• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multi-segmented nanowires for vortex magnetic domain wall racetrack memory

    2023-12-15 11:48:20AlBahriAlHinaaiandAlHarthy
    Chinese Physics B 2023年12期

    M Al Bahri, M Al Hinaai, and T Al Harthy

    Department of Basic Sciences,A’Sharqiyah University,Post Box 42,PC 400,Ibra,Oman

    Keywords: micromagnetic simulation, vortex domain wall racetrack memory, multi-segmented magnetic nanowire,spin transfer torque

    1.Introduction

    Future storage memory novel properties, such as low power consumption, high speed for reading and writing of the stored information, storage of multi-bit per cell and spin-transfer torque driving have been the subject of recent developments.[1-7]Racetrack memory is one application of future storage memory.[8,9]Thus, several studies have focused on studying the current induced domain wall(DW)motion to improve critical issues like the DW’s heat fluctuation.[10,11]Other studies have examined the DW speed and how to improve the DW speed reduction related to various parameters,such as the Walker field.[12-15]However, other researchers have concentrated on using different ways to trap the DW at certain positions within devices.[16-23]Triangular notches are the most common DW trapping methods, although this has some limitations: for example,their shape facilitates the VW structural transformation.However, the notching process is complex and costly,especially for devices with ten-nanometer widths and nonuniform pinning.[24-28]The manipulation of driven DW using spin currents is the key for future spintronics storage devices.Herein, the challenge is maintaining the DW’s structure during the dynamics and pinning process for the construction of racetrack memory, especially with magnetic vortex racetrack memory.[29-32]In this work,we propose a VW storage memory using offset magnetic nanowires.The proposed scheme consists of two nanowire segments with an offset area in the center, as shown in Fig.1(a).Using this offset device with nanoscale dimensions will help to lower the power consumption.Furthermore, the design of the offset area as the overlapping between two nanowire edges will help to pin the VW precisely by adjusting the length of the offset area (l) and its depth (d).Moreover, the offset area is free of the sharp edges in its center.This helps to protect the VW structure from transformations during its pinning and depinning process,which extends the memory life.In addition,with the offset nanowire,the VW speed could be controlled by altering the geometry of the offset area, such aslandd.Unlike the spin valve,the offset device can play a role in storing more than one bit per cell by increasing the number of junctions in one cell,as shown in Fig.1(b).In this work,with this proposed scheme,the structural stability of the VW during the dynamics and pinning process is examined due to magnetic properties such as saturation magnetization (Ms).A study of the VW speed is subsequently carried out based on the current density and the geometry of the offset area.

    Finally, a multi-segmented magnetic nanowire is designed to increase the storage density with four junctions to obtain six states per cell(three bits),as shown in Fig.1(b).

    Fig.1.(a) The offset magnetic nanowire.(b) The multi-segmented magnetic nanowire for high storage density.

    2.Modeling

    The dynamics of VWs with tail to tail ( TT) configurations in offset nanowire are carried out using a framework of OOMMF codes at 0 K[33]based on the Landau-Liftshitz-Gilbert (LLG) equation with a spin-transfer torque(STT)term,according to the Zhang and Li model[34,35]

    We consider the fact that the magnetic properties are used for in-plane magnetic materials,such as permalloy,CO90Fe10and Ni81Fe19.[36]The damping coefficientαis fixed to 0.01,the nonadiabatic constantβis chosen as 0.04 for all simulations and the exchange stiffness isA=1.3×10-11J/m[37]andu=(gPμB/(2eMs))J.[38]

    Offset magnetic nanowires with the geometries ofL(2000 nm)×w(200 nm)×t(30 nm) are considered in this study.These dimensions are chosen due to the availability of the VW depending on nanowire sizes.[39,40]A cubic cell size(mesh size) of 5×5×5 nm3is selected, and is sufficiently smaller than the exchange length(≈5.3 nm).

    At the nanowire center, an offset junction is created by shifting one part vertically in they-direction with vertical length (d) and horizontal length (l) in thex-direction.Figure 2(a)shows the initial state with the dimensions of the offset magnetic nanowire.

    Fig.2.(a) An OOMMF image of magnetic offset magnetic nanowire dimensions with an initial state where all spins are configurated to the positive x-direction(mx=+1).(b)An OOMMF image of VW motion in offset nanowire under a value of current density(J=2×1011 A/m2).

    The offset nanowire is connected with a nucleation pad with dimensions of length 2000 nm and width 1000 nm.Initially,the current density is applied in the positivex-direction to saturate the magnetization in this direction (red color),as in Fig.2(a).Then, the current density with a value of 2×1011A/m2is used to create VWs with tail to tail magnetization at the nucleation pad,and one of them is propagated in the offset magnetic nanowire[Fig.2(b)].

    3.Results and discussion

    Different parameters, such as the high stability, fast access,and large density of VW racetrack magnetic storage devices, have been investigated in this study using offset magnetic nanowires.

    3.1.VW structural stability

    One parameter for the construction of a stable VW magnetic racetrack memory is the VW structural stability during its dynamics in magnetic nanowires.[41]Thus, the effects of magnetic properties,such asMsand offset area dimensions,on VW structural stability before reaching the offset area are studied first.Simulations are formed using offset nanowires with fixedl=50 nm and varyingd(50 nm,100 nm,150 nm).It is found that by increasing the values of the offset area depth(d),the VW loses its structural stability and converts to TW early during its dynamics before reaching the offset area.Thus,increasing the values ofMshelps to maintain the VW structure.With the magnetic nanowire with offset area(l=50 nm andd=50 nm),it is seen that the VW has less structural stability withMs≤700 kA/m in its dynamics toward the offset area and it converts to a transverse domain wall (TW).However, the VW becomes stable in its structure withMsvalues of≥800 kA/m and no structural changes are observed.For example, with anMsof 500 kA/m, the VW converted to TW after 1 ns of starting its motion,as shown in Fig.3(b),while its structure is stable for 2.5 ns withMsof 600 kA/m,as illustrated in Fig.3(c).As theMsis increased to 700 kA/m[Fig.3(d)],it can be seen that the VW maintains its structure for 6.5 ns until it reaches the offset area,before transforming to a TW within the constricted region.However,the VW has high stability in its structure withMs≥800 kA/m and has pinned at the offset area as a VW,as illustrated in Fig.3(e).To better understand how theMsaffects VW structural stability in offset nanowire(d=50 nm andl=50 nm),Fig.3(f)presents the plot of normalized magnetization in thex-direction(mx)versus time for different values ofMs.The circled dashed area indicates the time of switching of the VW to TW during the VW dynamics(i.e.,Ms=500 kA/m and 600 kA/m).In contrast,by increasing theMsto values of≥700 kA/m, the VW becomes more stable and its graph becomes smooth, without any indication of the transformation type[Ms=700 kA/m and 800 kA/m].

    A VW transformation results from competition between exchange energy,which keeps the magnetic field surrounding the core and the easy axes’energy,which keeps the DW magnetization on the easy axes as a TW.To understand the effect ofMson VW transformation,exchange energy is plotted against time for two values ofMs, as shown in Fig.3(g).It is found that the VW has higher exchange energy when increasing theMs.As a result,there is an improvement in the VW structure stability.For more confidence that the VW has more structural stability with increasingMsvalues, more investigations are carried out using offset nanowire with area dimensions of(l=50 nm andd=100 nm);it is seen that the VW changes its type to TW,as observed for the nanowire with dimensions of(l=50 nm andd=50 nm)forMs=500 kA/m and 600 kA/m[Figs.4(b)and 4(c)].However, forMs=700 kA/m, the VW converts after 3.5 ns to TW before reaching the offset area,as shown in Fig.4(d).More structural stability is observed with 700 kA/m

    When increasing the depth of the offset area tod=150 nm,the VW becomes less stable and needs to use values ofMs≥1000 kA/m to maintain its structure until it is trapped by the offset area.Figures 5(b)-5(d) show the VW transformation under the values ofMs≤700 kA/m with the same VW transformation time as in the nanowires with (l=50 nm andd=50 nm)and(l=50 nm andd=100 nm).However,in this nanowire of offset dimensions (l=50 nm andd=150 nm),the VW remains stable in its structure until it is pinned at the offset area with onlyMsvalues of 1000 kA/m and higher(Ms≥1000 kA/m), as illustrated in Fig.5(f).Figure 5(g)shows themxversus time for different values ofMs.As can be seen, the VW switching varies depending on theMsvalues.However, with theMsof 1000 kA/m, the curve actually becomes smooth without any sign of VW switching.

    Fig.5.(a)An OOMMF image of VW dynamics in offset nanowire with an offset area of(l=50 nm andd=150 nm).(b)-(d)OOMMF images of the VW converting to TW with values ofMs≤700 kA/m.(e)The VW transforms to TW at the offset area with 700 kA/m

    Fig.6.The VW structure stability time dependence of Ms in different nanowire structures of offset areas.

    For a better understanding of the effect of increasingdon the VW structural stability time, the VW structure stability time is plotted againstMsfor several nanowire structures[Fig.6].It can be observed that there is no effect of any variations indon VW structural stability time for values ofMs≤600 kA/m, and the transformation takes place before the VW reaches the offset area at the same time in different nanowires.However, the effect ofdon VW switching becomes obvious when the VW reaches the offset area forMs≥700 kA/m.Herein,it is found that the VW structural stability time decreases when increasingdfor the sameMsvalue.For an instant,the VW switches to TW withMsof 800 kA/m after 10 ns in magnetic nanowire withd=100 nm, while it undergoes transformation after 8 ns and 6 ns in nanowire with offset areas ofd= 150 nm and 200 nm, respectively.Moreover,it is noted from the graph that an increasingdleads to a linear relationship between the VW stability time andMs.

    3.2.VW speed

    The effect of increasingdon VW stability time leads to the investigation of the effect of the variation ofdon VW motion.Thus,the influence of increasingdon VW speed is studied.Here, theMsof 1100 kA/m is used to maintain the VW structure during its motion until it gets pinned at the offset area.Figure 7(a) shows the plot of VW velocity dependence on current density in nanowires with different values ofd.It is noted that the VW velocity changes linearly with current density and this agrees with the equation

    whereJis the current density,gis the Lande factor,Pis the spin polarization,eis the carrier charge,μBis the Bohr magneton,βis the non-adiabatic parameter andαis the Gilbert damping factor.[38]

    In addition, it is found that VW dynamics increase by increasing the offset area geometryddue to the decrease in the easy axis’s energy in positivex-axes, which means that the VW magnetization switches from the positivex-axes direction to the negative will be faster and, therefore, the VW moves faster.For example, with a current density value of 6×1011A/m2, the VW moves with the speed of 250 m/s in a nanowire with an offset area ofd=50 nm, while it moves with 280 m/s in the offset nanowire withd=100 nm and with 310 m/s in the nanowire withd=150 nm.

    Figures 7(b)-7(e)show snapshot images of the VW at different positions in nanowires ofd(50 nm,100 nm,150 nm and 200 nm) under a driven current density of 1.2×1012A/m2at the same time of 1.65 ns from the start of its motion.It is observed that by increasingd, the VW has crossed farther distances at this time (1.65 ns).Thus, the VW is closer to the offset area in the nanowire withdof 200 nm [Fig.7(e)].For future VW memory,the VW should move with a speed of 100 m/s and higher.Using offset nanowire, we achieve the result that the VW moves with a speed of 500 m/s, which is desirable for fast writing and reading of stored information.Meanwhile, in the literature, they have only achieved 200 m/s.[32]More efficient results for increasing the VW velocity by manipulating the offset geometry are obtained via reduction of the VW thermal fluctuations by driving VWs at low current densities.

    Fig.7.(a)The plot of VW velocity as a function of current density in offset nanowire with different values of d.OOMMF images of the VW position at the time of 1.65 ns and in the offset nanowire with l=50 nm and(b)d=50 nm,(c)100 nm,(d)150 nm and(e)200 nm.

    3.3.VW pining at offset area

    For high performance of the VW magnetic racetrack memory, the VW should be pinned at the offset area.This pinning strength depends on the offset area dimensions(landd) and the development of magnetic properties, suchMsandKu.Thus, the depinning current density (Jd) over the offset area geometry (landd) is investigated.It is found that the depinning current density increases linearly withd[Fig.8(a)],while it decreases with increasingl,as shown in Fig.8(b).

    Fig.8.VW depinning current density versus(a)d with fixed l to 50 nm and(b)l with fixed d to 50 nm.The magnetic properties of the investigated material are Ku=0.5×105 J/m3 and Ms=1100 kA·m.

    Furthermore,depinning current density(Jd)values based onMsandKuare investigated using different offset area dimension values(landd).Figure 9 shows the graph ofJdversusdfor different values ofMsandKu.In these graphs, it is obvious thatJdincreases when theMsorKuvalues increase.It is worth noting thatJdhas linear behavior withdfor different values ofMsandKu, which would add critical improvements for high VW storage memory with a long lifetime.

    For example, in the nanowire with offset area dimensions of (l=50 nm andd=100 nm),Jdis 7.5×1012A/m2for theMsof 1100 kA/m, while it is 11×1012A/m2and 15×1012A/m2for theMsof 1150 kA/m and 1200 kA/m,respectively[Fig.9(a)].The effects ofKuon VW pinning with varyingdare the same as forMs.The results are plotted in the graph ofJdversusKu,as shown in Fig.9(b).To get a better understanding of the effects oflonJd(the offset nanowire junctions),nanowires are proposed with fixed values ofd(50 nm)and the values oflare varied by 50 nm.Figure 9(c)shows the plot ofJddependence onlfor different values ofMs, showing that theJddecreases with increasinglvalues and the same results are observed with different values ofKu[Fig.9(d)].These results have confirmed that the pinning potential of the offset nanowire has increased by improving the values ofMsandKu.

    Fig.9.(a)The plot of Jd as a function of(a)d for three values of Ms,(b)d for three values of Ku,(c)l for three values of Ms and(d)l for three values of Ku.

    3.4.VW multi-bit per cell

    A critical parameter for future VW storage memory is to increase the storage density to more than one bit per cell.For this implementation,the offset nanowire is designed with four junctions by increasing the values ofdfrom left to right and keepinglfixed (50 nm).To maintain the VW structural stability,theMsis kept to 1100 kA/m.The possibility of storing six states using the offset nanowire with four junctions is also investigated.It is noted from Fig.10 that six states are obtained, and Fig.10(a).shows a plot of themxdependence of current density for the six states.Figure 10(b)shows the first state where all spins pointed to the positivex-direction while increasing the current density to 1×1012A/m2; the VW is created and moves to become pinned at the first junction to represent the second state[Fig.10(c)].Once the current density is increased to reach the value of 2.5×1012A/m2, the VW leaves the first junction and moves to the second one and gets trapped there.This represents the third state and so on,until the VW moves to the end of the nanowire, as shown in Fig.10(g).

    Fig.10.The six states of multi-segmented magnetic nanowires with L=1000 nm, w=200 nm and t =30 nm.The magnetic properties are Ms =1100 kA/m and 0.5×105 J/m3.(b)The first state and(c)the second state,where the VW is pinned at the first junction(d=50 nm).(d)The third state,where the VW is pinned at the second junction(d=100 nm).(e)The fourth state,where the is VW pinned at the third junction(d=150 nm).(f)The fifth state,where the VW is pinned at the fourth junction(d=200 nm),and(g)the sixth state,where the VW moves to the end of the nanowire.

    4.Conclusion

    In summary,several properties of VW magnetic racetrack memory were investigated using offset magnetic nanowires for future high speed,high density and long lifetime storage memory.It was found that VW transformation could be controlled by increasing theMs.ForMsvalues of≥800 kA/m,the VW structure was stable during its dynamics and depinning process, which helps to maintain the long lifetime of the storage devices.Using offset magnetic nanowires, a VW maximum speed of 500 m/s has been achieved to implement fast access memories.We found that the VW speed could be controlled by adjusting the offset area dimensions (landd) and the driven current density.Six stable states were achieved using multisegmented nanowires with four junctions.The VW pinning through the junction depends on the junction sizes (landd)and magnetic properties (MsandKu).It was observed thatJdincreases with increasingdor magnetic properties and decreases with increasinglor magnetic properties.

    亚洲 欧美一区二区三区| 久久精品人人爽人人爽视色| 日韩有码中文字幕| 精品一区二区三区av网在线观看| 日本黄色视频三级网站网址| 十八禁网站免费在线| 亚洲精品久久国产高清桃花| 亚洲第一电影网av| 国产成+人综合+亚洲专区| 91字幕亚洲| 欧美日本中文国产一区发布| 在线观看免费午夜福利视频| 午夜激情av网站| 丝袜在线中文字幕| 免费高清视频大片| 国产欧美日韩综合在线一区二区| 亚洲国产欧美网| 日本黄色视频三级网站网址| 亚洲第一青青草原| 香蕉国产在线看| 正在播放国产对白刺激| 日本黄色视频三级网站网址| 亚洲熟妇中文字幕五十中出| 国产精品美女特级片免费视频播放器 | av视频在线观看入口| 精品第一国产精品| av片东京热男人的天堂| 久久这里只有精品19| 日韩一卡2卡3卡4卡2021年| 日本a在线网址| 男女之事视频高清在线观看| 99在线人妻在线中文字幕| 国产亚洲欧美在线一区二区| 成在线人永久免费视频| 精品免费久久久久久久清纯| 亚洲精品中文字幕一二三四区| 一级片免费观看大全| 给我免费播放毛片高清在线观看| 国产欧美日韩综合在线一区二区| 亚洲成国产人片在线观看| 国产精品 欧美亚洲| 一边摸一边抽搐一进一出视频| 美女免费视频网站| 日本 欧美在线| 午夜久久久在线观看| 岛国在线观看网站| 亚洲成人国产一区在线观看| 波多野结衣一区麻豆| 欧美一级a爱片免费观看看 | av电影中文网址| 日本五十路高清| 久久久精品欧美日韩精品| x7x7x7水蜜桃| www日本在线高清视频| 巨乳人妻的诱惑在线观看| 午夜亚洲福利在线播放| 亚洲成国产人片在线观看| 一本综合久久免费| 午夜a级毛片| 色播亚洲综合网| 亚洲精品国产一区二区精华液| 岛国在线观看网站| av视频免费观看在线观看| 亚洲国产欧美一区二区综合| 亚洲第一电影网av| 夜夜看夜夜爽夜夜摸| 亚洲第一青青草原| 黄色片一级片一级黄色片| 麻豆一二三区av精品| www.自偷自拍.com| 亚洲一码二码三码区别大吗| 亚洲第一电影网av| 一进一出抽搐gif免费好疼| 19禁男女啪啪无遮挡网站| av福利片在线| 欧美绝顶高潮抽搐喷水| 国产高清激情床上av| 国产精品久久视频播放| 啦啦啦韩国在线观看视频| 亚洲成人久久性| 19禁男女啪啪无遮挡网站| 国产极品粉嫩免费观看在线| www日本在线高清视频| 在线观看一区二区三区| 久久午夜亚洲精品久久| av天堂久久9| 757午夜福利合集在线观看| 又黄又粗又硬又大视频| 18禁裸乳无遮挡免费网站照片 | 一级a爱视频在线免费观看| 久久婷婷成人综合色麻豆| av欧美777| 国产私拍福利视频在线观看| av超薄肉色丝袜交足视频| 最新在线观看一区二区三区| 看黄色毛片网站| 精品国产亚洲在线| 美女免费视频网站| 丝袜美腿诱惑在线| 后天国语完整版免费观看| 国产激情久久老熟女| 精品久久久久久久人妻蜜臀av | 在线免费观看的www视频| 国产亚洲精品久久久久5区| 99精品久久久久人妻精品| 国产aⅴ精品一区二区三区波| 免费在线观看视频国产中文字幕亚洲| 老汉色∧v一级毛片| avwww免费| 久久久精品欧美日韩精品| 亚洲人成电影观看| 成人亚洲精品av一区二区| 精品卡一卡二卡四卡免费| 精品一区二区三区视频在线观看免费| 日韩成人在线观看一区二区三区| 19禁男女啪啪无遮挡网站| 欧美成人一区二区免费高清观看 | 色播在线永久视频| 国产午夜福利久久久久久| 国产精品久久久av美女十八| 一个人免费在线观看的高清视频| 麻豆国产av国片精品| 久久影院123| 又黄又爽又免费观看的视频| 亚洲成人精品中文字幕电影| 国产一区在线观看成人免费| 亚洲久久久国产精品| 国产亚洲精品久久久久5区| 在线观看免费日韩欧美大片| 性欧美人与动物交配| 亚洲 欧美一区二区三区| 亚洲欧美精品综合一区二区三区| 日本五十路高清| 他把我摸到了高潮在线观看| 免费高清在线观看日韩| 91国产中文字幕| 亚洲男人的天堂狠狠| 中文字幕精品免费在线观看视频| 成人特级黄色片久久久久久久| 成人三级黄色视频| 叶爱在线成人免费视频播放| 99精品久久久久人妻精品| 精品熟女少妇八av免费久了| 国产人伦9x9x在线观看| 一级黄色大片毛片| 女人高潮潮喷娇喘18禁视频| 午夜福利18| 久久精品aⅴ一区二区三区四区| 午夜影院日韩av| 99国产精品免费福利视频| 免费女性裸体啪啪无遮挡网站| 久久午夜亚洲精品久久| 91麻豆av在线| 国产成人精品久久二区二区免费| 精品国产亚洲在线| av欧美777| 色综合站精品国产| 香蕉国产在线看| 国产av一区在线观看免费| 色婷婷久久久亚洲欧美| 成人三级黄色视频| 麻豆国产av国片精品| 在线观看舔阴道视频| 午夜a级毛片| 成年人黄色毛片网站| 9191精品国产免费久久| 黄色女人牲交| 99久久精品国产亚洲精品| 一边摸一边抽搐一进一出视频| 免费在线观看完整版高清| 午夜老司机福利片| 国产精品免费视频内射| 一个人免费在线观看的高清视频| 国产aⅴ精品一区二区三区波| 91字幕亚洲| 国产高清有码在线观看视频 | 日韩av在线大香蕉| 午夜免费鲁丝| avwww免费| 久9热在线精品视频| 国产亚洲精品一区二区www| 男女做爰动态图高潮gif福利片 | 亚洲欧美日韩另类电影网站| av有码第一页| 婷婷丁香在线五月| 亚洲成人久久性| 黄频高清免费视频| 高潮久久久久久久久久久不卡| 欧美亚洲日本最大视频资源| 天堂√8在线中文| 又紧又爽又黄一区二区| 午夜影院日韩av| 国产精品爽爽va在线观看网站 | 亚洲av第一区精品v没综合| 非洲黑人性xxxx精品又粗又长| 91老司机精品| 又紧又爽又黄一区二区| 搡老岳熟女国产| 大陆偷拍与自拍| 久99久视频精品免费| 久久久久久久久免费视频了| 女同久久另类99精品国产91| 亚洲成人国产一区在线观看| 中国美女看黄片| 日本三级黄在线观看| 欧美不卡视频在线免费观看 | 一级毛片女人18水好多| 日本黄色视频三级网站网址| 人人妻人人爽人人添夜夜欢视频| 欧美色视频一区免费| 日日夜夜操网爽| 国产真人三级小视频在线观看| 国产色视频综合| 欧美 亚洲 国产 日韩一| 中文字幕人妻丝袜一区二区| 久久伊人香网站| 日韩精品青青久久久久久| 麻豆av在线久日| 99久久99久久久精品蜜桃| 久久天堂一区二区三区四区| 婷婷丁香在线五月| 99国产极品粉嫩在线观看| 久久久久国内视频| 欧美激情久久久久久爽电影 | 亚洲va日本ⅴa欧美va伊人久久| 亚洲av成人av| 制服人妻中文乱码| 久久亚洲精品不卡| 国产成人av教育| 久久国产精品影院| 国产成人精品无人区| 黄色毛片三级朝国网站| 国产成年人精品一区二区| 亚洲第一欧美日韩一区二区三区| 亚洲精品在线观看二区| av福利片在线| 妹子高潮喷水视频| 在线观看午夜福利视频| 欧美乱色亚洲激情| 变态另类丝袜制服| 黑人欧美特级aaaaaa片| 黄色女人牲交| 欧美日韩亚洲国产一区二区在线观看| 国产野战对白在线观看| 热99re8久久精品国产| 在线观看免费视频日本深夜| 久久人妻福利社区极品人妻图片| 一区二区三区国产精品乱码| АⅤ资源中文在线天堂| 最近最新中文字幕大全电影3 | 日韩欧美三级三区| 欧美国产日韩亚洲一区| 涩涩av久久男人的天堂| 午夜老司机福利片| 久久久久久人人人人人| 欧美成狂野欧美在线观看| 激情在线观看视频在线高清| 日本免费a在线| 日日夜夜操网爽| 国产精品久久久久久精品电影 | 女警被强在线播放| 老汉色∧v一级毛片| av网站免费在线观看视频| 高潮久久久久久久久久久不卡| 777久久人妻少妇嫩草av网站| 在线观看舔阴道视频| 亚洲国产毛片av蜜桃av| 老鸭窝网址在线观看| 国产99久久九九免费精品| 女人被躁到高潮嗷嗷叫费观| 免费看美女性在线毛片视频| 成人18禁在线播放| 一区二区三区高清视频在线| 精品免费久久久久久久清纯| 九色国产91popny在线| 一区二区三区激情视频| 免费高清视频大片| 久久久国产成人精品二区| 国产精品亚洲一级av第二区| www.999成人在线观看| 真人一进一出gif抽搐免费| 一级毛片高清免费大全| 久久久久亚洲av毛片大全| 日本免费a在线| 欧洲精品卡2卡3卡4卡5卡区| 国产精品亚洲一级av第二区| 88av欧美| 黄色片一级片一级黄色片| 久久精品国产综合久久久| 欧美日本亚洲视频在线播放| 国产亚洲精品久久久久5区| 成熟少妇高潮喷水视频| 亚洲精品一卡2卡三卡4卡5卡| 婷婷六月久久综合丁香| 1024视频免费在线观看| 亚洲欧美日韩高清在线视频| 91成人精品电影| 国产成人精品久久二区二区91| 最近最新中文字幕大全电影3 | 欧美日韩精品网址| 亚洲七黄色美女视频| 午夜日韩欧美国产| 亚洲av日韩精品久久久久久密| 91老司机精品| 中文字幕人妻丝袜一区二区| 淫妇啪啪啪对白视频| 日韩欧美一区二区三区在线观看| 亚洲欧美精品综合久久99| 亚洲少妇的诱惑av| 亚洲成a人片在线一区二区| 精品电影一区二区在线| 久9热在线精品视频| 黄网站色视频无遮挡免费观看| av网站免费在线观看视频| 又黄又粗又硬又大视频| 免费观看人在逋| 亚洲午夜理论影院| 嫩草影院精品99| 久久 成人 亚洲| www.999成人在线观看| 久久午夜综合久久蜜桃| 亚洲第一青青草原| 黄片播放在线免费| 十八禁网站免费在线| 最近最新中文字幕大全电影3 | av天堂在线播放| 国产精品日韩av在线免费观看 | 亚洲精品美女久久久久99蜜臀| 国产成人欧美在线观看| 黄色 视频免费看| 黄片大片在线免费观看| 精品国产超薄肉色丝袜足j| 久久天躁狠狠躁夜夜2o2o| 美女国产高潮福利片在线看| 啪啪无遮挡十八禁网站| 欧美不卡视频在线免费观看 | 久久久久久久午夜电影| 一区二区三区国产精品乱码| 一个人免费在线观看的高清视频| 久久精品国产综合久久久| 久久久久久大精品| 欧美日本视频| 国产亚洲精品久久久久5区| 欧美乱码精品一区二区三区| 香蕉丝袜av| 国产熟女xx| 成在线人永久免费视频| 一本综合久久免费| 久久精品国产亚洲av高清一级| 一本大道久久a久久精品| 天天添夜夜摸| 亚洲成a人片在线一区二区| 日韩精品青青久久久久久| 18禁黄网站禁片午夜丰满| 久久久久久人人人人人| 久久久精品国产亚洲av高清涩受| 人人妻人人澡欧美一区二区 | 久热这里只有精品99| 熟女少妇亚洲综合色aaa.| 国产精品久久久av美女十八| 熟女少妇亚洲综合色aaa.| 国产又色又爽无遮挡免费看| 亚洲国产精品久久男人天堂| 久久天堂一区二区三区四区| 精品久久久久久久久久免费视频| 欧美日本中文国产一区发布| 久久国产亚洲av麻豆专区| 国产精品九九99| 国产精品野战在线观看| 露出奶头的视频| 亚洲午夜理论影院| 免费女性裸体啪啪无遮挡网站| 成人永久免费在线观看视频| 大型av网站在线播放| 久久久久国产精品人妻aⅴ院| 满18在线观看网站| 一级a爱视频在线免费观看| 一级,二级,三级黄色视频| 国产精品99久久99久久久不卡| 久久亚洲真实| 黄网站色视频无遮挡免费观看| 一级,二级,三级黄色视频| 精品福利观看| 免费搜索国产男女视频| 国产视频一区二区在线看| 男人的好看免费观看在线视频 | 一二三四在线观看免费中文在| 久久天躁狠狠躁夜夜2o2o| 侵犯人妻中文字幕一二三四区| www.www免费av| 亚洲国产高清在线一区二区三 | 夜夜夜夜夜久久久久| 亚洲自拍偷在线| 狂野欧美激情性xxxx| 国产一区在线观看成人免费| 在线播放国产精品三级| 亚洲成av片中文字幕在线观看| 中文字幕久久专区| 午夜福利免费观看在线| 日韩国内少妇激情av| 国产成人精品无人区| 777久久人妻少妇嫩草av网站| 午夜福利在线观看吧| 亚洲人成网站在线播放欧美日韩| 麻豆国产av国片精品| 精品电影一区二区在线| 国产亚洲欧美98| 搡老岳熟女国产| 亚洲国产中文字幕在线视频| 99热只有精品国产| 窝窝影院91人妻| 91成年电影在线观看| 国产精品亚洲美女久久久| 亚洲一码二码三码区别大吗| 欧美成人午夜精品| 欧美日韩一级在线毛片| 人人妻人人澡欧美一区二区 | 人人妻人人爽人人添夜夜欢视频| 91精品国产国语对白视频| 国产精品自产拍在线观看55亚洲| 女性被躁到高潮视频| 久久天躁狠狠躁夜夜2o2o| 黄网站色视频无遮挡免费观看| 欧美色视频一区免费| 伊人久久大香线蕉亚洲五| 桃色一区二区三区在线观看| av欧美777| 久久影院123| 老汉色av国产亚洲站长工具| netflix在线观看网站| 日本免费a在线| 一边摸一边抽搐一进一出视频| 18美女黄网站色大片免费观看| 久久久久久免费高清国产稀缺| 亚洲人成电影免费在线| av中文乱码字幕在线| 久久久久国产一级毛片高清牌| 久久亚洲精品不卡| 高潮久久久久久久久久久不卡| 欧美日韩中文字幕国产精品一区二区三区 | 激情视频va一区二区三区| 男女之事视频高清在线观看| 午夜激情av网站| 大香蕉久久成人网| 欧美+亚洲+日韩+国产| 首页视频小说图片口味搜索| 精品人妻在线不人妻| 久久人人爽av亚洲精品天堂| 国产精品爽爽va在线观看网站 | 精品国产亚洲在线| 三级毛片av免费| 国产在线观看jvid| 久久午夜综合久久蜜桃| 久久久久久久午夜电影| 国产精品乱码一区二三区的特点 | 成人国产一区最新在线观看| 亚洲第一欧美日韩一区二区三区| 久久精品国产清高在天天线| 久久国产亚洲av麻豆专区| 欧美激情高清一区二区三区| 亚洲五月色婷婷综合| 99精品久久久久人妻精品| 午夜影院日韩av| 日本三级黄在线观看| 99国产精品免费福利视频| 亚洲国产欧美网| 99国产精品一区二区蜜桃av| 欧美日韩黄片免| 老司机午夜十八禁免费视频| 日韩欧美一区视频在线观看| 欧美最黄视频在线播放免费| 国产伦人伦偷精品视频| 亚洲欧美激情在线| 精品无人区乱码1区二区| 美女午夜性视频免费| 久久人妻av系列| 午夜福利免费观看在线| 欧美日韩精品网址| 男人操女人黄网站| 日韩成人在线观看一区二区三区| 亚洲天堂国产精品一区在线| 久久久久久大精品| 国产乱人伦免费视频| 真人一进一出gif抽搐免费| 亚洲伊人色综图| 精品久久久久久成人av| 一二三四社区在线视频社区8| 在线观看舔阴道视频| 老鸭窝网址在线观看| 99久久久亚洲精品蜜臀av| 国产成人欧美在线观看| 精品国产美女av久久久久小说| 黄色丝袜av网址大全| 国产一卡二卡三卡精品| 国产精品永久免费网站| 日韩精品免费视频一区二区三区| 欧美另类亚洲清纯唯美| avwww免费| 欧美日韩亚洲国产一区二区在线观看| 最好的美女福利视频网| 国内精品久久久久久久电影| 久久欧美精品欧美久久欧美| 三级毛片av免费| 男人舔女人的私密视频| 一进一出抽搐动态| 亚洲专区中文字幕在线| 女警被强在线播放| 大型黄色视频在线免费观看| 无人区码免费观看不卡| 国产精品影院久久| 老司机午夜十八禁免费视频| av中文乱码字幕在线| 亚洲成a人片在线一区二区| 人人妻人人澡欧美一区二区 | 久久人人精品亚洲av| 免费在线观看亚洲国产| 日本五十路高清| 在线av久久热| 日本欧美视频一区| 成熟少妇高潮喷水视频| 日韩欧美一区视频在线观看| 在线播放国产精品三级| 亚洲精品美女久久久久99蜜臀| 热re99久久国产66热| 男女之事视频高清在线观看| 老熟妇乱子伦视频在线观看| 免费搜索国产男女视频| 国语自产精品视频在线第100页| 老鸭窝网址在线观看| 精品少妇一区二区三区视频日本电影| www.www免费av| 夜夜看夜夜爽夜夜摸| 大香蕉久久成人网| 在线观看www视频免费| 成年人黄色毛片网站| 亚洲成人久久性| 黄色片一级片一级黄色片| 国产精品久久久久久亚洲av鲁大| 国内精品久久久久久久电影| 亚洲精品一区av在线观看| e午夜精品久久久久久久| 波多野结衣av一区二区av| 久久久久国产一级毛片高清牌| av欧美777| 正在播放国产对白刺激| 午夜福利,免费看| 脱女人内裤的视频| 色综合站精品国产| 精品国产美女av久久久久小说| 国产成人啪精品午夜网站| 一区福利在线观看| 丰满人妻熟妇乱又伦精品不卡| 国产91精品成人一区二区三区| 啦啦啦韩国在线观看视频| cao死你这个sao货| 嫩草影视91久久| 正在播放国产对白刺激| 99国产综合亚洲精品| 亚洲 欧美 日韩 在线 免费| 久久草成人影院| 99在线人妻在线中文字幕| 曰老女人黄片| 久久久精品国产亚洲av高清涩受| 1024香蕉在线观看| 免费在线观看视频国产中文字幕亚洲| 99在线视频只有这里精品首页| 日韩 欧美 亚洲 中文字幕| 国产成人免费无遮挡视频| 久久精品91无色码中文字幕| 国产野战对白在线观看| 欧美一级a爱片免费观看看 | 亚洲狠狠婷婷综合久久图片| 亚洲成人免费电影在线观看| 久久草成人影院| 欧美激情极品国产一区二区三区| 黄色成人免费大全| 国产97色在线日韩免费| 免费高清视频大片| 国语自产精品视频在线第100页| 很黄的视频免费| 亚洲av美国av| 女性被躁到高潮视频| 国产成人av教育| 国产精品免费一区二区三区在线| 欧美性长视频在线观看| 一进一出抽搐动态| 久久天堂一区二区三区四区| 无限看片的www在线观看| 久久久国产成人免费| 婷婷六月久久综合丁香| 国产亚洲精品一区二区www| 波多野结衣一区麻豆| 婷婷六月久久综合丁香| av电影中文网址| 69精品国产乱码久久久| 国产蜜桃级精品一区二区三区| 国产精品亚洲美女久久久| 别揉我奶头~嗯~啊~动态视频| av视频免费观看在线观看| 国产精品亚洲美女久久久| 午夜精品久久久久久毛片777| 国产免费av片在线观看野外av| 无限看片的www在线观看| 亚洲人成电影免费在线| 国产一卡二卡三卡精品| 在线十欧美十亚洲十日本专区| 美女 人体艺术 gogo| 国产成年人精品一区二区| 老司机在亚洲福利影院| 亚洲免费av在线视频| 亚洲精品粉嫩美女一区| 午夜两性在线视频| 午夜福利成人在线免费观看| 嫩草影院精品99| 悠悠久久av|