• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Periodical polarization reversal modulation in multiferroic MnWO4 under high magnetic fields

    2023-12-15 11:51:24CongbinLiu劉從斌JinbingCheng程晉炳JunbaoHe何俊寶YongshengZhu朱永勝WanChang常婉XiaoyuLu路曉宇JunfengWang王俊峰MeiyanCui崔美艷JinshuHuang黃金書DaweiZhou周大偉RuiChen陳瑞HaoJiang江浩ChuangchuangMa馬創(chuàng)創(chuàng)ChaoDong董超andYongsongLuo羅永松
    Chinese Physics B 2023年12期

    Congbin Liu(劉從斌), Jinbing Cheng(程晉炳), Junbao He(何俊寶), Yongsheng Zhu(朱永勝),Wan Chang(常婉), Xiaoyu Lu(路曉宇), Junfeng Wang(王俊峰), Meiyan Cui(崔美艷),Jinshu Huang(黃金書), Dawei Zhou(周大偉), Rui Chen(陳瑞), Hao Jiang(江浩),Chuangchuang Ma(馬創(chuàng)創(chuàng)), Chao Dong(董超),?, and Yongsong Luo(羅永松),,?

    1Henan International Joint Laboratory of MXene Materials Microstructure,College of Physics and Electronic Engineering,Nanyang Normal University,Nanyang 473061,China

    2Wuhan National High Magnetic Field Center and School of Physics,Huazhong University of Science and Technology,Wuhan 430074,China

    3State Key Laboratory of Structural Chemistry,Fujian Institute of Research on the Structure of Matter,Chinese Academy of Sciences,Fuzhou 350002,China

    4Key Laboratory of Microelectronics and Energy of Henan Province,Henan Joint International Research Laboratory of New Energy Storage Technology,Xinyang Normal University,Xinyang 464000,China

    Keywords: polarization reversal,periodical modulation,high magnetic field

    1.Introduction

    Multiferroic materials in which ferroelectric(FE)and ferromagnetic orders are coupled have attracted extensive research interest because of their application potential in tunable magnetoelectric (ME) devices.[1-3]Of particular interest is a new class of type II multiferroic materials, in which noncollinear magnetic order induces FE polarization and often shows gigantic ME effects.[4]In these materials, the application of a magnetic field can control the FE polarization,and vice versa,i.e.,the ME coupling effect.The spin current model or inverse Dzyaloshinskii-Moriya interaction model,Pi j∝~ei j×(Si×Sj), is proposed to be the microscopic mechanism for induction of ferroelectricity by magnetic order.A number of multiferroic materials,such as Ni3V2O8,[5]LiCuVO4[6]and TbMnO3,[7]have been investigated extensively.In frustrated magnets,many ME phenomena have been observed in multiferroic materials due to the complicated spin structures, such as FE transition, polarization flop and polarization reversal.Indeed, the polarization reversal caused by a magnetic field or chemical doping is still a hot issue[8,9]in most cases of magnetically induced electric polarization.In this paper, we present magnetoelectricity in a frustrated spin system,antiferromagnet MnWO4,with a combination of electric and magnetic fields.We demonstrate that the FE of MnWO4can be individually reversed by electric and magnetic fields,as well as magnetic field orientation.These results suggest that there exists an exotic ME response in MnWO4,which offers a promising avenue for exploring the ME effect in multiferroics.

    MnWO4is a frustrated spiral magnet, which crystallizes in a monoclinic structure with space groupP2/c.All Mn2+(S= 5/2,L= 0) ions form a zigzag chain running along thecaxis (see Fig.1).With decreasing temperature,the spins of Mn2+develop into three antiferromagnetic ordering states, AF3 (TN2

    2.Experiments

    Single crystals of MnWO4were grown by the flux method and determined by x-ray single-crystal diffraction as described in previous work.[14]A typical single crystal is shown in the inset of Fig.1(c).The applied magnetic field up to 52 T with a pulse width of 11 ms was generated by a nondestructive pulsed magnet in the Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology.The bias electric field was fixed along thebaxis unless otherwise stated,while the magnetic fields were rotated within theacplane.The direction of the magnetic field is presented as parameterθ,whereθdenotes the angle between the magnetic field and thecaxis.For the measurement of electric polarization,the sample was cut into a thin plate.We measured the electric polarization with a DC bias electric field of 200 kV·m-1provided by a voltage source.Platinum electrodes were sputtered onto the samples and then the platinum wires were attached to the opposite faces of the thin plate.Electric polarization was obtained by integrating the pyroelectric current stimulated by the magnetic field.

    3.Results and discussion

    Figure 1(c) shows the temperature-dependent magnetic susceptibilityχa,χbandχcof MnWO4single crystal for three crystalline axes.ForH=0.1 T, three kinks representing antiferromagnetic ordering with transition temperaturesTN3=13.7 K,TN2=12.8 K andTN1=6.8 K are observed when the magnetic field is along thea,bandcaxis, respectively.In accordance with the early results, these antiferromagnetic phases were defined as AF3,AF2 and AF1,respectively.In particular,phase AF2 is demonstrated to have an incommensurate magnetic structure,yielding a spontaneous FE state.In addition, the susceptibilitiesχaandχcshow a drop andχbexhibits a rise belowTN1, suggesting that the spins of Mn2+are arranged in theacplane at AF1.[15]This motivates us to explore the evolution of polarization with the application of a magnetic field within theacplane.

    Figure 1(d)shows the evolution of thebaxis electric polarization tuned by the electric and magnetic fields forH ‖a(θ=90?),the value of polarization is calculated from ?Pb ≡P(H)-P(H=0).Before each measurement,the sample was cooled down from room temperature to 4.2 K (nonpolarized state) under a poling electric fieldE=±200 kV·m-1(labelled as±E) without a magnetic field.At 4.2 K, a robust change of ?Pb(~20 μC·m-2) is observed in the vicinity ofH=2 T with the bias field +E, suggesting a transition from a nonpolarized state to the FE AF2 phase.A large hysteresis is observed, which reveals a first-order phase transition.The polarization does not decay in a field of approximately 14 T,coinciding with the observations in early work.[16]Moreover,the magnetic field can render an alternative way to recover the initial polarized state ?Pbwith the removal of the bias field(E=0).As the primitive polar direction is converted to become negative, the opposite direction ?Pbreproduced by the magnetic field is observed.Those results imply that magnetic field can individually reproduce the FE information from the nonpolarized state,which is known as the ME memory effect.The field-driven polarization is similar to the case of Ni3V2O8,in which the FE phase can be reversed by the magnetic field instead of the electric field.[5]Therefore, MnWO4is a specific material whose polarization reversal by magnetic field deserves to be further studied.

    Fig.2.Polarization ?Pb measured at different temperatures in a magnetic field applied along the(a)a and(b)c axes,respectively.The bias electric field is equal to E=+200 kV·m-1.The red arrows in(b)indicate the transition of polarization.

    Figure 2 displays the field dependence of ?Pbin selected magnetic fields applied along theaandcaxes at various temperatures.ForHalong theaaxis,the increase in polarization is extended around 20 T and gradually reduced with increasing field to 52 T at low temperatures.For temperaturesT>TN1(~6 K),the anomalous jump of polarization disappears.This disappearance is ascribed to the suppression of the nonpolarized state AF1 by the temperature.As the temperature is increased, the boundary of the FE AF2 phase to the high-field paraelectric state V appears in the high-field region and shifts toward a low field,and the magnitude of polarization decays.AboveTN3(>12 K), all the polarizations responding to the magnetic field disappear,indicating that polarization is related to the magnetic order.The effect of magnetic field applied along thecaxis (θ=0?) is distinctly different from that ofH‖a.Except for the nonpolarized state of FE AF2,it is found that the FE AF2 phase is strongly suppressed by the magnetic field, as seen in Fig.2(b).Similar to observations forH ‖a,the phase transition from the FE AF2 phase to the paraelectric state V is shifted to the low field as temperature increases.

    Fig.3.Field dependence of polarization with different bias electric fields: (a),(b)H ‖a,(c)H ‖c.The inset in(b)shows the temperature raised to 15 K and maintained for several minutes then subsequently lowered to 4.2 K,leading to the polarization between rising and falling fields being irreversible.In addition,the±E indicate the magnitude and direction of the bias electric field, and the labels (1)-(3) represent the order of the applied electric field.

    Domain switching in MnWO4has a pronounced character because the polarization can be individually reversed by the magnetic and electric field.ForH ‖a,a peak of polarization is observed at around 20 T and rapidly approximates to zero at 52 T(black curve,+E(1)),as shown in Fig.3.Unexpectedly, the sign and magnitude of polarization ?Pbremain unchanged (red curve,-E(2)) when the electric field is reversed.This behavior was ascribed to the ME memory effect,which is exceptional compared with that in traditional ferroelectricity, such as in BaTiO3[17]and PbZrO3.[18]However,once the temperature is lifted to 15 K(>TN3)for several minutes and returned to 4.2 K after+E(2)measurement,two opposite electric fields-E(2)and-E(3)can completely reverse the polarization ?Pb,as shown in Fig.3(b).Amazingly,an irreversible intermediate state between rising and falling field curves emerges.This result suggests that the high temperature destroyed the history of spins responding to the magnetic field, giving rise to elimination of the ME memory effect.In this case,high temperature is exploited to remove the history process in the multiferroic.ForH ‖c, the effect of an external magnetic field on the FE polarization is shown in Fig.3(c).Firstly,the FE polarization develops a peak at 2.5 T and rapidly reduces to zero (black curve) with electric field+E(1).UnlikeH‖a,polarization along thecaxis rapidly decays when magnetic field exceeds 2 T,which reveals the strong anisotropy of polarization in MnWO4.In parallel withH ‖a,almost no change in polarization is observed if the electric field is reversed only once (red curve,-E(2)), and polarization reversal can be directly realized upon reversing the electric field for the second time(blue curve,-E(3)).In this case,realization of polarization reversal by the bias electric field requires two steps.Note that the ferroelectricity in MnWO4is ascribed to spin chirality,and the direction of polarization depends on the chiral vector.[16]These results show the reentrant FE AF2 phase driven by-E(2)is different from that observed in+E(1),which means that the chirality of spin is changed by the electric field.

    Fig.4.Electric field modulates the polarization reversal in different magnetic fields: (a) 13 T, (b) 48 T.The red curves represent the polarization process with rising field, while the black curves indicate the falling field.The θ =55?shown in the inset is the tilted angle from the magnetic easy axis to the c axis. ±E(1)to±E(5)denote the direction and order of the applied bias electric field.

    In order to further explore the polarization reversal, we apply a magnetic field along the magnetic easy axisu, stated asθ=55?.Figure 4 shows the polarization reversal controlled by combining the magnetic and electric fields forθ= 55?;the selected temperature is 4.2 K.Before each measurement,the sample is subjected to an electric field.At low magnetic fields (H<5 T), the FE AF2 phase robustly emerges at 2T and shows a maximum value of~60 μC·m-2.For magnetic fields above 13 T, the polarization of this FE phaseis quickly suppressed because of the alignment of spins driven by the magnetic field,[19]as shown in Fig.4(a).These experimental data are basically consistent with the corresponding results in previous works.[13,14]However,the electric field is reversed several times, and we found that the polarization?Pbremains unchanged for all the measurements.By contrast,when a magnetic field is swept up to 48 T,the paraelectric phase HF and FE phase IV emerge at 14 T and 38 T, respectively.Meanwhile, a second first-order phase transition from HF to IV is observed.Most remarkably, the FE phases IV and AF2 maintain opposite directions in each field circle.In this case, the application of two consecutive opposite bias electric fields,-E(2)and-E(3),related to the first measurement can trigger the spontaneous change in the direction of polarization.After that,the polarized state of MnWO4can be recovered by using a positive electric field two times,marked as +E(4) and +E(5).Therefore, reversal of polarized states with just an electric field is demonstrated.

    Fig.5.The electric polarization and the corresponding pyroelectric current reversed by the different bias electric fields: (a) electric polarization,(b)pyroelectric current.Here,the pyroelectric current is as a function of pulse time,and the rising and falling field currents are separated by the vertical broken line.In addition,AF1 is a nonpolarized state and AF2 and IV are ferroelectric states, while HF (high-field paraelectric state)and V are paraelectric phases.

    In order to further explore the occurrence of polarization reversal,a relatively high magnetic field is applied to the sample.Figure 5 shows the electric polarization and corresponding pyroelectric current induced by the magnetic field up to 52 T.Prior to the electrical measurements,a bias electric field is applied to the sample.When the magnetic field exceeds 52 T, another paraelectric state, V, is observed at 48 T, as shown in Fig.5(a).Interestingly, the polarizations in rising(red curve)and falling(black curve)fields are reversed.Thus,the trace of polarization forms a transformed ‘∞’ loop in a magnetic field cycle.Under a negative electric field-E(2),it is seen that the polarization in a falling field is completely reversed,whereas that in a rising field is not affected by the field.Repeating this process by using-E(3),the signs of polarization and the corresponding pyroelectric current are changed with respect to a falling field.This can be evidenced by the change in the peak for pyroelectric current, which is a function of time as shown in Fig.5(b).In Fig.5(b),it is seen that the currents in rising and falling fields are separated and individually reversed by the electric field.Hence,the electric field completely reverses the polarization curve in comparison with the initial state.Similar behavior is observed when the electric field is switched to a positive direction: the polarization recovers to the initial state in two steps.The symmetry of current changing with time reflects the polarization modulated by the reversed electric field,as shown in Fig.5(b).These results show that polarization reversal in combination with electric and magnetic fields is a unique characteristic of MnWO4in high fields.This behavior appears to be observed in similar systems such as Ni3V2O8,where the FE state can be manipulated by reversing the electric field.In Ni3V2O8,the high-field FE phase is directly reversed by the negative electric field,and the reversal of the low-field phase is realized in the second time field.However,the two FE phases in MnWO4can be simultaneously reversed without an intermediate state.The evolution of polarization measured at different temperatures inH‖uhas been described in the literature in detail.[14]

    Our data also show that polarization responds to magnetic field in a special direction.Figure 6 shows polarization controlled by the electric field with a tilted angle ofθ=70?at 4.2 K.At low fields (H<48 T), it is obvious that a new high-field FE phase,+IV,is observed in+E(1)as well as the FE AF2 and PE HF phases.In this case, the FE phases AF2 and IV become parallel to each other rather than antiparallel.Note that the change of sign of FE phase IV originates from the magnetic field rather than the electric field, implying that magnetic anisotropy is an alternative way to manipulate the polarized state in MnWO4.Associated with the ME memory, no change of polarization is observed for the first opposite electric field-E(2).For the second negative electric field-E(3) the polarization curves in rising and falling fields are completely reversed.The above process can be returned to the initial state by applying positive electric fields twice (+E(4), +E(5)).Thus, the polarized state can return to the original configuration with periodically reversed electric fields +E(1),-E(2),-E(3), +E(4), +E(5).The highfield paraelectric state V emerges at a high field (~52 T), as shown in Fig.6(b).Compared with that inH ‖u,the process of polarization becomes reversible with a large hysteresis in a relatively high field.The discrepancy betweenθ=70?andθ=55?indicates that the polarization information in the two directions is different.On the other hand,the direction of polarization can be reversed and recovered by the negative and positive fields, respectively.Therefore, the rising and falling field curves can be individually tuned by the electric field in both directions.These experimental phenomena were first observed in MnWO4with a high magnetic field.No similar cases have been found in other compounds,such as magneticinduced FE TbMnO3[20]and CuCr2O4.[21]

    Fig.6.The magnetic field dependence of polarization with a circularly changing bias electric field: (a)38 T,(b)52 T.

    According to the above results, it is found that the fieldinduced FE polarization in MnWO4is strongly sensitive to the orientation of the magnetic field.Two FE phases AF2 and IV merge into a single phase in a certain magnetic field direction; detailed evolution of the polarization is described in the literature.[14]Here, we suppose that the value of polarization is approximately equal to the sum of two parts,P1(H<14 T)andP2(H>14 T),whereP1is considered a result of the FE AF2 phase[22]andP2relates to the FE IV phase, as shown in Figs.7(a) and 7(b).Hence, the strength of polarization?Pbcan be phenomenologically expressed by ?Pb ≡P1+P2below the transition temperature.The total polarization forH ‖acan be written as the sum ofP1andP2.In contrast toH ‖a, the polarization forH ‖cis shown as ?Pb ≡P1-P2due to the direction of change ofP2.In this case the emergence of the paraelectric HF in theacplane could be explained as the result of competition betweenP1andP2.In addition,the sign of FE phase IV is susceptible when the angleθexceeds 55?,as depicted in the early literature.[14]Regarding the polarization reversal, it can be realized by magnetic field,[23]electric field[24]or chemical doping, such as Co2+doping in MnWO4.[22]These results imply that the unusual ME effect in MnWO4is attributed to the spin arrangements driven by magnetic field, as has been discussed in previous work.[14]Therefore, if we suppose that the critical fields of FE transition triggered by magnetic field are marked byHc1,Hc2,Hc3andHc4,as shown in Figs.7(a)and 7(b),in the field range ofHc1-Hc2it is seen that the FE phase AF2 remains unchanged when the angleθis varied from 55?to 70?.However,the contrasting result for FE IV phase reversal by magnetic field is observed in fieldsHc3-Hc4.This result implies that the spin chirality in FE phase IV is distinguished from that in FE phase AF2.Indeed, the spiral spin structure of phase IV analogous to AF2 has been demonstrated by time-resolved neutron Laue diffraction.[19]Combined with the results for theaandcaxes,we construct a schematic diagram in which the spin chirality is determined by the magnetic field and angleθ,as displayed in Fig.7(c).In this figure,the FE phases AF2 and IV exhibit different polarization directions, and the chirality of IV is altered in certain areas.Thus,we observe that the polarization of MnWO4is strongly dependent on the magnetic field,the electric field and the magnetic field orientation.Utilizing the polarized states periodically tuned by electric field and FE phase IV modulated by anisotropy in MnWO4may help us to design a device controlled by those factors.In addition, the mechanism of the polarized states periodically tuned by electric field and FE phase IV spontaneously reversed by magnetic field is exotic.These experimental phenomena first observed in multiferroic MnWO4have not been found elsewhere.This novel behavior supplies a promising avenue in the search for fieldmodulated polarization reversal in other multiferroic crystals.

    Fig.7.Schematic diagram of spin chirality of the polarization direction determined by the strength and direction of magnetic field.(a),(b)The measured polarization in a rising field for the angles θ =55?and 70?at 4.2 K, respectively. Hc1-Hc4 show the critical fields of polarization transition.(c)The change of spin chirality by rotating a magnetic field within the ac plane.The green curved arrows indicate the spin chirality.Due to the sign of polarization,two different ferroelectric phases,-IV and+IV,are defined.

    4.Conclusions

    In summary, the ME effect in MnWO4has been studied with the magnetic field rotated in theacplane.The fieldinduced electric polarization shows strong anisotropy in dependence on field angle.Polarization reversal can be directly realized by the electric field in two steps without intermediate states when the magnetic field is applied along theaandcaxes, and high temperature can remove the ME memory.For anglesθ=55?or 70?,the polarization is reversed or recovered by a two-step inversed electric field,accompanied with reversal of rising or falling curves.Moreover,the sign of phase IV forθ=70?is distinct from that observed atθ=55?,indicating that they are two different states.The discrepancy can be exploited to save information by changing the direction of the magnetic field.These experimental results show that polarization in MnWO4can be modulated by temperature,anisotropy,magnetic and electric fields.Finally,the reversed behaviors of MnWO4provide us with a concept for designing a ME device to save or extract information,in combination with variations in anisotropy,electric field and magnetic field.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos.12074135, 12104388, and 52272219), Nanyang Normal University, the Natural Science Foundation of Henan Province (Grant Nos.222300420255 and 232300421220), and the Key Scientific and Technological Projiect of Technology Depeartment of Henan Province of China(Grant Nos.222102230105 and 212102210448).Congbin Liu acknowledges Wanxin Liu at the WHMFC for help with the data measured in pulsed fields.

    一区二区三区精品91| 99热网站在线观看| 久久久精品94久久精品| 岛国在线观看网站| 日韩电影二区| 性色av乱码一区二区三区2| 少妇人妻久久综合中文| 日韩大片免费观看网站| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲专区国产一区二区| 后天国语完整版免费观看| 91精品三级在线观看| 老熟妇仑乱视频hdxx| 黑人欧美特级aaaaaa片| 国产国语露脸激情在线看| 亚洲七黄色美女视频| 十八禁网站网址无遮挡| 国产精品一区二区精品视频观看| 中亚洲国语对白在线视频| 美女中出高潮动态图| 建设人人有责人人尽责人人享有的| 国产麻豆69| 人成视频在线观看免费观看| 久久天堂一区二区三区四区| 每晚都被弄得嗷嗷叫到高潮| 天天躁日日躁夜夜躁夜夜| 亚洲成国产人片在线观看| 久久精品成人免费网站| 一二三四社区在线视频社区8| 999久久久国产精品视频| 亚洲欧洲日产国产| 色94色欧美一区二区| 久久狼人影院| 午夜免费成人在线视频| 日本vs欧美在线观看视频| 欧美日韩亚洲综合一区二区三区_| 中文字幕制服av| 91九色精品人成在线观看| 法律面前人人平等表现在哪些方面 | 丝袜在线中文字幕| 国产在视频线精品| 亚洲激情五月婷婷啪啪| 高清视频免费观看一区二区| 日韩制服丝袜自拍偷拍| 9热在线视频观看99| 国产av又大| 久久久国产精品麻豆| 青春草视频在线免费观看| 少妇 在线观看| 黄色视频在线播放观看不卡| 这个男人来自地球电影免费观看| 精品一区二区三区四区五区乱码| 叶爱在线成人免费视频播放| 日韩精品免费视频一区二区三区| 老熟妇乱子伦视频在线观看 | 大片电影免费在线观看免费| 中文字幕人妻熟女乱码| 亚洲av欧美aⅴ国产| 国产精品自产拍在线观看55亚洲 | 国产一区有黄有色的免费视频| 免费一级毛片在线播放高清视频 | 午夜福利影视在线免费观看| 正在播放国产对白刺激| 热99re8久久精品国产| 一级,二级,三级黄色视频| videosex国产| 国产91精品成人一区二区三区 | 国产成人精品久久二区二区免费| 一边摸一边抽搐一进一出视频| 久久影院123| 日本撒尿小便嘘嘘汇集6| 亚洲激情五月婷婷啪啪| 国产精品av久久久久免费| 国产伦理片在线播放av一区| 国产日韩欧美亚洲二区| 热re99久久精品国产66热6| 免费在线观看视频国产中文字幕亚洲 | 婷婷丁香在线五月| 日韩大码丰满熟妇| 桃红色精品国产亚洲av| 久久久久国内视频| 久久久水蜜桃国产精品网| 99国产极品粉嫩在线观看| 91九色精品人成在线观看| 亚洲成人手机| 女人爽到高潮嗷嗷叫在线视频| 久久 成人 亚洲| 久久久久久久久免费视频了| 老司机福利观看| 99香蕉大伊视频| 免费观看人在逋| 黄色视频不卡| 欧美在线黄色| 极品少妇高潮喷水抽搐| 老熟女久久久| 搡老熟女国产l中国老女人| 黑人欧美特级aaaaaa片| 亚洲欧洲日产国产| 成年女人毛片免费观看观看9 | 丝袜人妻中文字幕| 日本a在线网址| 最近中文字幕2019免费版| 在线精品无人区一区二区三| 亚洲精品一二三| netflix在线观看网站| 人妻久久中文字幕网| 麻豆国产av国片精品| 亚洲性夜色夜夜综合| 99re6热这里在线精品视频| 午夜福利,免费看| 国产在线观看jvid| 亚洲av成人不卡在线观看播放网 | 欧美午夜高清在线| 美女午夜性视频免费| 好男人电影高清在线观看| 婷婷成人精品国产| 一级黄色大片毛片| 在线 av 中文字幕| 欧美日韩国产mv在线观看视频| 国产成人av激情在线播放| 在线天堂中文资源库| av视频免费观看在线观看| 搡老岳熟女国产| 午夜免费成人在线视频| 丝瓜视频免费看黄片| 不卡一级毛片| 999久久久精品免费观看国产| 久久影院123| 大片电影免费在线观看免费| 精品久久久久久电影网| 日韩中文字幕视频在线看片| 亚洲精华国产精华精| 精品久久久久久久毛片微露脸 | 成人亚洲精品一区在线观看| 捣出白浆h1v1| 欧美日本中文国产一区发布| 在线精品无人区一区二区三| 捣出白浆h1v1| 亚洲av日韩精品久久久久久密| a级片在线免费高清观看视频| 欧美变态另类bdsm刘玥| 亚洲第一av免费看| 三上悠亚av全集在线观看| 人妻 亚洲 视频| 波多野结衣av一区二区av| 免费在线观看影片大全网站| 亚洲中文字幕日韩| 亚洲精品成人av观看孕妇| 国产精品1区2区在线观看. | 一边摸一边做爽爽视频免费| 97精品久久久久久久久久精品| 欧美国产精品va在线观看不卡| 午夜福利影视在线免费观看| 一本综合久久免费| 女人爽到高潮嗷嗷叫在线视频| 国产成人免费无遮挡视频| 免费在线观看日本一区| 黄色a级毛片大全视频| 精品少妇久久久久久888优播| 欧美精品av麻豆av| av国产精品久久久久影院| 亚洲欧美日韩高清在线视频 | 99久久国产精品久久久| 精品久久蜜臀av无| 少妇人妻久久综合中文| 十分钟在线观看高清视频www| 日韩制服骚丝袜av| 人妻久久中文字幕网| 国产成人av激情在线播放| 亚洲欧美清纯卡通| 欧美乱码精品一区二区三区| 亚洲成人手机| 一边摸一边抽搐一进一出视频| 久久精品亚洲熟妇少妇任你| 9热在线视频观看99| 亚洲国产成人一精品久久久| 伊人久久大香线蕉亚洲五| 午夜影院在线不卡| 国产av一区二区精品久久| 国产精品九九99| 色94色欧美一区二区| 日韩视频一区二区在线观看| 少妇裸体淫交视频免费看高清 | 麻豆国产av国片精品| 国产国语露脸激情在线看| 久久久精品国产亚洲av高清涩受| 欧美人与性动交α欧美精品济南到| 欧美成狂野欧美在线观看| 操出白浆在线播放| 色婷婷av一区二区三区视频| 日韩大片免费观看网站| 人妻久久中文字幕网| 久久久精品94久久精品| 青青草视频在线视频观看| 黄色毛片三级朝国网站| 精品卡一卡二卡四卡免费| 国产精品熟女久久久久浪| 手机成人av网站| 久久久久久免费高清国产稀缺| 日韩中文字幕欧美一区二区| 欧美日韩黄片免| 性色av一级| 妹子高潮喷水视频| 美女视频免费永久观看网站| 亚洲伊人色综图| 国产欧美日韩一区二区三 | 亚洲成人免费av在线播放| 精品视频人人做人人爽| 国产亚洲av片在线观看秒播厂| 精品福利观看| 999精品在线视频| 亚洲欧美成人综合另类久久久| 日本黄色日本黄色录像| 国产一区二区三区在线臀色熟女 | 深夜精品福利| 在线天堂中文资源库| 亚洲性夜色夜夜综合| 男女之事视频高清在线观看| 国产一区二区激情短视频 | 国产熟女午夜一区二区三区| 日本vs欧美在线观看视频| 2018国产大陆天天弄谢| 法律面前人人平等表现在哪些方面 | 淫妇啪啪啪对白视频 | 亚洲五月色婷婷综合| 啦啦啦啦在线视频资源| 精品亚洲成a人片在线观看| 少妇被粗大的猛进出69影院| 精品少妇黑人巨大在线播放| 免费观看av网站的网址| 最近最新中文字幕大全免费视频| 国产成人精品无人区| 免费在线观看黄色视频的| 大片电影免费在线观看免费| 亚洲色图综合在线观看| 久久精品亚洲熟妇少妇任你| 国产精品免费视频内射| 黄色 视频免费看| 涩涩av久久男人的天堂| h视频一区二区三区| 精品少妇黑人巨大在线播放| 亚洲九九香蕉| 18在线观看网站| 菩萨蛮人人尽说江南好唐韦庄| 亚洲免费av在线视频| 黑人欧美特级aaaaaa片| 一区二区三区四区激情视频| 久久国产精品影院| 国产成人系列免费观看| 亚洲精品粉嫩美女一区| 欧美精品一区二区大全| 如日韩欧美国产精品一区二区三区| 欧美亚洲 丝袜 人妻 在线| 久久久精品国产亚洲av高清涩受| 日韩中文字幕视频在线看片| 久久国产亚洲av麻豆专区| 午夜两性在线视频| 新久久久久国产一级毛片| 国产淫语在线视频| 亚洲性夜色夜夜综合| 一区二区三区精品91| 可以免费在线观看a视频的电影网站| av一本久久久久| 久久 成人 亚洲| 久热爱精品视频在线9| 免费少妇av软件| 亚洲,欧美精品.| 中国美女看黄片| 亚洲天堂av无毛| 日韩中文字幕视频在线看片| 亚洲欧美日韩高清在线视频 | 操出白浆在线播放| 熟女少妇亚洲综合色aaa.| 精品国内亚洲2022精品成人 | 亚洲一卡2卡3卡4卡5卡精品中文| 曰老女人黄片| 久久久久久久大尺度免费视频| 悠悠久久av| 久久精品熟女亚洲av麻豆精品| 国产亚洲欧美在线一区二区| 免费观看a级毛片全部| 多毛熟女@视频| 9热在线视频观看99| www.自偷自拍.com| 午夜福利,免费看| 久久精品国产亚洲av高清一级| 交换朋友夫妻互换小说| 日韩制服骚丝袜av| 搡老乐熟女国产| 两性午夜刺激爽爽歪歪视频在线观看 | 我要看黄色一级片免费的| 飞空精品影院首页| 少妇被粗大的猛进出69影院| 香蕉丝袜av| 男人操女人黄网站| 多毛熟女@视频| 亚洲欧美清纯卡通| 久久久久久人人人人人| 亚洲精品国产一区二区精华液| 亚洲欧美日韩高清在线视频 | 中文字幕高清在线视频| 亚洲三区欧美一区| 青春草视频在线免费观看| 一个人免费在线观看的高清视频 | 成人国产av品久久久| 亚洲人成电影观看| 国产激情久久老熟女| 五月天丁香电影| 男人舔女人的私密视频| 国产精品二区激情视频| 欧美精品人与动牲交sv欧美| 一本—道久久a久久精品蜜桃钙片| 久久影院123| 亚洲国产精品成人久久小说| av天堂在线播放| 亚洲中文av在线| 国产欧美日韩综合在线一区二区| 亚洲国产中文字幕在线视频| 欧美性长视频在线观看| 黄色 视频免费看| 考比视频在线观看| 满18在线观看网站| 18禁黄网站禁片午夜丰满| 我的亚洲天堂| 妹子高潮喷水视频| 国产精品二区激情视频| 又大又爽又粗| 国产成人免费观看mmmm| 青青草视频在线视频观看| 日韩一区二区三区影片| 久久天堂一区二区三区四区| 十八禁人妻一区二区| 久久久久精品国产欧美久久久 | 50天的宝宝边吃奶边哭怎么回事| 啦啦啦在线免费观看视频4| 亚洲熟女毛片儿| 深夜精品福利| 国产极品粉嫩免费观看在线| 王馨瑶露胸无遮挡在线观看| 精品亚洲成a人片在线观看| 日韩欧美免费精品| 最新在线观看一区二区三区| 超碰成人久久| 少妇精品久久久久久久| 中文字幕人妻丝袜制服| 一本—道久久a久久精品蜜桃钙片| 亚洲av成人一区二区三| 啦啦啦免费观看视频1| 肉色欧美久久久久久久蜜桃| 精品久久蜜臀av无| 97人妻天天添夜夜摸| 亚洲,欧美精品.| 别揉我奶头~嗯~啊~动态视频 | 亚洲国产毛片av蜜桃av| 国产一区二区三区在线臀色熟女 | 久久精品国产亚洲av高清一级| 日本一区二区免费在线视频| 脱女人内裤的视频| 国产一级毛片在线| 黄片小视频在线播放| 免费高清在线观看视频在线观看| 亚洲综合色网址| 在线十欧美十亚洲十日本专区| 日韩欧美国产一区二区入口| 女人久久www免费人成看片| 性少妇av在线| 精品高清国产在线一区| 中文字幕制服av| 丝袜美腿诱惑在线| 高清av免费在线| 亚洲中文字幕日韩| 国产精品九九99| e午夜精品久久久久久久| 91九色精品人成在线观看| 国产亚洲av片在线观看秒播厂| 90打野战视频偷拍视频| 亚洲熟女精品中文字幕| 午夜免费鲁丝| 国产高清视频在线播放一区 | 91麻豆av在线| 男人爽女人下面视频在线观看| 国产野战对白在线观看| 国产亚洲精品久久久久5区| 亚洲国产中文字幕在线视频| 国产精品1区2区在线观看. | 肉色欧美久久久久久久蜜桃| 2018国产大陆天天弄谢| 国产精品99久久99久久久不卡| 国产亚洲精品第一综合不卡| 肉色欧美久久久久久久蜜桃| 欧美另类亚洲清纯唯美| 亚洲精品第二区| 高清视频免费观看一区二区| 久久精品久久久久久噜噜老黄| 啦啦啦在线免费观看视频4| 久久精品国产a三级三级三级| 在线天堂中文资源库| 日韩一卡2卡3卡4卡2021年| 丝袜脚勾引网站| 国产伦理片在线播放av一区| 午夜老司机福利片| 亚洲精品国产av成人精品| 国产又爽黄色视频| 亚洲一码二码三码区别大吗| svipshipincom国产片| 亚洲中文字幕日韩| 在线天堂中文资源库| 老司机午夜十八禁免费视频| 咕卡用的链子| 国产真人三级小视频在线观看| 亚洲欧美精品自产自拍| 午夜久久久在线观看| 国产精品国产三级国产专区5o| 国产又色又爽无遮挡免| 国产成人影院久久av| 淫妇啪啪啪对白视频 | 丰满少妇做爰视频| 日本五十路高清| 51午夜福利影视在线观看| 久久人人爽av亚洲精品天堂| 成人av一区二区三区在线看 | 国产片内射在线| 欧美 日韩 精品 国产| 黄频高清免费视频| 亚洲av电影在线观看一区二区三区| 亚洲精品中文字幕在线视频| 日韩三级视频一区二区三区| 精品国产乱码久久久久久小说| 亚洲 欧美一区二区三区| 天天影视国产精品| 中文欧美无线码| 人妻人人澡人人爽人人| 日韩欧美一区二区三区在线观看 | 欧美日韩亚洲国产一区二区在线观看 | 男女国产视频网站| 精品国产超薄肉色丝袜足j| 黑丝袜美女国产一区| 亚洲欧洲日产国产| 性色av一级| 成在线人永久免费视频| 男女国产视频网站| www.自偷自拍.com| 国产精品久久久久久人妻精品电影 | 亚洲精品美女久久av网站| 9热在线视频观看99| 每晚都被弄得嗷嗷叫到高潮| 国产av精品麻豆| 欧美国产精品一级二级三级| 悠悠久久av| 色精品久久人妻99蜜桃| 狂野欧美激情性bbbbbb| 老司机午夜十八禁免费视频| 在线观看舔阴道视频| av欧美777| 国产欧美日韩一区二区精品| 人妻人人澡人人爽人人| 一区二区日韩欧美中文字幕| 亚洲熟女精品中文字幕| 国产成+人综合+亚洲专区| 国产91精品成人一区二区三区 | 色94色欧美一区二区| 自拍欧美九色日韩亚洲蝌蚪91| 丰满饥渴人妻一区二区三| 天堂中文最新版在线下载| 精品国产乱子伦一区二区三区 | 青草久久国产| 国产免费一区二区三区四区乱码| 国产日韩欧美在线精品| 久久精品亚洲av国产电影网| 99国产精品一区二区三区| 亚洲视频免费观看视频| 大码成人一级视频| 亚洲 国产 在线| 最新的欧美精品一区二区| av不卡在线播放| 亚洲中文av在线| 国产精品 欧美亚洲| www.自偷自拍.com| 久久久久国内视频| 国产精品久久久久成人av| 国产在线视频一区二区| 老司机福利观看| 在线亚洲精品国产二区图片欧美| 精品国产乱码久久久久久男人| 亚洲av电影在线观看一区二区三区| 黑人巨大精品欧美一区二区蜜桃| 亚洲av日韩在线播放| av一本久久久久| 在线观看人妻少妇| 99精品久久久久人妻精品| 又紧又爽又黄一区二区| 精品免费久久久久久久清纯 | tube8黄色片| 欧美日韩成人在线一区二区| 女人爽到高潮嗷嗷叫在线视频| 成年动漫av网址| 欧美日韩一级在线毛片| 欧美日韩精品网址| 性高湖久久久久久久久免费观看| 婷婷丁香在线五月| 午夜精品国产一区二区电影| 丝袜人妻中文字幕| 日日摸夜夜添夜夜添小说| 国产免费av片在线观看野外av| 在线观看免费午夜福利视频| 日韩 亚洲 欧美在线| 国产精品自产拍在线观看55亚洲 | 精品人妻1区二区| 99国产精品一区二区蜜桃av | 在线永久观看黄色视频| 久久这里只有精品19| 老司机靠b影院| a在线观看视频网站| 不卡av一区二区三区| 亚洲精品国产精品久久久不卡| 精品久久蜜臀av无| 国产在线一区二区三区精| 欧美人与性动交α欧美精品济南到| 丝袜脚勾引网站| 国内毛片毛片毛片毛片毛片| 中文字幕高清在线视频| 欧美黄色片欧美黄色片| 成年女人毛片免费观看观看9 | 国产真人三级小视频在线观看| 欧美亚洲 丝袜 人妻 在线| 中文字幕精品免费在线观看视频| 美女高潮喷水抽搐中文字幕| 2018国产大陆天天弄谢| av线在线观看网站| 欧美日韩视频精品一区| 国产精品1区2区在线观看. | a在线观看视频网站| 老司机亚洲免费影院| 亚洲av日韩在线播放| 在线 av 中文字幕| 国产成人精品无人区| 夜夜骑夜夜射夜夜干| 国产欧美亚洲国产| 高清在线国产一区| 欧美在线黄色| 免费不卡黄色视频| 亚洲国产成人一精品久久久| a在线观看视频网站| 9热在线视频观看99| 国产伦人伦偷精品视频| 99久久综合免费| 啦啦啦 在线观看视频| 欧美久久黑人一区二区| 久久精品aⅴ一区二区三区四区| 亚洲国产av影院在线观看| 999久久久精品免费观看国产| 中文字幕另类日韩欧美亚洲嫩草| 精品国产乱子伦一区二区三区 | 视频区图区小说| 亚洲熟女毛片儿| av超薄肉色丝袜交足视频| 五月天丁香电影| 中文字幕人妻丝袜制服| 午夜91福利影院| 视频区欧美日本亚洲| 啦啦啦在线免费观看视频4| 男女床上黄色一级片免费看| 国产高清国产精品国产三级| 国产主播在线观看一区二区| 自拍欧美九色日韩亚洲蝌蚪91| 韩国精品一区二区三区| 午夜老司机福利片| 久久人人97超碰香蕉20202| 69精品国产乱码久久久| 国产一级毛片在线| 久久久国产成人免费| 欧美 日韩 精品 国产| 亚洲熟女精品中文字幕| 亚洲精品在线美女| 欧美精品一区二区免费开放| 亚洲精品中文字幕在线视频| 汤姆久久久久久久影院中文字幕| 精品国产国语对白av| 欧美日韩中文字幕国产精品一区二区三区 | 日本vs欧美在线观看视频| 亚洲精品一区蜜桃| 日本撒尿小便嘘嘘汇集6| av在线app专区| 日本撒尿小便嘘嘘汇集6| 精品亚洲成国产av| 国产成人欧美在线观看 | tocl精华| 亚洲精品国产区一区二| 免费观看a级毛片全部| 久久久久久人人人人人| 精品国产乱码久久久久久小说| 性色av一级| 国产成人影院久久av| 欧美成人午夜精品| a在线观看视频网站| 天堂俺去俺来也www色官网| 嫁个100分男人电影在线观看| 岛国在线观看网站| 欧美在线一区亚洲| 黄色视频在线播放观看不卡| 人成视频在线观看免费观看| 老熟妇乱子伦视频在线观看 | 国产极品粉嫩免费观看在线| 国产欧美日韩一区二区三区在线| 亚洲美女黄色视频免费看| 丝袜在线中文字幕| 亚洲人成电影免费在线| 亚洲 国产 在线| 日本撒尿小便嘘嘘汇集6| 亚洲成人免费av在线播放| 少妇的丰满在线观看| 国产成人系列免费观看| 欧美日韩亚洲国产一区二区在线观看 | 我的亚洲天堂| 黄色视频不卡|