视频| 日日撸夜夜添| 视频区图区小说| 国产精品一国产av| 久久99精品国语久久久| 国产黄色免费在线视频| 亚洲av中文av极速乱| 男的添女的下面高潮视频| 伊人亚洲综合成人网| 中文天堂在线官网| 美女脱内裤让男人舔精品视频| 黑丝袜美女国产一区| 国产在线免费精品| 国产免费现黄频在线看| 亚洲人成77777在线视频| 日本免费在线观看一区| 色网站视频免费| 国产有黄有色有爽视频| 老司机影院毛片| 免费观看在线日韩| 人成视频在线观看免费观看| 肉色欧美久久久久久久蜜桃| 亚洲一码二码三码区别大吗| 日本-黄色视频高清免费观看| 高清黄色对白视频在线免费看| 伊人亚洲综合成人网| 2022亚洲国产成人精品| 最新的欧美精品一区二区| 国产福利在线免费观看视频| 亚洲一码二码三码区别大吗| 一级,二级,三级黄色视频| 制服诱惑二区| 大话2 男鬼变身卡| 国产成人精品久久久久久| 欧美xxⅹ黑人| 男女下面插进去视频免费观看 | 天堂8中文在线网| 精品少妇内射三级| 一本久久精品| 欧美精品亚洲一区二区| 亚洲精品成人av观看孕妇| 99热6这里只有精品| 久热久热在线精品观看| 韩国精品一区二区三区 | 日本午夜av视频| 日本-黄色视频高清免费观看| 大陆偷拍与自拍| 成年美女黄网站色视频大全免费| av.在线天堂| freevideosex欧美| 国产亚洲av片在线观看秒播厂| 18禁观看日本| 新久久久久国产一级毛片| 在线观看免费视频网站a站| 久久av网站| 久久精品国产亚洲av涩爱| 国产精品不卡视频一区二区| 99国产精品免费福利视频| 色94色欧美一区二区| 天堂中文最新版在线下载| 婷婷色麻豆天堂久久| 超色免费av| 欧美精品一区二区免费开放| 一区在线观看完整版| 日本wwww免费看| 女人精品久久久久毛片| 男女边吃奶边做爰视频| 青青草视频在线视频观看| 久久 成人 亚洲| 最后的刺客免费高清国语| 春色校园在线视频观看| 亚洲精品日本国产第一区| 久久人人爽人人片av| 亚洲成人一二三区av| 在线观看www视频免费| 女人被躁到高潮嗷嗷叫费观| 亚洲少妇的诱惑av| 亚洲丝袜综合中文字幕| 不卡视频在线观看欧美| 99精国产麻豆久久婷婷| 母亲3免费完整高清在线观看 | 九九爱精品视频在线观看| 乱人伦中国视频| 国产日韩欧美在线精品| 国产淫语在线视频| 国产精品人妻久久久久久| 欧美激情国产日韩精品一区| 伦理电影大哥的女人| 久久久国产精品麻豆| 国产熟女欧美一区二区| 午夜福利在线观看免费完整高清在| 国产福利在线免费观看视频| 香蕉国产在线看| 亚洲美女视频黄频| 男女边吃奶边做爰视频| 最近中文字幕高清免费大全6| 国产1区2区3区精品| 国产亚洲最大av| 亚洲精品久久久久久婷婷小说| 人成视频在线观看免费观看| 精品人妻熟女毛片av久久网站| 国产免费现黄频在线看| 亚洲欧美精品自产自拍| 伊人亚洲综合成人网| 超色免费av| 国产熟女午夜一区二区三区| 成人国产麻豆网| 亚洲精品色激情综合| 久久人人爽av亚洲精品天堂| 国产成人a∨麻豆精品| 久久国产亚洲av麻豆专区| 国产综合精华液| 好男人视频免费观看在线| 成年人午夜在线观看视频| 熟女人妻精品中文字幕| 久久久久久久大尺度免费视频| 涩涩av久久男人的天堂| 亚洲三级黄色毛片| 亚洲国产精品999| 99视频精品全部免费 在线| 欧美精品一区二区大全| 久久久久精品久久久久真实原创| 国产男人的电影天堂91| 日本av手机在线免费观看| 中文字幕av电影在线播放| 中文字幕精品免费在线观看视频 | 精品国产露脸久久av麻豆| 日韩av在线免费看完整版不卡| 波多野结衣一区麻豆| 亚洲一区二区三区欧美精品| 黄片无遮挡物在线观看| 久久精品久久久久久噜噜老黄| 一本—道久久a久久精品蜜桃钙片| 亚洲精品国产色婷婷电影| 国产av国产精品国产| 亚洲av免费高清在线观看| 啦啦啦啦在线视频资源| 国产亚洲av片在线观看秒播厂| 久久毛片免费看一区二区三区| 亚洲人成77777在线视频| 精品福利永久在线观看| 五月伊人婷婷丁香| 久久久精品94久久精品| 美女福利国产在线| 下体分泌物呈黄色| 欧美成人午夜免费资源| 久久久国产欧美日韩av| 国产午夜精品一二区理论片| 亚洲欧美中文字幕日韩二区| 亚洲综合色惰| 精品久久蜜臀av无| 成人漫画全彩无遮挡| 性色avwww在线观看| 人妻系列 视频| 黑人巨大精品欧美一区二区蜜桃 | 一区二区av电影网| 啦啦啦在线观看免费高清www| 国产激情久久老熟女| 黄色毛片三级朝国网站| 久久久久国产精品人妻一区二区| 天天躁夜夜躁狠狠躁躁| 80岁老熟妇乱子伦牲交| 久久久久精品人妻al黑| 久久人妻熟女aⅴ| 两性夫妻黄色片 | 久久青草综合色| 又黄又粗又硬又大视频| 999精品在线视频| 一级爰片在线观看| 成人亚洲精品一区在线观看| 亚洲在久久综合| 国产毛片在线视频| 80岁老熟妇乱子伦牲交| 少妇精品久久久久久久| 97在线人人人人妻| 18禁动态无遮挡网站| 久久久精品区二区三区| 欧美日韩av久久| 免费日韩欧美在线观看| 中文字幕av电影在线播放| 精品第一国产精品| 国产国拍精品亚洲av在线观看| 国产欧美另类精品又又久久亚洲欧美| av片东京热男人的天堂| 国产成人91sexporn| 十分钟在线观看高清视频www| 国产片内射在线| 在线 av 中文字幕| 涩涩av久久男人的天堂| 免费看光身美女| 国产黄色免费在线视频| 免费久久久久久久精品成人欧美视频 | 亚洲av电影在线进入| 免费人妻精品一区二区三区视频| 2018国产大陆天天弄谢| 免费日韩欧美在线观看| 在线观看人妻少妇| 免费高清在线观看日韩| av福利片在线| 国产综合精华液| 免费黄色在线免费观看| 精品一品国产午夜福利视频| 制服丝袜香蕉在线| 一级毛片 在线播放| 观看美女的网站| 欧美丝袜亚洲另类| 18+在线观看网站| 亚洲精品aⅴ在线观看| 亚洲一级一片aⅴ在线观看| 少妇猛男粗大的猛烈进出视频| 国产精品国产三级国产专区5o| 久久狼人影院| 制服丝袜香蕉在线| 色吧在线观看| 精品卡一卡二卡四卡免费| 男人舔女人的私密视频| 在线精品无人区一区二区三| 永久免费av网站大全| 久久久久视频综合| 午夜老司机福利剧场| 亚洲av在线观看美女高潮| 免费大片黄手机在线观看| 欧美亚洲 丝袜 人妻 在线| 激情五月婷婷亚洲| a 毛片基地| 在线观看一区二区三区激情| 久久人妻熟女aⅴ| 国产国拍精品亚洲av在线观看| 国产精品嫩草影院av在线观看| 乱码一卡2卡4卡精品| 国产男女超爽视频在线观看| 少妇被粗大猛烈的视频| 亚洲精品av麻豆狂野| 建设人人有责人人尽责人人享有的| 午夜视频国产福利| 男女啪啪激烈高潮av片| 国产亚洲午夜精品一区二区久久| 97精品久久久久久久久久精品| 宅男免费午夜| 欧美精品一区二区大全| 爱豆传媒免费全集在线观看| 亚洲综合精品二区| 午夜福利视频在线观看免费| 最近中文字幕2019免费版| 精品一区二区免费观看| 美女内射精品一级片tv| 高清毛片免费看| 亚洲av电影在线进入| 99热网站在线观看| 大香蕉97超碰在线| 亚洲第一av免费看| 精品熟女少妇av免费看| av又黄又爽大尺度在线免费看| 老司机影院成人| 亚洲三级黄色毛片| 免费女性裸体啪啪无遮挡网站| 日韩中文字幕视频在线看片| 美女国产高潮福利片在线看| 亚洲精华国产精华液的使用体验| 91aial.com中文字幕在线观看| 精品少妇久久久久久888优播| 国产日韩一区二区三区精品不卡| 久久久久久久精品精品| 自线自在国产av| 深夜精品福利| 免费人妻精品一区二区三区视频| 男男h啪啪无遮挡| av线在线观看网站| 在线天堂最新版资源| 国产国拍精品亚洲av在线观看| 亚洲五月色婷婷综合| 国产一区二区激情短视频 | 巨乳人妻的诱惑在线观看| 91aial.com中文字幕在线观看| 国产成人免费无遮挡视频| 丝瓜视频免费看黄片| 人成视频在线观看免费观看| 美女xxoo啪啪120秒动态图| 男人舔女人的私密视频| 免费观看av网站的网址| 97在线视频观看| 激情视频va一区二区三区| 国产精品久久久久久精品电影小说| 久久久久国产精品人妻一区二区| 人妻 亚洲 视频| 亚洲精品自拍成人| 亚洲情色 制服丝袜| 欧美 日韩 精品 国产| 亚洲人成77777在线视频| 亚洲精品乱久久久久久| 老司机影院成人| 中国美白少妇内射xxxbb| av免费观看日本| 男男h啪啪无遮挡| 国产精品久久久av美女十八| 交换朋友夫妻互换小说| 人人澡人人妻人| 天天躁夜夜躁狠狠躁躁| 成年美女黄网站色视频大全免费| 国产精品免费大片| 黄网站色视频无遮挡免费观看| 精品人妻熟女毛片av久久网站| 日韩中字成人| 欧美人与性动交α欧美软件 | 黑丝袜美女国产一区| 中国三级夫妇交换| 亚洲国产色片| h视频一区二区三区| 日本av免费视频播放| 国产精品久久久久久av不卡| 丁香六月天网| 亚洲精品乱码久久久久久按摩| 国产精品女同一区二区软件| 另类精品久久| 国产精品一区二区在线观看99| 色婷婷av一区二区三区视频| 成年人午夜在线观看视频| 日韩成人伦理影院| 免费播放大片免费观看视频在线观看| 国产精品久久久久久精品电影小说| 国产精品久久久久久久久免| 性高湖久久久久久久久免费观看| 亚洲av.av天堂| 国产精品久久久久久精品电影小说| 亚洲国产精品999| 五月伊人婷婷丁香| 人妻人人澡人人爽人人| 免费黄频网站在线观看国产| 男女边摸边吃奶| 久久国产亚洲av麻豆专区| 午夜影院在线不卡| 免费人妻精品一区二区三区视频| 免费观看无遮挡的男女| 日本91视频免费播放| 男女边摸边吃奶| 91在线精品国自产拍蜜月| 十八禁高潮呻吟视频| 亚洲欧美一区二区三区黑人 | 丰满乱子伦码专区| 如何舔出高潮| 免费av不卡在线播放| 国产男女内射视频| 免费看av在线观看网站| 色94色欧美一区二区| 国产成人精品婷婷| 国产一级毛片在线| 中文字幕另类日韩欧美亚洲嫩草| 搡老乐熟女国产| 久久精品国产a三级三级三级| 天天躁夜夜躁狠狠久久av| 校园人妻丝袜中文字幕| 国产亚洲精品第一综合不卡 | 我要看黄色一级片免费的| 久久这里有精品视频免费| 香蕉国产在线看| 又黄又粗又硬又大视频| 色5月婷婷丁香| 精品一区二区三区四区五区乱码 | 欧美性感艳星| av在线app专区| 人成视频在线观看免费观看| 亚洲 欧美一区二区三区| 老女人水多毛片| 久久久亚洲精品成人影院| 卡戴珊不雅视频在线播放| 精品视频人人做人人爽| 午夜日本视频在线| 国产免费视频播放在线视频| 免费黄色在线免费观看| 黄色一级大片看看| 大片电影免费在线观看免费| 另类精品久久| 人体艺术视频欧美日本| 亚洲欧洲日产国产| 妹子高潮喷水视频| 亚洲成人av在线免费| 男女边吃奶边做爰视频| 久热久热在线精品观看| 午夜福利在线观看免费完整高清在| 人人妻人人添人人爽欧美一区卜| 免费黄频网站在线观看国产| 欧美日韩成人在线一区二区| 久久国产亚洲av麻豆专区| 国产淫语在线视频| 精品国产乱码久久久久久小说| 99久久精品国产国产毛片| 亚洲精华国产精华液的使用体验| 日本wwww免费看| 久久人人爽人人片av| 成人亚洲欧美一区二区av| 久久热在线av| 国产亚洲精品第一综合不卡 | 春色校园在线视频观看| 亚洲,欧美,日韩| 亚洲欧美成人综合另类久久久| av卡一久久| 日韩电影二区| 亚洲av成人精品一二三区| 在线免费观看不下载黄p国产| 九九在线视频观看精品| 综合色丁香网| 午夜福利乱码中文字幕| 免费播放大片免费观看视频在线观看| 国产日韩欧美视频二区| 欧美最新免费一区二区三区| 久久久久人妻精品一区果冻| 又黄又爽又刺激的免费视频.| 一区在线观看完整版| 欧美国产精品va在线观看不卡| 免费大片黄手机在线观看| 国产亚洲欧美精品永久| 国产精品蜜桃在线观看| 交换朋友夫妻互换小说| 国产免费视频播放在线视频| 久热这里只有精品99| 国产成人91sexporn| 久久久精品区二区三区| 99精国产麻豆久久婷婷| xxxhd国产人妻xxx| 两个人免费观看高清视频| 色吧在线观看| 亚洲精品成人av观看孕妇| 精品福利永久在线观看| 成人无遮挡网站| 亚洲精品美女久久久久99蜜臀 | 男男h啪啪无遮挡| 欧美+日韩+精品| 一边亲一边摸免费视频| 久久人人97超碰香蕉20202| 日产精品乱码卡一卡2卡三| 国产精品久久久久久久久免| 欧美成人午夜免费资源| av有码第一页| 日韩制服骚丝袜av| 国产精品久久久久成人av| 久久狼人影院| 这个男人来自地球电影免费观看 | 国产1区2区3区精品| 亚洲图色成人| 久久人妻熟女aⅴ| 欧美另类一区| 久久久精品区二区三区| 国产一区二区三区综合在线观看 | 五月天丁香电影| 久久精品aⅴ一区二区三区四区 | 久久精品久久久久久久性| 黄色一级大片看看| xxx大片免费视频| 丝袜喷水一区| 亚洲国产av影院在线观看| 超碰97精品在线观看| 欧美精品一区二区大全| 我要看黄色一级片免费的| 亚洲成色77777| 一区二区三区四区激情视频| 少妇的逼水好多| 日韩av免费高清视频| 乱码一卡2卡4卡精品| 久久人人爽人人片av| 亚洲人成77777在线视频| 免费观看无遮挡的男女| 亚洲性久久影院| 夫妻午夜视频| 精品一区二区三卡| 亚洲精品乱久久久久久| 男人舔女人的私密视频| 哪个播放器可以免费观看大片| 亚洲国产色片| 寂寞人妻少妇视频99o| 91精品伊人久久大香线蕉| 免费看不卡的av| 欧美国产精品一级二级三级| 亚洲三级黄色毛片| 精品一区二区免费观看| 精品99又大又爽又粗少妇毛片| 91国产中文字幕| 国产精品99久久99久久久不卡 | 精品国产国语对白av| 亚洲精品美女久久久久99蜜臀 | 精品酒店卫生间| 天堂中文最新版在线下载| 观看av在线不卡| 99久久中文字幕三级久久日本| 国产极品粉嫩免费观看在线| 日韩 亚洲 欧美在线| 国产探花极品一区二区| 精品久久国产蜜桃| www日本在线高清视频| videos熟女内射| 国产白丝娇喘喷水9色精品| 肉色欧美久久久久久久蜜桃| 91久久精品国产一区二区三区| 新久久久久国产一级毛片| 免费高清在线观看视频在线观看| 成年人午夜在线观看视频| 你懂的网址亚洲精品在线观看| 99九九在线精品视频| 国产白丝娇喘喷水9色精品| 91在线精品国自产拍蜜月| 捣出白浆h1v1| 色视频在线一区二区三区| 97超碰精品成人国产| 一级a做视频免费观看| 午夜影院在线不卡| 国产精品秋霞免费鲁丝片| 国产亚洲一区二区精品| 男女边摸边吃奶| 熟女人妻精品中文字幕| 日韩av不卡免费在线播放| av女优亚洲男人天堂| 久久99一区二区三区| 欧美人与性动交α欧美软件 | 最近中文字幕高清免费大全6| 亚洲精华国产精华液的使用体验| 一级a做视频免费观看| 国产淫语在线视频| 九色成人免费人妻av| 精品一区二区三区四区五区乱码 | 亚洲av免费高清在线观看| 久久人妻熟女aⅴ| 大香蕉97超碰在线| 日本黄大片高清| 亚洲欧美中文字幕日韩二区| 男女下面插进去视频免费观看 | 成年美女黄网站色视频大全免费| videossex国产| 国产精品一区二区在线观看99| 亚洲成人手机| 久久国产精品大桥未久av| 美女内射精品一级片tv| 熟女电影av网| 99久国产av精品国产电影| 成人毛片60女人毛片免费| 人妻少妇偷人精品九色| 一级片免费观看大全| 国产精品99久久99久久久不卡 | 99热这里只有是精品在线观看| 国产黄色免费在线视频| 99热6这里只有精品| 超色免费av| 国产69精品久久久久777片| 久久99蜜桃精品久久| 飞空精品影院首页| 日韩伦理黄色片| 精品亚洲乱码少妇综合久久| 亚洲av男天堂| 丁香六月天网| 精品久久久久久电影网| 韩国av在线不卡| 在线看a的网站| 99久久综合免费| 亚洲,欧美精品.| 成人国语在线视频| 女人被躁到高潮嗷嗷叫费观| 亚洲精品日韩在线中文字幕| 国语对白做爰xxxⅹ性视频网站| 高清视频免费观看一区二区| 又粗又硬又长又爽又黄的视频| 国产爽快片一区二区三区| 国产黄色免费在线视频| 99久国产av精品国产电影| 亚洲中文av在线| 国产高清国产精品国产三级| 欧美精品高潮呻吟av久久| 最新中文字幕久久久久| 国产精品国产三级国产专区5o| 午夜福利网站1000一区二区三区| 大片免费播放器 马上看| 久久亚洲国产成人精品v| 菩萨蛮人人尽说江南好唐韦庄| 国产精品久久久久久久久免| 2022亚洲国产成人精品| 国产片特级美女逼逼视频| 91精品三级在线观看| 国产高清国产精品国产三级| 欧美97在线视频| 菩萨蛮人人尽说江南好唐韦庄| 婷婷成人精品国产| 在线观看免费日韩欧美大片|