• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improved RF power performance of InAlN/GaN HEMT by optimizing rapid thermal annealing process for high-performance low-voltage terminal applications

    2023-12-15 11:51:16YuweiZhou周雨威MinhanMi宓珉瀚PengfeiWang王鵬飛CanGong龔燦YilinChen陳怡霖ZhihongChen陳治宏JielongLiu劉捷龍MeiYang楊眉MengZhang張濛QingZhu朱青XiaohuaMa馬曉華andYueHao郝躍
    Chinese Physics B 2023年12期

    Yuwei Zhou(周雨威), Minhan Mi(宓珉瀚), Pengfei Wang(王鵬飛), Can Gong(龔燦),Yilin Chen(陳怡霖), Zhihong Chen(陳治宏), Jielong Liu(劉捷龍), Mei Yang(楊眉),Meng Zhang(張濛), Qing Zhu(朱青), Xiaohua Ma(馬曉華), and Yue Hao(郝躍)

    1School of Advanced Materials and Nanotechnology,Xidian University,Xi’an 710071,China

    2Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices,School of Microelectronics,Xidian University,Xi’an 710071,China

    Keywords: InAlN/GaN,rapid thermal annealing,low voltage,RF power performance,terminal applications

    1.Introduction

    With the booming development of wireless communication systems, the demand for high-performance low-voltage terminal equipment is surging, where radio-frequency (RF)power devices of power amplifiers (PAs) are required to operate at low voltage to deliver high power-added-efficiency(PAE) and moderate output power density (POUT).[1]Traditional GaAs technology has been widely adopted in lowvoltage terminal applications.Nevertheless, compared with GaAs technology, GaN technology is able to deliver better PAE at the samePOUTor higherPOUTat the same PAE,which is conducive to realizing lower power consumption and a smaller area of the chip.[2-4]In addition, GaN technology also has superior bandwidth, which is beneficial to enable a significant reduction in the number and area of PA as well as high-speed broadband communication.[5]Thus,GaN technology has great potential for high-performance low-voltage terminal applications.

    Most GaN-based RF power devices are fabricated on a mature AlGaN/GaN heterojunction to achieve high-voltage and high-power characteristics.[6-8]Besides, considering the convenience of the fabrication and relatively low cost,the formation of ohmic contacts is mainly achieved by performing rapid thermal annealing (RTA),[9-13]after the evaporation of Ti/Al/Ni/Au ohmic metals,whose RTA temperature is usually higher than 800?C.[12,13]However,due to the limitation of relatively large sheet resistance for AlGaN/GaN heterojunction,the maximum output current density (ID.MAX) is generally lower than 1500 mA·mm-1and the knee voltage (VKNEE) is also quite large,which makes it difficult to obtain high device performance at low operating voltage.[14,15]In order to enable higherID.MAXand lowerVKNEE, both of which are important for the device to operate at low voltage,the parasitic resistance must be reduced.[16]Thus, device fabrication should be performed on a more strongly polarized heterojunction with low sheet resistance, such as an InAlN/GaN heterojunction.[17,18]On the basis of an InAlN/GaN heterojunction, the RTA process must be carefully designed because both the higher RTA temperature and longer time will cause the rough ohmic metal surface morphology and degraded heterojunction quality to induce a series of negative effects on device performance and reliability,[19-21]in spite of the lower ohmic contact resistance(RC).As a consequence,for the InAlN/GaN heterojunction,it is vital to optimize the RTA condition and explore the appropriate one,which may be different from the optimal annealing condition for a conventional AlGaN/GaN heterojunction.

    In this work, by optimizing the RTA process including annealing temperature and time, the optimized RTA In-AlN/GaN high electron mobility transistor (HEMT) exhibits lower parasitic resistance,smoother ohmic metal surface morphology, less degraded heterojunction sheet resistance, and clearer heterojunction interfaces as well as negligible material out-diffusion, which contribute to the improvement in output current, knee voltage, peak transconductance, off-state leakage current, and current collapse.Due to the improved DC and pulsedI-Vcharacteristics, an obviously increased PAE of 62%andPOUTof 0.71 W·mm-1are achieved for the optimized HEMT at 8 GHz andVDSof 6 V,compared with those of 51%and 0.49 W·mm-1for the non-optimized one, to satisfy high-performance low-voltage terminal applications.

    2.Device fabrication

    The lattice-matched In0.17Al0.83N/GaN heterojunction was adopted in this work to fabricate high-performance lowvoltage HEMT, whose schematic cross section is shown in Fig.1(a).The epilayers were grown on a semi-insulating SiC substrate by metal-organic chemical vapor deposition, consisting of a 2 nm GaN cap,an 8 nm InAlN barrier,a 1 nm AlN spacer, and a GaN buffer.Room-temperature Hall measurement showed the two-dimensional electron gas (2DEG) density of 1.65×1013cm-2and mobility of 1512 cm2/V·s,leading to the sheet resistance(RSH)of 251 ?/sq.

    Fig.1.(a)Schematic cross section of low-voltage InAlN/GaN HEMT.SEM characterization of the fabricated InAlN/GaN HEMT(b)before and(c)after the gate metals evaporation in the top view to determine the device size.

    The fabrication process started with device isolation via boron ion implantation,followed by deposition of Ti/Al/Ni/Au ohmic metals via electron beam evaporation.Given that there exists a trade-off among low ohmic contact resistance, excellent heterojunction quality, and smooth ohmic metal surface morphology in the RTA process for the InAlN/GaN heterojunction, the RTA condition must be carefully optimized to guarantee the lowest parasitic resistance together with smoother ohmic metal surface morphology and negligible material out-diffusion.Consequently, the whole wafer was sliced into several pieces.As a reference, the optimal RTA condition for the conventional AlGaN/GaN heterojunction on our production line(860?C,30 s)was applied to one of the InAlN/GaN samples.And the exploration of the appropriate RTA condition for the InAlN/GaN heterojunction was based on the remaining samples.First,at a fixed RTA time of 30 s,the RTA temperature was investigated by annealing five samples in the temperature range of 800?C-880?C, with a temperature step of 20?C.After that, the five annealed samples were passivated by a 120 nm SiN via PECVD, followed by the evaluation ofRCandRSHvia transmission-line-model(TLM) measurement.According to the TLM measurement,ohmic contact resistance is defined as the resistance between the ohmic metal and 2DEG channel,and the associated sheet resistance is regarded as the sheet resistance of the 2DEG channel.After preliminarily finding the optimal RTA temperature of 840?C, which yields the lowest parasitic resistance among the five samples mentioned above, the RTA time was studied at the fixed temperature of 840?C by annealing the other five samples with the time in the range of 20-60 s,with a time step of 10 s.Likewise,following the deposition of the SiN passivation layer, TLM measurement was performed to preliminarily determine the optimal RTA time of 40 s, which produces the lowest parasitic resistance among the ten samples mentioned above.However,such a two-step optimization process does not definitely lead to the most optimal RTA parameters.In order to improve the total optimization procedure,on the basis of the two-step optimization, another two optimizations of annealing time were performed at annealing temperatures of 830?C and 850?C, which were relatively close to the previous optimal temperature of 840?C.With the comparison of the parasitic resistance among the samples with temperatures of 830?C, 840?C, and 850?C, and various times,it is found that the lowest parasitic resistance is achieved for the annealing condition of 840?C for 40 s, which will be shown hereinafter.Compared with the reference sample(nonoptimized RTA sample), the optimized RTA sample showed lower parasitic resistance.Besides, a smoother ohmic metal surface morphology and clearer heterojunction interfaces as well as negligible material out-diffusion were also achieved for the optimized RTA sample, which will be demonstrated hereinafter.For convenience,the subsequent process was only carried out on the optimized RTA sample and the reference one.After the definition of the gate foot region via electron beam lithography,the SiN on the gate foot region was removed by CF4plasma dry etching.Eventually, Ni/Au gate metals were deposited via electron beam evaporation after gate head lithography.As shown in Figs.1(b)and 1(c),a T-shaped gate was formed with a gate length(LG)of 0.2μm and gate width(WG)of 2×50μm.The source-drain spacing(LSD)was 2μm with equal gate-source and gate-drain spacing(LGS,LGD)of 0.9μm.

    3.Results and discussion

    As mentioned above,there exists a trade-off between the lower ohmic contact resistance and less degraded heterojunction sheet resistance in the RTA process of the InAlN/GaN heterojunction,[20]both of which determine the parasitic resistance and thus the device’s electrical performance.In order to lower the parasitic resistance, both the RTA temperature and time have been optimized,whose process details are described in Section 2.

    Fig.2.Influence of RTA temperature on(a)RC and RSH as well as(b)the calculated parasitic resistance,to preliminarily determine the optimal temperature.Effect of RTA time on (c) RC and RSH as well as (d) the calculated parasitic resistance, to preliminarily determine the optimal time.(e) Comparison of the parasitic resistance among samples with temperatures of 830 ?C, 840 ?C, 850 ?C, and various times, to finally determine the optimal RTA condition.(f)The actual temperature profile of the optimal RTA condition(840 ?C,40 s).

    The corresponding TLM measurements are demonstrated in Fig.2, to ascertain the optimal RTA condition.As shown in Fig.2(a), as the temperature increases, the ohmic contact resistance gradually decreases,while the heterojunction sheet resistance degrades by degrees.Such two contradictory trends preliminarily determine an optimal temperature of 840?C to yield the lowest parasitic resistance among those five samples, as shown in Fig.2(b).On this basis, the optimal time is further investigated.As demonstrated in Fig.2(c), the influence of time is slightly different from that of temperature.The gradual saturation of ohmic contact resistance is exhibited with the increase in time, while the heterojunction sheet resistance still degrades continuously.Similar contradictory trends preliminarily lead to an optimal time of 40 s to deliver the lowest parasitic resistance among the ten samples,as shown in Fig.2(d).In order to more reasonably explore the optimal RTA parameters,on the basis of the previous two-step optimization process, another two optimizations of annealing time were performed at annealing temperatures of 830?C and 850?C, which were relatively close to the temporarily optimal temperature of 840?C.As shown in Fig.2(e),the sample annealed at 840?C for 40 s shows the lowest parasitic resistance.Thus,we basically reckon that the annealing condition of 840?C for 40 s should be or very close to the most optimal one.In addition,what is noteworthy is that RTA temperature has a much stronger effect than RTA time onRC,RSH,and parasitic resistance,according to the TLM measurements.In a word, compared with the reference sample annealed at 860?C for 30 s,the parasitic resistance is decreased as much as we can for the optimized RTA sample annealed at 840?C for 40 s to guarantee a high-performance device.Considering that there inevitably exists a control error in temperature and time for the RTA furnace, this optimal RTA condition should be further adjusted to 840±10?C with 40±10 s.

    Fig.3.(a)and(b)Qualitative characterization of the ohmic metal surface morphology by SEM as well as (c) and (d) quantificational characterization of the ohmic metal surface morphology by AFM for the optimized and non-optimized RTA samples.

    Except for the evaluation of parasitic resistance,the comparison of the ohmic metal surface morphology and other heterojunction quality is performed between the optimized and non-optimized RTA samples.Figure 3 demonstrates the ohmic metal surface morphology of both samples, characterized by scanning electron microscopy (SEM) and atomic force microscopy(AFM).Similar to the cases reported in other works,the bumpy ohmic metal surface with bulges of various sizes is shown for both samples, which is an inevitable annoying phenomenon in the RTA process.[12,22,23]However, compared with the non-optimized RTA sample,the optimized one has smoother ohmic metal surface morphology whose rootmean-square (rms) surface roughness and maximum height variation of bulges (?H) are obviously reduced, which is attributed to the less Ni-Al alloy aggregation by relatively lower RTA temperature.[12,21]Besides the evaluation of the degradation for heterojunction sheet resistance mentioned above, another heterojunction quality of both samples is compared in Fig.4.By high-resolution transmission electron microscopy(HRTEM)measurement, clearer heterojunction interfaces are shown for the optimized RTA sample.More importantly,due to the relatively low annealing temperature, there is negligible element out-diffusion from the barrier to the channel and buffer for the optimized one, which is characterized by an energy dispersive spectrometer (EDS) and indicates the better material quality and fewer defects introduced during the optimized RTA process.The fewer defects imply the suppressed off-state leakage current and current collapse for the optimized RTA condition, which will be shown hereinafter.On the contrary,the reference annealing condition(860?C for 30 s)indeed causes more severe heterojunction quality degradation.However,such degradation contributes to the reduction in ohmic contact resistance, probably due to the introduction of more defects to facilitate the electron transition.

    Fig.4.(a)and(b)HRTEM characterization of the heterojunction structure as well as(c)and(d)EDS analysis of element out-diffusion for the optimized and non-optimized RTA sample.

    A Keithley 4200 semiconductor parameter analyzer was used for DC and pulsedI-Vmeasurements.A comparison of transfer characteristics atVDSof 6 V is shown in Fig.5(a),demonstrating the peak extrinsic transconductance (gm.peak)of 526 mS·mm-1and 473 mS·mm-1for the optimized and non-optimized RTA HEMT, respectively.Besides, compared with the reference HEMT with off-state drain leakage current(Id.off)of 1×10-1mA·mm-1,theId.offof 7×10-3mA·mm-1is achieved for the optimized RTA HEMT.Figure 5(b)demonstrates the output characteristics of both devices,showing that the higherID.MAXof 2279 mA·mm-1and lowerVKNEEof 3.8 V are obtained for the optimized HEMT, compared with those of 2066 mA·mm-1and 4.2 V for the non-optimized one.As demonstrated in Figs.5(c) and 5(d), the pulsedI-Vcharacteristics are characterized at gate voltages of 2 V and 0 V,with quiescent bias points of (VGSQ,VDSQ=0 V, 0 V) and(VGSQ,VDSQ=-6 V, 10 V).The optimized HEMT exhibits the current collapse ratio of 4%, compared with that of 15%for the non-optimized one.For the optimized RTA HEMT,the increasedID.MAXandgm.peakas well as reducedVKNEEare attributed to the lowered parasitic resistance.In addition, the better heterojunction quality contributes to the suppression of off-state leakage current and current collapse.

    Fig.5.Comparison of(a)transfer characteristics and(b)output characteristics between the optimized and non-optimized RTA HEMT.Pulsed I-V characteristics of the(c)optimized and(d)non-optimized device.

    Fig.6.Comparison of (a) small signal characteristics and (b) lowvoltage large signal characteristics between the optimized and nonoptimized RTA HEMT.

    The small signal characteristics were characterized from 1-40 GHz for both devices, using an Agilent 8363B vector network analyzer calibrated with a short-open through calibration standard.As shown in Fig.6(a), by extrapolating of the short circuit current gain (|H21|) and the maximum stable gain/maximum available gain (MSG/MAG) curves using-20 dB/decade slopes,fT/fMAXvalues of 77/110 GHz and 71/95 GHz are achieved for the optimized and non-optimized RTA HEMT biased atVDSof 6 V, respectively.The lowvoltage large signal characterization was performed in a continuous wave using an on-wafer load-pull system.Both the source and the load impedance were tuned to maximize PAE.At 8 GHz andVDSof 6 V,an improved PAE of 62%together with an increasedPOUTof 0.71 W·mm-1is achieved for the optimized RTA HEMT,as shown in Fig.6(b),as a result of the improvement in output current,knee voltage,off-state leakage current,and current collapse.

    Finally, the comparison of ohmic contact resistance, offstate leakage current,current collapse,POUTand PAE between our fabricated InAlN/GaN HEMT and the state-of-the-art ones is performed, which can be seen in the table below.Obviously, our fabricated InAlN/GaN HEMT demonstrates lower ohmic contact resistance as well as suppressed off-state leakage current and current collapse.More importantly, a decent PAE andPOUTare achieved at a low operating voltage for this InAlN/GaN HEMT, appealing to low-voltage terminal applications.

    Table 1.Comparison of ohmic contact resistance,off-state leakage current,current collapse,PAE,and POUT for InAlN/GaN HEMTs.

    4.Conclusions

    In conclusion, improved low-voltage RF power performance of InAlN/GaN HEMT is realized via an optimized RTA process to satisfy high-performance terminal applications.This optimal annealing condition (840?C with 40 s)is explored via adjusting the RTA temperature and time to achieve the lowest parasitic resistance,which leads to the improved output current density and higher peak transconductance as well as reduced knee voltage.Moreover, compared with the reference HEMT, the optimized one demonstrates smoother ohmic metal surface morphology and better heterojunction quality including the less degraded heterojunction sheet resistance and clearer heterojunction interfaces as well as negligible material out-diffusion, which contributes to the suppression of off-state leakage current and current collapse.Due to the improved DC and pulsedI-Vcharacteristics, an obviously enhanced PAE of 62% andPOUTof 0.71 W·mm-1are achieved atVDSof 6 V for the optimized RTA HEMT,indicating the great potential of the optimized RTA HEMT in high-performance low-voltage terminal applications.Considering that there inevitably exists a control error in the temperature and time for the RTA furnace, this optimal RTA condition should be further adjusted to 840±10?C with 40±10 s.RTA temperature or time beyond the upper limit of this optimal condition leads to severer degradation of heterojunction quality (including the substantially degraded heterojunction sheet resistance, blurred heterojunction interfaces as well as significant material out-diffusion) and rougher ohmic metal surface morphology, and RTA temperature or time not reaching the lower limit of this optimal condition causes higher ohmic contact resistance.However, a decent balance among low ohmic contact resistance,excellent heterojunction quality,and smooth ohmic metal surface morphology is enabled by this optimal RTA condition, thus achieving the improvement in DC,pulsedI-V,and RF power performance.

    Acknowledgements

    Project supported by the National Key Research and Development Project of China (Grant No.2021YFB3602404),in part by the National Natural Science Foundation of China(Grant Nos.61904135 and 62234009),the Key R&D Program of Guangzhou (Grant No.202103020002), Wuhu and Xidian University special fund for industry-university-research cooperation(Grant No.XWYCXY-012021014-HT),the Fundamental Research Funds for the Central Universities (Grant No.XJS221110),the Natural Science Foundation of Shaanxi,China (Grant No.2022JM-377), and the Innovation Fund of Xidian University(Grant No.YJSJ23019).

    亚洲七黄色美女视频| 国产美女午夜福利| 成人18禁在线播放| 日本熟妇午夜| 99久久久亚洲精品蜜臀av| 国产精品香港三级国产av潘金莲| 色播亚洲综合网| 99热6这里只有精品| 日韩大尺度精品在线看网址| 1000部很黄的大片| 国产高清视频在线观看网站| 精品一区二区三区视频在线 | 国产精品乱码一区二三区的特点| 97碰自拍视频| 露出奶头的视频| 成人av在线播放网站| 国产在线精品亚洲第一网站| 在线观看免费视频日本深夜| 美女黄网站色视频| 高清毛片免费观看视频网站| 久久伊人香网站| 欧美日韩瑟瑟在线播放| 精品人妻1区二区| 国产高清视频在线观看网站| 18禁黄网站禁片午夜丰满| 日韩大尺度精品在线看网址| 亚洲中文字幕一区二区三区有码在线看 | 亚洲av熟女| 久久久国产成人精品二区| 人人妻人人看人人澡| 国产精品综合久久久久久久免费| 久久久久久国产a免费观看| 欧美色视频一区免费| 国产高清三级在线| 日韩欧美 国产精品| 亚洲,欧美精品.| 午夜福利在线观看吧| 熟女少妇亚洲综合色aaa.| 亚洲专区字幕在线| 午夜福利18| 国产精品自产拍在线观看55亚洲| 又爽又黄无遮挡网站| 99久久99久久久精品蜜桃| 午夜福利高清视频| 国产午夜精品久久久久久| 嫁个100分男人电影在线观看| 精品99又大又爽又粗少妇毛片 | 99热只有精品国产| 亚洲成av人片免费观看| 制服人妻中文乱码| 国内精品一区二区在线观看| 精品不卡国产一区二区三区| 91字幕亚洲| 日韩中文字幕欧美一区二区| 国产一级毛片七仙女欲春2| 2021天堂中文幕一二区在线观| 欧美又色又爽又黄视频| 欧美+亚洲+日韩+国产| ponron亚洲| 亚洲国产高清在线一区二区三| 91字幕亚洲| 18禁黄网站禁片免费观看直播| 亚洲片人在线观看| 精品国产美女av久久久久小说| 18禁国产床啪视频网站| 男人舔奶头视频| 成人三级黄色视频| 伊人久久大香线蕉亚洲五| 嫩草影视91久久| 神马国产精品三级电影在线观看| 亚洲av成人不卡在线观看播放网| 日韩欧美国产一区二区入口| 欧美一区二区国产精品久久精品| 国内精品久久久久久久电影| 国产亚洲精品综合一区在线观看| 国产三级在线视频| 免费看美女性在线毛片视频| 欧美日韩亚洲国产一区二区在线观看| 欧美不卡视频在线免费观看| 久久精品夜夜夜夜夜久久蜜豆| 成人国产一区最新在线观看| 美女黄网站色视频| 麻豆国产av国片精品| 淫妇啪啪啪对白视频| 九九在线视频观看精品| 欧美黄色片欧美黄色片| 久久性视频一级片| 国产激情偷乱视频一区二区| 无遮挡黄片免费观看| 精品国产乱码久久久久久男人| 99久久精品国产亚洲精品| 亚洲一区二区三区不卡视频| 国产高清激情床上av| 中亚洲国语对白在线视频| 黄色丝袜av网址大全| 欧美日韩综合久久久久久 | 别揉我奶头~嗯~啊~动态视频| 国产欧美日韩精品一区二区| 久久精品人妻少妇| 极品教师在线免费播放| 国产精品 欧美亚洲| 黑人巨大精品欧美一区二区mp4| 亚洲激情在线av| 国产亚洲精品久久久com| 精品久久久久久久久久免费视频| 欧美日韩综合久久久久久 | 欧美黄色淫秽网站| 免费看光身美女| av欧美777| 欧美成人一区二区免费高清观看 | 午夜福利免费观看在线| 欧美黄色淫秽网站| 在线观看免费视频日本深夜| 国产一区二区在线av高清观看| 无人区码免费观看不卡| 免费看光身美女| 国产主播在线观看一区二区| 18禁裸乳无遮挡免费网站照片| 一本精品99久久精品77| 亚洲专区中文字幕在线| 欧美性猛交╳xxx乱大交人| 国产精品亚洲av一区麻豆| 免费在线观看视频国产中文字幕亚洲| 国产精品,欧美在线| 一本一本综合久久| 香蕉久久夜色| 18禁国产床啪视频网站| 免费在线观看成人毛片| 手机成人av网站| 欧美午夜高清在线| 欧美色视频一区免费| 中文字幕av在线有码专区| 女人高潮潮喷娇喘18禁视频| 久久久久久国产a免费观看| 香蕉国产在线看| 久久婷婷人人爽人人干人人爱| 日本免费一区二区三区高清不卡| 婷婷精品国产亚洲av| 国产精品久久久久久久电影 | 91九色精品人成在线观看| 国产乱人伦免费视频| 国产精品影院久久| 国产主播在线观看一区二区| 国产亚洲精品一区二区www| 精品不卡国产一区二区三区| 在线视频色国产色| 香蕉av资源在线| 亚洲av成人av| 中国美女看黄片| 日本在线视频免费播放| 日日摸夜夜添夜夜添小说| 亚洲午夜精品一区,二区,三区| 日韩中文字幕欧美一区二区| 国产精品亚洲一级av第二区| 国产免费男女视频| 无限看片的www在线观看| 熟妇人妻久久中文字幕3abv| 国产成人av教育| 黑人操中国人逼视频| 看片在线看免费视频| 国产成人欧美在线观看| 中亚洲国语对白在线视频| 91久久精品国产一区二区成人 | 91在线观看av| 一个人看的www免费观看视频| 99热精品在线国产| 国产欧美日韩精品一区二区| 久久天躁狠狠躁夜夜2o2o| 精品一区二区三区四区五区乱码| 欧美av亚洲av综合av国产av| 搡老岳熟女国产| 麻豆国产97在线/欧美| 久久天躁狠狠躁夜夜2o2o| 亚洲人与动物交配视频| 国产精品亚洲av一区麻豆| 国产在线精品亚洲第一网站| 色老头精品视频在线观看| 国产精品影院久久| 岛国视频午夜一区免费看| 99国产精品一区二区蜜桃av| 热99re8久久精品国产| 亚洲天堂国产精品一区在线| 欧美日韩瑟瑟在线播放| 欧美日本亚洲视频在线播放| 日本精品一区二区三区蜜桃| 欧美成人一区二区免费高清观看 | 国产高清视频在线播放一区| 亚洲av第一区精品v没综合| 99久久成人亚洲精品观看| 嫩草影视91久久| 老鸭窝网址在线观看| 久久亚洲精品不卡| 别揉我奶头~嗯~啊~动态视频| 亚洲va日本ⅴa欧美va伊人久久| 男女下面进入的视频免费午夜| tocl精华| 亚洲专区国产一区二区| 中文字幕熟女人妻在线| 免费观看精品视频网站| 九九久久精品国产亚洲av麻豆 | 久久香蕉精品热| a级毛片a级免费在线| 日韩欧美在线二视频| 午夜福利高清视频| 国产亚洲av嫩草精品影院| 波多野结衣巨乳人妻| av欧美777| 国产麻豆成人av免费视频| 一个人看的www免费观看视频| 九色成人免费人妻av| 成人亚洲精品av一区二区| 亚洲熟女毛片儿| av在线天堂中文字幕| 亚洲精品乱码久久久v下载方式 | 18禁美女被吸乳视频| 天堂网av新在线| 91av网一区二区| 国产淫片久久久久久久久 | 午夜成年电影在线免费观看| 日韩欧美 国产精品| 免费人成视频x8x8入口观看| 久久久久免费精品人妻一区二区| 国产欧美日韩精品亚洲av| 欧美日韩亚洲国产一区二区在线观看| 人人妻人人澡欧美一区二区| 99精品久久久久人妻精品| 色老头精品视频在线观看| 国产精品九九99| 法律面前人人平等表现在哪些方面| 好男人电影高清在线观看| 国产精品 国内视频| 亚洲国产欧美网| 亚洲,欧美精品.| 亚洲精品456在线播放app | 国产单亲对白刺激| www.自偷自拍.com| 后天国语完整版免费观看| 国产毛片a区久久久久| 国产亚洲欧美在线一区二区| 欧美大码av| 日韩成人在线观看一区二区三区| 岛国在线免费视频观看| 丰满人妻熟妇乱又伦精品不卡| 日本一二三区视频观看| 国产 一区 欧美 日韩| 国产爱豆传媒在线观看| 国产高清激情床上av| 日日干狠狠操夜夜爽| 国产精品永久免费网站| 午夜福利在线观看免费完整高清在 | 欧美中文综合在线视频| 老司机在亚洲福利影院| 午夜福利在线在线| 99在线人妻在线中文字幕| 国产高清视频在线观看网站| 欧美日韩乱码在线| 老汉色av国产亚洲站长工具| 男插女下体视频免费在线播放| 99久国产av精品| 亚洲国产欧美网| 亚洲国产精品合色在线| 日本免费一区二区三区高清不卡| 琪琪午夜伦伦电影理论片6080| 久久午夜亚洲精品久久| 亚洲国产精品久久男人天堂| 熟女电影av网| 国产精品久久久av美女十八| 村上凉子中文字幕在线| 日日干狠狠操夜夜爽| 国产精品永久免费网站| 人妻久久中文字幕网| aaaaa片日本免费| 国产1区2区3区精品| 一级毛片高清免费大全| 精品国产乱子伦一区二区三区| 国产精品99久久99久久久不卡| 国产毛片a区久久久久| 日韩欧美国产一区二区入口| 人人妻人人澡欧美一区二区| 18禁黄网站禁片免费观看直播| 精品免费久久久久久久清纯| 久久久久精品国产欧美久久久| 999久久久精品免费观看国产| 国产三级黄色录像| 99久久精品国产亚洲精品| 搞女人的毛片| 久久这里只有精品中国| 一个人观看的视频www高清免费观看 | 欧美一级毛片孕妇| www日本在线高清视频| 宅男免费午夜| 在线观看免费午夜福利视频| 中文字幕高清在线视频| 2021天堂中文幕一二区在线观| cao死你这个sao货| 久久久久久久久免费视频了| 日韩人妻高清精品专区| 我要搜黄色片| 亚洲国产精品久久男人天堂| 午夜视频精品福利| 日韩欧美免费精品| 久久午夜综合久久蜜桃| 男人舔奶头视频| 狠狠狠狠99中文字幕| 级片在线观看| 18禁黄网站禁片免费观看直播| 久久这里只有精品19| 两个人的视频大全免费| 美女cb高潮喷水在线观看 | 在线观看日韩欧美| 两个人的视频大全免费| 麻豆成人午夜福利视频| 1000部很黄的大片| 欧美色视频一区免费| 熟女电影av网| 欧美zozozo另类| 午夜久久久久精精品| 小说图片视频综合网站| 一本综合久久免费| 精品国产超薄肉色丝袜足j| 亚洲九九香蕉| 99精品久久久久人妻精品| 成人一区二区视频在线观看| 久久久久久九九精品二区国产| 91在线精品国自产拍蜜月 | 午夜激情欧美在线| 在线观看66精品国产| 波多野结衣高清作品| 精品一区二区三区四区五区乱码| 成年版毛片免费区| 日韩三级视频一区二区三区| 狂野欧美激情性xxxx| 欧美日韩瑟瑟在线播放| 久久中文看片网| 国产真实乱freesex| 国产黄a三级三级三级人| 亚洲一区高清亚洲精品| 黄色日韩在线| 国产成人福利小说| 99久久综合精品五月天人人| 成人特级黄色片久久久久久久| 亚洲无线在线观看| 欧美中文综合在线视频| 亚洲成人久久性| 最近最新中文字幕大全免费视频| 国产在线精品亚洲第一网站| 精品久久久久久,| 禁无遮挡网站| 无限看片的www在线观看| 99精品欧美一区二区三区四区| 麻豆成人午夜福利视频| 黄色 视频免费看| 欧美成狂野欧美在线观看| 欧美日韩综合久久久久久 | 亚洲自偷自拍图片 自拍| 欧美性猛交╳xxx乱大交人| 在线国产一区二区在线| 听说在线观看完整版免费高清| 色综合婷婷激情| 综合色av麻豆| 亚洲无线观看免费| 精品国产乱码久久久久久男人| 欧美乱码精品一区二区三区| 最近视频中文字幕2019在线8| 天堂av国产一区二区熟女人妻| 一二三四社区在线视频社区8| 欧美一级a爱片免费观看看| 精品乱码久久久久久99久播| 中文在线观看免费www的网站| 国产精品久久久人人做人人爽| 欧美日韩亚洲国产一区二区在线观看| 无遮挡黄片免费观看| 久久九九热精品免费| 小蜜桃在线观看免费完整版高清| 国产野战对白在线观看| 俺也久久电影网| 亚洲最大成人中文| 搡老妇女老女人老熟妇| 国产精品国产高清国产av| cao死你这个sao货| 欧美日韩综合久久久久久 | 亚洲av五月六月丁香网| 国模一区二区三区四区视频 | 三级毛片av免费| 久久欧美精品欧美久久欧美| 性欧美人与动物交配| 无遮挡黄片免费观看| 国产精品亚洲av一区麻豆| 国产成人系列免费观看| 午夜成年电影在线免费观看| 在线免费观看的www视频| 最近最新中文字幕大全电影3| 91麻豆精品激情在线观看国产| 亚洲天堂国产精品一区在线| 国产欧美日韩精品亚洲av| 日日夜夜操网爽| 久久精品综合一区二区三区| 中文字幕av在线有码专区| a级毛片a级免费在线| 亚洲国产日韩欧美精品在线观看 | 老司机午夜福利在线观看视频| 国产精品久久久av美女十八| 亚洲国产精品久久男人天堂| 亚洲av免费在线观看| 久久久精品大字幕| 午夜福利免费观看在线| 搞女人的毛片| 嫩草影院入口| 不卡一级毛片| 亚洲人与动物交配视频| 日韩欧美精品v在线| 久久精品国产99精品国产亚洲性色| 国产野战对白在线观看| 美女扒开内裤让男人捅视频| 丰满人妻一区二区三区视频av | 国产成+人综合+亚洲专区| 午夜亚洲福利在线播放| 国产精品1区2区在线观看.| 高清毛片免费观看视频网站| 久久久久久人人人人人| 色视频www国产| 丁香欧美五月| 级片在线观看| 日韩三级视频一区二区三区| 91九色精品人成在线观看| 国产午夜精品久久久久久| 丰满人妻熟妇乱又伦精品不卡| 国产又色又爽无遮挡免费看| 欧美另类亚洲清纯唯美| 国产精品一及| 国产激情欧美一区二区| 国产精品女同一区二区软件 | 久久天堂一区二区三区四区| 日韩欧美在线二视频| 亚洲乱码一区二区免费版| 色综合站精品国产| 午夜日韩欧美国产| 性色av乱码一区二区三区2| 欧美日韩精品网址| 禁无遮挡网站| 国产精品综合久久久久久久免费| 国产69精品久久久久777片 | 丁香六月欧美| 国产精品女同一区二区软件 | 真人一进一出gif抽搐免费| 日韩人妻高清精品专区| www国产在线视频色| 草草在线视频免费看| 国产人伦9x9x在线观看| 国产成人福利小说| 国产精品99久久久久久久久| 欧美xxxx黑人xx丫x性爽| 欧美三级亚洲精品| 热99re8久久精品国产| 久久国产乱子伦精品免费另类| 蜜桃久久精品国产亚洲av| 黄片小视频在线播放| 国产欧美日韩精品一区二区| 国产伦人伦偷精品视频| 一级黄色大片毛片| 成年人黄色毛片网站| 日韩精品青青久久久久久| 亚洲精品456在线播放app | 日日摸夜夜添夜夜添小说| 久久中文字幕人妻熟女| 一二三四在线观看免费中文在| 免费观看的影片在线观看| 亚洲 国产 在线| 久久草成人影院| 色综合亚洲欧美另类图片| 国产探花在线观看一区二区| av在线天堂中文字幕| 免费无遮挡裸体视频| 禁无遮挡网站| 国产av在哪里看| 亚洲国产欧美一区二区综合| 国产伦一二天堂av在线观看| 99在线人妻在线中文字幕| 啦啦啦观看免费观看视频高清| 99在线人妻在线中文字幕| 一级毛片精品| 国产成人福利小说| 人妻丰满熟妇av一区二区三区| 久久天堂一区二区三区四区| 国产精品 欧美亚洲| 精品国产三级普通话版| 亚洲欧洲精品一区二区精品久久久| 午夜免费观看网址| 日本一本二区三区精品| 十八禁网站免费在线| 国内精品久久久久精免费| 亚洲精品美女久久av网站| 怎么达到女性高潮| 女生性感内裤真人,穿戴方法视频| 99热这里只有是精品50| 国产私拍福利视频在线观看| 国产精品一区二区免费欧美| 国产伦精品一区二区三区视频9 | 国产亚洲欧美在线一区二区| 丁香六月欧美| 美女高潮喷水抽搐中文字幕| 高潮久久久久久久久久久不卡| 97超视频在线观看视频| 国产精品一区二区免费欧美| 1024香蕉在线观看| 国产综合懂色| 丰满的人妻完整版| 久久人妻av系列| 美女高潮喷水抽搐中文字幕| 免费观看精品视频网站| 久久中文看片网| 成人18禁在线播放| 黄色女人牲交| svipshipincom国产片| 男女下面进入的视频免费午夜| 精品久久蜜臀av无| 色在线成人网| 久久久国产成人精品二区| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲成a人片在线一区二区| 91字幕亚洲| 熟女人妻精品中文字幕| 999久久久国产精品视频| 欧美日韩福利视频一区二区| 免费在线观看影片大全网站| av女优亚洲男人天堂 | 两性夫妻黄色片| 亚洲精品在线美女| 给我免费播放毛片高清在线观看| 动漫黄色视频在线观看| 桃红色精品国产亚洲av| 国产99白浆流出| 久久久久九九精品影院| 人人妻人人澡欧美一区二区| 国产综合懂色| 精品国产乱码久久久久久男人| 国产精品久久久久久久电影 | 国产免费男女视频| 男人和女人高潮做爰伦理| 91av网一区二区| 日韩大尺度精品在线看网址| 亚洲av熟女| 国产精品综合久久久久久久免费| 99热这里只有精品一区 | 国产aⅴ精品一区二区三区波| 九九热线精品视视频播放| 精品福利观看| 精品一区二区三区四区五区乱码| 亚洲激情在线av| 精品久久久久久久人妻蜜臀av| 亚洲国产欧美一区二区综合| 久久久久亚洲av毛片大全| 国产精品永久免费网站| 成在线人永久免费视频| 99视频精品全部免费 在线 | 免费电影在线观看免费观看| 久久精品亚洲精品国产色婷小说| 香蕉国产在线看| 99re在线观看精品视频| 免费一级毛片在线播放高清视频| 中亚洲国语对白在线视频| 亚洲精品在线观看二区| 国产人伦9x9x在线观看| 香蕉丝袜av| 麻豆久久精品国产亚洲av| 老司机福利观看| 国产一区二区激情短视频| 亚洲精品一卡2卡三卡4卡5卡| 免费在线观看亚洲国产| 99热只有精品国产| 老司机深夜福利视频在线观看| 成年人黄色毛片网站| 美女午夜性视频免费| 国产精品野战在线观看| 麻豆av在线久日| 午夜影院日韩av| 怎么达到女性高潮| 久久亚洲真实| 国产av在哪里看| 国产成人av激情在线播放| 最近最新中文字幕大全免费视频| 999久久久国产精品视频| 色综合欧美亚洲国产小说| 美女黄网站色视频| 国产1区2区3区精品| 香蕉丝袜av| 国产探花在线观看一区二区| 亚洲专区中文字幕在线| 黄色片一级片一级黄色片| 曰老女人黄片| 黄片大片在线免费观看| 日韩欧美 国产精品| 在线看三级毛片| 巨乳人妻的诱惑在线观看| 熟女人妻精品中文字幕| 国产野战对白在线观看| e午夜精品久久久久久久| 国产成人系列免费观看| 日本在线视频免费播放| 88av欧美| netflix在线观看网站| 精品国产乱码久久久久久男人| 免费无遮挡裸体视频| 免费观看的影片在线观看| 97碰自拍视频| 校园春色视频在线观看| 岛国视频午夜一区免费看| 亚洲av片天天在线观看| av视频在线观看入口| 亚洲国产高清在线一区二区三| 午夜激情欧美在线| 午夜福利欧美成人| 精品久久久久久久久久免费视频| 综合色av麻豆| 亚洲色图av天堂|