• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Inertial effect on minimum magnetic field for magnetization reversal in ultrafast magnetism

    2023-12-15 11:51:26XueMengNan南雪萌ChuanQu屈川PengBinHe賀鵬斌andZaiDongLi李再東
    Chinese Physics B 2023年12期

    Xue-Meng Nan(南雪萌), Chuan Qu(屈川), Peng-Bin He(賀鵬斌), and Zai-Dong Li(李再東),?

    1Tianjin Key Laboratory of Quantum Optics and Intelligent Photonics,School of Science,Tianjin University of Technology,Tianjin 300384,China

    2School of Physics and Electronics,Hunan University,Changsha 410082,China

    Keywords: inertial effect,minimum magnetic field,ultrafast magnetism

    1.Introduction

    Understanding how magnetization moves and how it is manipulated on femtosecond time scales is of great significance for ultrafast and efficient data processing and storage applications.The magnetization dynamics in the writing process is described by the Landau-Lifhitz-Gilbert(LLG)equation, which correctly simulates the magnetization reversal on the nanosecond time scale.[1,2]The study of these fast magnetization reversals has great potential applications to the future development of high-speed information industry.[3]Until 20 years ago, it was believed that all relevant magnetization dynamics were included in this equation, and the optimization of storage devices was based on it alone.In recent years, the study of magnetization dynamics in the nanoscale systems has become very important.Hot topics include current-induced domain wall motion and the demagnetization effect of femtosecond laser pulses.[4-7]

    However, the pioneering experiment of Bigotet al.in 1996 revealed the occurrence of spin dynamics on subpicosecond scales,[1,8]and Ciornai and F¨ahnle[9,10]et al., and other theorists[4]also pointed out that in the magnetization dynamics of very short time scale, the lack of inertial is questionable.[11]Since then, many studies have also begun to focus on the inertial effect in the dynamics of ultrafast magnetization,[12-14]which was revealed by the ultrafast optical techniques[15]in 2016.The existence of the inertial effect will give birth to the field of ultrafast magnetism,which could not be described by the LLG equation.The LLG equation only describes precession and relaxation,but does not include nutation.[4]Recently, the LLG equation was reformulated to include a term to obtain a physically correct inertial response that does not exist in the original formula.[16-22]With the discovery of ultrafast magnetism,[23]people’s interest in ultrafast magnetization on femtosecond scale has greatly increased.

    In the future,the rapid growth of information will require rapid processing of information, which in principle depends on the ultrafast reversal of magnetization.The magnetization reversal is how to change the magnetization from one state to another,i.e.,how to turn the magnetic moment from bit“1”to bit“0”(here,the bit“1”represents that the magnetic moment is upward and the bit“0”represents that the magnetic moment is down).The driven reversal force can be a laser, a spinpolarized current,or a magnetic field.Many reversal schemes have been proposed and tested in fast magnetism.[24-29]Also,for the issue of a minimal reversal field the classical result is the famous Stoner-Wohlfarth limit.[30]However, in ultrafast magnetism, the research on the magnetization reversal field has not been well explored.In this paper, the inertial LLG equation is analyzed in detail, and simulated numerically by the fourth-order Runge-Kutta algorithm.The limit of the minimum field for the magnetization reversal under inertial effect is obtained[16,17]by a tedious calculation.Compared with the magnetization reversal field in fast magnetism,a smaller value of reversal field has the more advantages in ultrafast magnetism owing to the inertial effect.

    2.Effective field form of the magnetic inertial effect

    Until recently,with the discovery of ultrafast magnetization dynamics, the inertial effect has been added into the dimensionless LLG equation,[31-35]which takes the form

    wheremis the normalized magnetization,m ≡M/Ms,Mis the localized magnetization, andMsis the saturation magnetization.In Eq.(1), ˙mrepresents the derivative with respect to time, and the time is measured in unitsγMswithγbeing the gyromagnetic ratio.The effective field?effincludes both external and internal fields, and its form is given below.The parameterαis the Gilbert damping factor.The last term on the right side in Eq.(1)denotes the inertial effect, in whichτis the angular momentum relaxation time,[12,36]and we found that in Refs.[9,33] the approximate estimation result of the theoretically derived inertial parameterτis about 10 fs-100 fs.In Ref.[1],the fundamental value ofτcollected experimentally was extracted from the resonance linewidth by approximately 10 ps.In Ref.[37],the estimated time-resolved magneto-optical measurements of Co thin filmsτvalue is approximately 1 ps.It is obvious that the first term on the right side of Eq.(1) denotes the magnetization precession and the second term represents the damping effect of precession.From Eq.(1)we have ¨m=-(1/ατ)(m× ˙m+m×(m×?eff))-α˙m/τ-| ˙m|2m.It is to say that under the action of the inertial effect,i.e.,the second derivative of magnetization ¨mon the femtosecond time scale,this will include the trend toward the direction ofm.That is exactly what causes magnetization nutation.In this short time scale, the precession motion of magnetization is superimposed with the rotating circuit,and the inertial effect becomes very important.For ultrafast switching,the state space of the possible paths is different from the one in the absence of inertial effect-it will produce nutation.It is pointed out that the existence of inertia-driving magnetization dynamics opens up a way to surpass the limit of precession for ultrafast magnetic switch.[38,39]By iterating Eq.(1)once,we have

    where?′eff=?eff-ατ¨m.Equation(2)clearly shows that the inertia effect not only affects the precession of magnetization,but also acts as an effective damping.It also implies that the motion of magnetization can be driven by the inertial effect in some special conditions.

    3.Inertial effect on the magnetization reversal field

    For simplicity, we consider only the uniaxial anisotropy model, in which thezaxis is selected as the easy axis.Then,the effective field has the expression as follows,?eff=?+hiez,where?is the applied external field,hi=kmzdenotes the internal field due to the magnetic anisotropy.In the spherical coordinates{er,eθ,e?}, i.e.,m=(1,0,0), we can simplify Eq.(2)into the form The above equation clearly clarifies how the inertial parameterτdetermines the theoretical limit value of the magnetization reversal field with the different dampingα,and anisotropyk.

    In Eq.(6), we can see that whenτ=0, which is the influence of inertia effect is not considered,the results are consistent with that of the mechanism of fast magnetization dynamics in Ref.[24],h1c=kα/(2√α1),which has a linear relationship with anisotropykand is directly proportional toα.Also, whenαis very large, whether it is ultrafast magnetism or fast magnetism,hcgradually tend to the same value and this value is close to the result of Stoner-Wohlfarth.[30]Theoretical analysis of Eq.(6),we can know that under the influence of the inertia effect, the relationship betweenhcand the anisotropic parameterkis no longer a simple linear relationship, and the relationship withαbecomes more complex.From the simple analysis, we can see that compared with the fast magnetization dynamics,the theoretical limit value of the magnetization reversal field in ultrafast magnetism has changed significantly.So does this change make sense, that is can we get a better magnetization reversal field in ultrafast magnetism than that of fast magnetism?

    From the analytical results of Eq.(6), we can find that there is a critical value for the inertia parameter,i.e.,when the value of the external magnetic field generated is equal to the theoretical limit value of the magnetization reversal magnetic field under the fast magnetic mechanism, the corresponding angular momentum relaxation time

    which is affected by the dampingαand anisotropy parameterkof the system.When the inertial parameter factorτis greater than this critical value,i.e.,τ>τc,the theoretical limit value of the magnetization reversal field under the ultrafast magnetic mechanism is greater than that of the fast magnetic mechanism,i.e.,hc>h1c.When the inertial parameter factor is less than this critical value, i.e.,τ<τc, we havehcτc/2, the situation is just the opposite.Also, whenτ=τc/2, we get the smallest limit value of magnetization reversal field under the ultrafast magnetic mechanism

    this equation indicates that whenτ=τc/2, the limit valuehcof the magnetization inversion field is only related to Gilbert damping and anisotropy, which is illustrated in Fig.2.From Fig.2 we find that the smallest magnetization reversal fieldhcminhas a linear relationship with anisotropykandhcminis directly proportional toαfirstly and then inversely proportional.

    Fig.1.The variation of the limit value of the magnetization reversal field hc depends on the inertia parameter τ.The parameters are α =0.2,0.3,and k=0.25,respectively.Inset: hc vs. τ in a small range.

    Fig.2.The smallest limit value of the magnetization reversal field hcmin changes with damping α and the anisotropy k,in which(a)k=0.1,0.2,0.3,and(b)α =0.1,0.2,0.3,respectively.

    We also find that the limit value of the magnetization reversal fieldhcand the inertia factorτare in a quadratic parabolic relationship under the condition|τ-τc/2|?2α1/kwith the help of Eq.(6).However, a larger reversal field will be generated and the limit value of the magnetization reversal fieldhcincreases linearly with the inertial factorτunder the the conditionτ ?τc/2+2α1/k.It is very similar to the case that the limit value of the magnetization reversal fieldhcincreases linearly with the anisotropykwith the absence of inertial effectτ=0.This result shows that under the ultrafast magnetic mechanism,the inertial effect profoundly affects the limit value of the magnetization reversal field.As can be seen from Eq.(2), the inertial effect can be considered as part of the modified effective field, which will affect the magnitude of the critical magnetic field value.Therefore,the relationship between the reversal field and the inertial parameter is nonmonotonic.In the experiment, the minimum magnetic field can be driven to flip the magnetization by adjusting the inertia effect under different materials and damping,which has great energy-saving significance in the field of information processing.

    From Eq.(6) we see that the limit value of the magnetization reversal field increases linearly with the anisotropykin the fast magnetic mechanism,i.e.,τ=0.However,under the ultrafast magnetic mechanism, the dependence of limit value of the magnetization reversal field on the anisotropy of the system material has some characteristics,as shown in Fig.3.The critical valueτcchanges with the anisotropykis plotted in Fig.3(a).Also, in this ultrafast magnetic mechanism it satisfies thathc>h1c, asτ>τc, andhc

    Fig.3.The graphical representation of the limit value of the magnetization reversal field hc with the anisotropy k.The parameters are α =0.5,(a) the variation of critical inertial value τc changes with the anisotropy k,(b)the inertial parameter factor is less,i.e.,τ =2,5,and is larger,i.e.,τ =26,30,respectively.

    Under the influence of different inertial parameter factorsτ,the effect of damping on the limit value of magnetization reversal field is different.In order to fully observe the relationship between the magnetic moment reversal field and damping,we have adopted a wide range of damping parameter values because the damping value is theoretically unlimited.For comparison with the results in Ref.[24], we chose the largerα, as shown in Fig.4.The critical valueτcchanges with the damping factorα,as plotted in Fig.4(a).It can still be proved that when the inertial parameter factor isτless than critical valueτc,the limit value of the magnetization reversal field under the ultrafast magnetic mechanism is less than that of the fast magnetic mechanism, i.e.,hch1c.These results are shown by the four lines above and below the blue solid line in Fig.4(b), in which the blue solid line denotes the case ofτc.We also found when the inertial parameter factor is smaller, the magnetization reversal fieldhcincreases almost proportional with the damping factorα.However, when the inertial parameter is larger, thehcincreases first, then decreases, and then increases finally.Both cases eventually increase until it is close to the result of the Stoner-Wohlfarth.[3]

    Fig.4.The illustration of the limit value of the magnetization reversal field hc with the damping α (theoretically, α can take a larger value).The parameters are k=0.3.(a)The variation of critical inertial value τc changes with damping α.(b) The inertial factor τ is less, i.e., τ =3, 6,and is larger,i.e.,τ =13,16,respectively.

    4.Conclusion

    In summary, we investigate the magnetization reversal field for the ultrafast (femtosecond time) processes, which is described by the inertial LLG equation.The rich properties of the limit value of the magnetization reversal field are discussed in detail.The most important findings are that the inertial effect greatly affects the magnetization reversal field.In the ultrafast magnetism, there is a critical valueτcfor the inertia parameter, which determines that the limit value of the magnetization reversal field,whenτ<τc,the minimum magnetic field theoretical limit value less than the fast magnetic mechanism will be generated.Whenτ=τc/2,we get the smallest limit value of the magnetization reversal field under the ultrafast magnetic mechanism.We expect that these results will have potential energy-saving significance in the field of information processing in the future.

    Appendix A:Magnetization dynamics under inertial effect

    By iterating Eq.(1)once,we have

    Appendix B:Inertial LLG equation in spherical coordinates

    In spherical coordinates,the second derivative of the magnetization can be written as

    The equilibrium condition in our simulation is defined asθ=π/2,?=π/2, ˙θ=0, ˙?=0.Then,by using the fourth-order Runge-Kutta algorithm we numerically integrate Eqs.(B2)and (B3).The diagram of the numerical inertial dynamics has been shown in Fig.B1(a), and the schematic diagram in Fig.B1(b) can be used to better understand the inertial magnetization dynamics.

    Fig.B1.The diagram of numerical inertial dynamics and schematic diagram.(a)Time dependence of θ for the inertial LLG equation.(b)The red solid dashed curve denotes schematically the magnetization nutation by the superposition effect of Gilbert damping and inertia.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China (Grant No.61774001), the Program of State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, China (Grant No.KF202203), the NSF of Changsha City (Grant No.kq2208008), and the NSF of Hunan Province(Grant No.2023JJ30116).

    国模一区二区三区四区视频| 变态另类丝袜制服| 亚洲七黄色美女视频| 真人一进一出gif抽搐免费| 极品教师在线视频| 国产探花在线观看一区二区| 亚洲 欧美 日韩 在线 免费| 高清日韩中文字幕在线| 一本久久中文字幕| 亚洲不卡免费看| 欧美绝顶高潮抽搐喷水| 午夜福利18| 成人特级av手机在线观看| 日韩亚洲欧美综合| 亚洲不卡免费看| 日日夜夜操网爽| 最近最新中文字幕大全电影3| 国产精品亚洲av一区麻豆| 熟女人妻精品中文字幕| 51国产日韩欧美| 日本一二三区视频观看| 国产精品嫩草影院av在线观看 | 91午夜精品亚洲一区二区三区 | 无遮挡黄片免费观看| av在线蜜桃| 欧美日本亚洲视频在线播放| 免费大片18禁| 精品午夜福利视频在线观看一区| 夜夜躁狠狠躁天天躁| 啦啦啦观看免费观看视频高清| 别揉我奶头 嗯啊视频| 少妇人妻精品综合一区二区 | 午夜激情福利司机影院| 日韩亚洲欧美综合| 熟女人妻精品中文字幕| 国产成人av教育| 欧美丝袜亚洲另类 | 老司机午夜十八禁免费视频| 国产日本99.免费观看| 婷婷丁香在线五月| 免费观看精品视频网站| 中文字幕av成人在线电影| www.999成人在线观看| 国产亚洲精品久久久com| 麻豆av噜噜一区二区三区| 亚洲男人的天堂狠狠| av专区在线播放| 欧美潮喷喷水| 成人永久免费在线观看视频| 国产单亲对白刺激| 亚洲国产欧洲综合997久久,| 婷婷色综合大香蕉| avwww免费| 国产91精品成人一区二区三区| 美女高潮喷水抽搐中文字幕| 久久精品影院6| 色综合站精品国产| a级毛片a级免费在线| 观看美女的网站| 免费搜索国产男女视频| 亚洲aⅴ乱码一区二区在线播放| 一夜夜www| 国模一区二区三区四区视频| 国产麻豆成人av免费视频| 亚洲第一欧美日韩一区二区三区| 亚洲午夜理论影院| 少妇人妻一区二区三区视频| 欧美成人a在线观看| 99热这里只有精品一区| 国产极品精品免费视频能看的| 国产91精品成人一区二区三区| 俺也久久电影网| av黄色大香蕉| 亚洲中文字幕一区二区三区有码在线看| 美女黄网站色视频| 国产成人aa在线观看| 欧美潮喷喷水| 婷婷精品国产亚洲av在线| 淫秽高清视频在线观看| 久久草成人影院| 亚洲最大成人中文| 国产精品一及| 亚洲av免费高清在线观看| 在线免费观看不下载黄p国产 | 国产精品乱码一区二三区的特点| 欧美精品啪啪一区二区三区| 在线a可以看的网站| 中文亚洲av片在线观看爽| 亚洲中文字幕一区二区三区有码在线看| 国产免费一级a男人的天堂| 人人妻,人人澡人人爽秒播| 色噜噜av男人的天堂激情| 久久精品国产亚洲av香蕉五月| 天堂动漫精品| 国产精品爽爽va在线观看网站| 日韩欧美精品免费久久 | 国产精品影院久久| 欧美+亚洲+日韩+国产| 精品一区二区免费观看| 免费大片18禁| 色av中文字幕| 午夜福利在线观看免费完整高清在 | 黄色女人牲交| 久久久国产成人免费| a级一级毛片免费在线观看| 男人舔奶头视频| 国产精品女同一区二区软件 | 成人国产综合亚洲| 色吧在线观看| 非洲黑人性xxxx精品又粗又长| 免费av观看视频| 午夜影院日韩av| 我要搜黄色片| 国产综合懂色| 午夜免费成人在线视频| 欧美成人a在线观看| 国产综合懂色| 欧美日本亚洲视频在线播放| 国产成人影院久久av| 看免费av毛片| 少妇人妻一区二区三区视频| 亚洲五月婷婷丁香| 91在线观看av| 久久久成人免费电影| 99riav亚洲国产免费| 成人美女网站在线观看视频| 亚洲乱码一区二区免费版| 日本a在线网址| 国产成人啪精品午夜网站| 小说图片视频综合网站| 午夜福利免费观看在线| 国产精品久久电影中文字幕| 国产高潮美女av| 黄色视频,在线免费观看| 成熟少妇高潮喷水视频| 成年女人看的毛片在线观看| 亚洲性夜色夜夜综合| 久久草成人影院| 变态另类成人亚洲欧美熟女| 九色成人免费人妻av| 中文字幕精品亚洲无线码一区| 欧美日韩国产亚洲二区| 国产不卡一卡二| 色播亚洲综合网| 国产综合懂色| 一进一出抽搐gif免费好疼| 国产精品一区二区三区四区久久| 国产精品一区二区三区四区久久| 精品一区二区三区视频在线| 色5月婷婷丁香| eeuss影院久久| 极品教师在线免费播放| 熟女人妻精品中文字幕| 国产午夜精品论理片| 日韩中字成人| av女优亚洲男人天堂| 免费av观看视频| 最新中文字幕久久久久| 国产真实乱freesex| 欧美日本视频| 精品乱码久久久久久99久播| 非洲黑人性xxxx精品又粗又长| 成人高潮视频无遮挡免费网站| 国产精品一及| 成年女人毛片免费观看观看9| 日本成人三级电影网站| 少妇裸体淫交视频免费看高清| 丰满人妻熟妇乱又伦精品不卡| 日韩中文字幕欧美一区二区| 国产黄a三级三级三级人| 少妇的逼好多水| 亚洲av电影不卡..在线观看| 99久久无色码亚洲精品果冻| 午夜老司机福利剧场| 久久精品国产99精品国产亚洲性色| 国产成人a区在线观看| 午夜日韩欧美国产| 免费av不卡在线播放| 此物有八面人人有两片| 国内毛片毛片毛片毛片毛片| 国产成人a区在线观看| 人人妻人人澡欧美一区二区| 欧美成人a在线观看| 国内久久婷婷六月综合欲色啪| 天堂影院成人在线观看| 最近中文字幕高清免费大全6 | 久久国产乱子免费精品| 欧美性猛交╳xxx乱大交人| 无人区码免费观看不卡| 男人狂女人下面高潮的视频| 日韩欧美在线乱码| 日本与韩国留学比较| 国产黄色小视频在线观看| 在线看三级毛片| 国产在线精品亚洲第一网站| 国产免费一级a男人的天堂| 长腿黑丝高跟| 18禁黄网站禁片午夜丰满| 很黄的视频免费| 免费人成在线观看视频色| 午夜福利高清视频| 成人特级av手机在线观看| 国产麻豆成人av免费视频| 精品人妻一区二区三区麻豆 | 精品久久久久久久久av| 国产精品女同一区二区软件 | 无人区码免费观看不卡| 麻豆一二三区av精品| av专区在线播放| 精品国产亚洲在线| 少妇的逼好多水| 国产中年淑女户外野战色| netflix在线观看网站| 午夜影院日韩av| 91久久精品国产一区二区成人| 久久久久精品国产欧美久久久| av福利片在线观看| 国产伦一二天堂av在线观看| 欧美在线黄色| 露出奶头的视频| 午夜精品在线福利| 国产又黄又爽又无遮挡在线| 九色国产91popny在线| 婷婷精品国产亚洲av| 亚洲片人在线观看| 在线观看美女被高潮喷水网站 | 乱码一卡2卡4卡精品| 国产精品久久久久久亚洲av鲁大| a在线观看视频网站| 国产伦一二天堂av在线观看| 欧美一区二区国产精品久久精品| 亚洲在线自拍视频| 草草在线视频免费看| 日本撒尿小便嘘嘘汇集6| 中文亚洲av片在线观看爽| 免费观看人在逋| 亚洲人成网站高清观看| 国内揄拍国产精品人妻在线| 免费在线观看成人毛片| 在线观看免费视频日本深夜| 色综合站精品国产| 日韩大尺度精品在线看网址| 国产私拍福利视频在线观看| 免费在线观看亚洲国产| 精品国产亚洲在线| 国模一区二区三区四区视频| 激情在线观看视频在线高清| 极品教师在线免费播放| 国产在线男女| 国产国拍精品亚洲av在线观看| 特大巨黑吊av在线直播| 亚洲真实伦在线观看| 欧美成狂野欧美在线观看| 国产精品一区二区三区四区免费观看 | 网址你懂的国产日韩在线| 国产成人福利小说| 精品久久久久久久久久免费视频| 日韩成人在线观看一区二区三区| 很黄的视频免费| 精品一区二区三区视频在线观看免费| 在线观看午夜福利视频| 国产毛片a区久久久久| a级毛片a级免费在线| 亚洲人成网站高清观看| 我的女老师完整版在线观看| 校园春色视频在线观看| 国产精品久久久久久亚洲av鲁大| 久久九九热精品免费| 免费无遮挡裸体视频| 俄罗斯特黄特色一大片| 午夜视频国产福利| 麻豆国产97在线/欧美| 丰满人妻熟妇乱又伦精品不卡| 2021天堂中文幕一二区在线观| 青草久久国产| 小说图片视频综合网站| 久久午夜福利片| 国产伦在线观看视频一区| 有码 亚洲区| 在线播放国产精品三级| 久久这里只有精品中国| 亚洲欧美精品综合久久99| 波多野结衣高清无吗| 亚洲成av人片免费观看| 国产老妇女一区| 成人午夜高清在线视频| 欧美乱色亚洲激情| a级毛片a级免费在线| 国产色婷婷99| 亚洲,欧美精品.| 成熟少妇高潮喷水视频| 日韩中字成人| 国产成人欧美在线观看| 国产男靠女视频免费网站| 亚洲av免费高清在线观看| 欧美最新免费一区二区三区 | a级一级毛片免费在线观看| 在线免费观看的www视频| 亚洲不卡免费看| 丁香欧美五月| 精品无人区乱码1区二区| 婷婷精品国产亚洲av| 国产一区二区三区在线臀色熟女| 老司机福利观看| 久久6这里有精品| 99久久无色码亚洲精品果冻| 久久精品国产亚洲av天美| 亚洲第一区二区三区不卡| 欧美bdsm另类| 欧美乱妇无乱码| 国产综合懂色| 成人毛片a级毛片在线播放| 制服丝袜大香蕉在线| 成人av在线播放网站| 91九色精品人成在线观看| 亚洲精品一区av在线观看| 美女xxoo啪啪120秒动态图 | 夜夜看夜夜爽夜夜摸| 国产欧美日韩精品亚洲av| 日韩亚洲欧美综合| 亚洲av二区三区四区| 亚洲av电影在线进入| 丁香六月欧美| 床上黄色一级片| 国产大屁股一区二区在线视频| 欧美bdsm另类| 亚洲国产精品久久男人天堂| 亚洲片人在线观看| 国产精品永久免费网站| 婷婷六月久久综合丁香| 欧洲精品卡2卡3卡4卡5卡区| 一区福利在线观看| 精品99又大又爽又粗少妇毛片 | 一区二区三区四区激情视频 | a在线观看视频网站| 国产精品1区2区在线观看.| 丝袜美腿在线中文| 黄色配什么色好看| 国内毛片毛片毛片毛片毛片| 欧美绝顶高潮抽搐喷水| 亚洲av熟女| 欧美日韩国产亚洲二区| 精品免费久久久久久久清纯| 国产精品乱码一区二三区的特点| 亚洲欧美日韩卡通动漫| 欧美激情久久久久久爽电影| 久久6这里有精品| 亚洲va日本ⅴa欧美va伊人久久| 国内毛片毛片毛片毛片毛片| 日韩国内少妇激情av| av在线天堂中文字幕| 韩国av一区二区三区四区| 国产一区二区亚洲精品在线观看| 丁香六月欧美| 噜噜噜噜噜久久久久久91| 亚洲熟妇熟女久久| 99久久精品国产亚洲精品| 亚洲av五月六月丁香网| 少妇的逼好多水| 亚洲精品日韩av片在线观看| 亚洲国产高清在线一区二区三| 国产主播在线观看一区二区| 在线观看一区二区三区| 久久香蕉精品热| 免费大片18禁| 欧美3d第一页| 夜夜看夜夜爽夜夜摸| 亚洲最大成人av| 国内久久婷婷六月综合欲色啪| 国产爱豆传媒在线观看| 一个人免费在线观看电影| 精品久久久久久久久久久久久| 亚洲一区二区三区色噜噜| 少妇裸体淫交视频免费看高清| 亚洲三级黄色毛片| 国产黄a三级三级三级人| 日日夜夜操网爽| 亚洲av成人av| 少妇的逼水好多| 亚洲最大成人av| 亚洲国产日韩欧美精品在线观看| 搡老妇女老女人老熟妇| 成年版毛片免费区| 欧美xxxx黑人xx丫x性爽| 看十八女毛片水多多多| 成人无遮挡网站| 在线天堂最新版资源| 日韩高清综合在线| 亚洲第一区二区三区不卡| 日韩亚洲欧美综合| 嫩草影视91久久| 在线看三级毛片| 亚洲成人精品中文字幕电影| 亚洲人成网站在线播| 男人舔女人下体高潮全视频| 日韩欧美国产在线观看| АⅤ资源中文在线天堂| 色综合婷婷激情| 噜噜噜噜噜久久久久久91| 搡老熟女国产l中国老女人| 在线观看美女被高潮喷水网站 | 最好的美女福利视频网| 成人鲁丝片一二三区免费| 一级a爱片免费观看的视频| 亚洲第一欧美日韩一区二区三区| 久久这里只有精品中国| 国产精品一区二区免费欧美| 成年女人永久免费观看视频| 18+在线观看网站| 偷拍熟女少妇极品色| 日本熟妇午夜| 日本 欧美在线| 久久国产精品影院| 欧美乱妇无乱码| 午夜福利高清视频| 女人被狂操c到高潮| 欧美bdsm另类| 国产色爽女视频免费观看| 一二三四社区在线视频社区8| 脱女人内裤的视频| 噜噜噜噜噜久久久久久91| 欧美乱色亚洲激情| 精品久久久久久久末码| 午夜福利在线观看免费完整高清在 | 好看av亚洲va欧美ⅴa在| 少妇裸体淫交视频免费看高清| 日韩精品中文字幕看吧| 夜夜爽天天搞| 成人特级黄色片久久久久久久| 麻豆国产av国片精品| 国产三级中文精品| 性欧美人与动物交配| 最新中文字幕久久久久| 99热这里只有是精品50| 国产三级黄色录像| 一本综合久久免费| 我要搜黄色片| 日日摸夜夜添夜夜添av毛片 | 国产熟女xx| 亚洲av美国av| 九色国产91popny在线| 少妇高潮的动态图| 一夜夜www| 久久久久免费精品人妻一区二区| 哪里可以看免费的av片| 婷婷丁香在线五月| 深夜a级毛片| 免费在线观看成人毛片| 国产一区二区三区视频了| 99国产精品一区二区蜜桃av| 国产熟女xx| 国产欧美日韩精品亚洲av| 99热这里只有是精品50| 久久精品国产清高在天天线| 男人狂女人下面高潮的视频| 亚洲真实伦在线观看| 成人午夜高清在线视频| 久久久久久久久中文| 亚洲18禁久久av| 亚洲最大成人手机在线| 999久久久精品免费观看国产| 亚洲精品影视一区二区三区av| 人妻制服诱惑在线中文字幕| 偷拍熟女少妇极品色| 国产精品一区二区免费欧美| 国产成年人精品一区二区| 在线播放国产精品三级| 97人妻精品一区二区三区麻豆| 在线看三级毛片| 久久精品人妻少妇| 精品熟女少妇八av免费久了| 成人国产一区最新在线观看| 99久久99久久久精品蜜桃| 久久国产乱子免费精品| 久久伊人香网站| 十八禁网站免费在线| 久久久久免费精品人妻一区二区| 欧美激情在线99| 动漫黄色视频在线观看| 热99re8久久精品国产| 亚洲成人精品中文字幕电影| 丰满人妻熟妇乱又伦精品不卡| 五月玫瑰六月丁香| 国产亚洲精品av在线| 岛国在线免费视频观看| 麻豆成人av在线观看| 久久久国产成人免费| 亚洲真实伦在线观看| 欧美高清性xxxxhd video| 久久精品影院6| 国产成+人综合+亚洲专区| 99久久无色码亚洲精品果冻| 12—13女人毛片做爰片一| 99热这里只有是精品在线观看 | 免费在线观看成人毛片| 久久精品国产亚洲av香蕉五月| 亚洲三级黄色毛片| 嫩草影院新地址| 麻豆成人av在线观看| 亚洲国产色片| 人人妻人人澡欧美一区二区| 精品人妻一区二区三区麻豆 | 国产精品综合久久久久久久免费| 国产精品亚洲av一区麻豆| 久久精品国产清高在天天线| 欧美高清成人免费视频www| 天天躁日日操中文字幕| 亚洲成人久久性| 夜夜夜夜夜久久久久| 久久亚洲精品不卡| 99热精品在线国产| 亚洲av熟女| 久久精品91蜜桃| 99热6这里只有精品| 久久久久九九精品影院| 亚洲经典国产精华液单 | 国产久久久一区二区三区| 丁香六月欧美| 国产高清激情床上av| 中文字幕免费在线视频6| 精华霜和精华液先用哪个| 性欧美人与动物交配| 免费在线观看影片大全网站| 亚洲精品久久国产高清桃花| av天堂中文字幕网| 一个人观看的视频www高清免费观看| 757午夜福利合集在线观看| 免费看美女性在线毛片视频| 韩国av一区二区三区四区| 搡老妇女老女人老熟妇| 不卡一级毛片| 久久精品国产99精品国产亚洲性色| 97超视频在线观看视频| netflix在线观看网站| 成人无遮挡网站| 婷婷精品国产亚洲av在线| 级片在线观看| 欧美一区二区亚洲| 精品一区二区三区视频在线观看免费| 一级av片app| 国产免费av片在线观看野外av| 国内精品久久久久精免费| 日本a在线网址| 国产极品精品免费视频能看的| 国产精品亚洲av一区麻豆| 欧美黑人欧美精品刺激| 在线十欧美十亚洲十日本专区| 国产欧美日韩一区二区精品| 国产不卡一卡二| 99久久精品一区二区三区| 久久久久久久精品吃奶| 日本免费一区二区三区高清不卡| 亚洲国产精品久久男人天堂| a级毛片a级免费在线| 国产老妇女一区| x7x7x7水蜜桃| 黄片小视频在线播放| 久久久久免费精品人妻一区二区| 青草久久国产| 中文字幕人成人乱码亚洲影| 脱女人内裤的视频| 99国产精品一区二区蜜桃av| 亚洲 国产 在线| 久久伊人香网站| 听说在线观看完整版免费高清| 一区二区三区激情视频| 国产精品久久久久久久久免 | 无人区码免费观看不卡| 亚洲综合色惰| 欧美乱色亚洲激情| 精品一区二区三区视频在线| 日本 av在线| 亚洲成av人片在线播放无| 午夜老司机福利剧场| 精品久久久久久,| 亚洲在线自拍视频| 色播亚洲综合网| 午夜福利在线在线| 99热这里只有是精品50| 69av精品久久久久久| 日本免费一区二区三区高清不卡| 老司机福利观看| 有码 亚洲区| 日韩精品中文字幕看吧| 中文字幕精品亚洲无线码一区| 免费电影在线观看免费观看| 午夜视频国产福利| 一本久久中文字幕| 五月伊人婷婷丁香| 免费一级毛片在线播放高清视频| 国模一区二区三区四区视频| 日韩成人在线观看一区二区三区| 国产欧美日韩精品一区二区| 丝袜美腿在线中文| av中文乱码字幕在线| 九色国产91popny在线| 亚洲av熟女| 国产乱人视频| 九色国产91popny在线| av视频在线观看入口| 91久久精品电影网| 级片在线观看| 91在线精品国自产拍蜜月| 午夜福利在线观看免费完整高清在 | 亚洲一区二区三区色噜噜| 毛片女人毛片| 动漫黄色视频在线观看| aaaaa片日本免费| 久久亚洲精品不卡| 国产在线精品亚洲第一网站| 久久精品综合一区二区三区| 少妇高潮的动态图| av在线天堂中文字幕| 99视频精品全部免费 在线| 一进一出抽搐动态|