• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modulated optical and ferroelectric properties in a lateral structured ferroelectric/semiconductor van der Waals heterojunction

    2023-12-15 11:48:14ShanshanChen陳珊珊XinhaoZhang張新昊GuangcanWang王廣燦ShuoChen陳朔HeqiMa馬和奇TianyuSun孫天瑜BaoyuanMan滿寶元andChengYang楊誠
    Chinese Physics B 2023年12期

    Shanshan Chen(陳珊珊), Xinhao Zhang(張新昊), Guangcan Wang(王廣燦), Shuo Chen(陳朔),Heqi Ma(馬和奇), Tianyu Sun(孫天瑜), Baoyuan Man(滿寶元),2,?, and Cheng Yang(楊誠),2,3,?

    1School of Physics and Electronics,Shandong Normal University,Jinan 250014,China

    2Institute of Materials and Clean Energy,Shandong Normal University,Jinan 250014,China

    3Shandong Provincial Engineering and Technical Center of Light Manipulations,Shandong Normal University,Jinan 250014,China

    Keywords: ferroelectric tunnelling junction, metal/ferroelectric/semiconductor, tunnelling electroresistance,optoelectronic properties

    1.Introduction

    Memristors are ideal building blocks for brain-like neuromorphic devices.[1-6]A two-terminal structured ferroelectric tunnelling junction(FTJ)has transmission properties similar to the biological synapse; its top and bottom electrodes are commonly used to mimic the presynaptic and postsynaptic membranes in biological synapses.[7]Traditional memristors that achieve basic synaptic functions by applying voltage alone are purely electronic synapses; however, they lack the function of mimicking sensory cells in a biological nervous system.

    Some researchers have introduced light stimulation to mimic functions in sensory cells.[7-10]Shenet al.reported TiNxO2-x/MoS2/indium tin oxide (ITO) devices that showed basic analog resistive switching behavior and various basic synaptic functions such as short-term plasticity and long-term plasticity,and finally constructed a 4×4 photoelectric synapse array that was used to simulate human visual perception and visual memory functions.[7]To achieve light stimulation,most artificial optoelectronic synapses are typically designed as vertical structures with transparent ITO as the top electrode.However, it is challenging to fabricate thin ITO films; the transmittance of ITO is generally<90%and it decreases with increase in film thickness.[8]Lateral structured devices fabricated using a thin two-dimensional(2D)material can be used to realize the role of light-stimulated synapses.

    Two-dimensional(2D)ferroelectric CuInP2S6(CIPS)has shown excellent ferroelectric properties;[11-13]it can be used to switch polarization in flakes down to several layers at room temperature,[11]and it can be easily integrated onto flat substrates to form FTJ devices due to their strong intralayer coupling and weak interlayer interactions.[13]Recently, Sun and colleagues showed that a tunnelling electroresistance(TER)of over 107could be obtained by using a thin CuInP2S6/graphene junction.[12]Further research could help realize sensory devices using CIPS as a ferroelectric material.

    As a 2D semiconductor material,MoS2has a strong and fast photoresponse[14,15]that benefits the integration of fieldeffect transistors into other new sensing devices.Furthermore,van der Waals (vdW) heterojunctions based on MoS2and other materials, including MoS2/Si,[16]MoS2/WSe2[17]and MoS2/h-BN/graphene,[18]are widely used in optoelectronic applications.Based on the advantages of MoS2,combining it with CIPS to construct a lateral structured Au/CIPS/MoS2/Au vdW heterojunction could possibly realize sensory devices with 2D vdW junctions.

    Semiconductors are also crucial for forming a Schottky barrier to obtain a higher TER, which is essential for the FTJ.[19-24]For vertical structured FTJ devices, an enhanced TER(~103-104)can be obtained using the ferroelectric/semiconductor heterojunction.[22-24]To the best of our knowledge, no lateral structured ferroelectric/semiconductor FTJ with a higher TER(>104)has been reported.

    2.Results and discussion

    We demonstrated that lateral structured Au/CIPS/MoS2/Au vdW heterojunctions could be used in planar FTJ devices,combining excellent TER and optical properties.Figure 1(a)shows a schematic diagram of a lateral structured device.Ferroelectric CIPS flakes were used as the ferroelectric material to realize polarized ON and OFF states.Semiconductor MoS2flakes were used to modulate the barrier height and width of the memristors and as the optoelectronic material of the photodetector.Both CIPS and MoS2flakes were transferred onto a patterned high-work-function Au electrode;details are presented in the supporting information section‘Device fabrication’.Devices with different ferroelectric mechanisms andI-Vcharacteristics are shown in Fig.1.

    The formation mechanisms of the ON and OFF states of the proposed CIPS/MoS2heterojunction were analyzed and are shown in Fig.1(b).The work function of Au is 5.1 eV,[25]the electron affinity of CIPS is 3.7 eV and the indirect band gap of MoS2is 1.365 eV.[12,26]When different voltages were applied to the device,the polarization directions of CIPS were different, resulting in two different resistance states.The polarization direction of CIPS pointed to MoS2when a positive polarization voltage was applied, which generated pairs of bound polarized charges in the dielectric CIPS flakes (left of Fig.1(b)).The positive bound polarized charges attracted electrons in MoS2, causing the accumulation of electrons at the MoS2surface of the CIPS-MoS2interface.Thus, the depletion region of MoS2was annihilated.The conductivity of MoS2also improved when electrons gathered at the MoS2surface to fill the conduction band of MoS2.In this case,MoS2flakes were the n+-type semiconductor that formed the metal/ferroelectric/semiconductor-type FTJ.[24,27,28]A depolarization field,opposite to the polarization direction,was easily formed in the CIPS ferroelectric barrier and benefited from the incomplete screening of the MoS2films.Such a depolarization field lowers the Schottky barrier height (SBH) and generates a higher tunnelling transmittance,inducing a larger tunnelling current.[29]Therefore, the decreased barrier height at the CIPS-MoS2interface resulted in a low resistance (ON state).

    In contrast,the CIPS polarization direction deviated from the MoS2flakes when a negative polarization voltage was applied (right side of Fig.1(b)).Negative bound polarized charges caused the depletion of electrons at the MoS2side of the CIPS-MoS2interface.The width of the depletion region(i.e.,the effective barrier width)increased due to electron depletion at the interface,[20]and the accumulation of holes at the CIPS-MoS2interface decreased the conductivity of MoS2.The immobile ionized donors at the MoS2surface screened the negative bound polarized charges at the CIPS surface.Such screening is usually insufficient[24,27,28]to produce a depolarization field and increases the SBH at the CIPS-MoS2interface.The increased barrier width and height provide greater resistance to stop the tunnelling current through the heterojunction,resulting in a device with high resistance(OFF state).The realization of ON and OFF states can be mainly attributed to the modulation of the SBH and width by the CIPS polarization reversal and the screening of the MoS2flakes.

    Semiconductor MoS2is crucial for modulating the barrier width and height to improve TER.To analyze the effect of the semiconductor MoS2,an Au/CIPS/Au FTJ without MoS2flakes was also fabricated (Fig.1(d)).The formation mechanisms of the ON and OFF states are analyzed in Fig.1(e).The top Au electrode(work function=5.24 eV)[30]was prepared using the transfer method (details in the supporting information section‘Au electrode fabrication,release,transferring and lamination process’),and the bottom Au electrode(work function=5.1 eV)[25]was customized using photolithography to realize the asymmetry of the electrodes.At different voltages,the electric field-induced CIPS polarization changed the band alignment of CIPS at the Au-CIPS interface,resulting in two resistance states(ON and OFF states).When the polarization direction of CIPS is upward,negatively polarized charges are generated at the bottom of the CIPS and positively polarized charges accumulate on the top of the CIPS.The ferroelectric polarized charges cannot be fully compensated by the electrode charges due to interfacial effects.[31]The built-in internal field is directed from the positive to the negative polarized charges, causing the SBH to be reduced.[29,31]The device is in a low-resistance state(ON state).When the polarization direction of CIPS is downward,the CIPS generates the opposite polarized charges and the polarization reversal of CIPS alters the built-in internal field,which increases the SBH.[29,31]The device is in a high-resistance state(OFF state).Such vertical structured Au/CIPS/Au only modulated the barrier height to improve TER.

    TER is considerably influenced by the width and height of the potential barrier;[29]the equation for TER is given by[32]

    Under the Wentzel-Kramers-Brillouin (WKB) approximation,the current density is given by[33]

    whereCandα(V)are expressed asC=-(4em)/(9π2ˉh3)andα(V)=[4d(2m)1/2]/[3ˉh(?1+eV-?2)].If the difference between potential steps ?? ≡?2-?1is too small compared with the average potential barrier, ˉ? ≡(?2+?1)/2,then ??/2< ˉ?.In the case of a small bias voltage,Eq.(2)can be approximated as[32]

    Therefore, TER increases with the barrier heightδ?, as expressed in Eq.(4).The change in the barrier height of the CIPS-MoS2interface is much larger than that of the CIPS-Au interface when the barrier height of the CIPS-MoS2interface is modulated,which increases TER.

    Obviously,TER increases with an increase in the barrier width of the depletion regiond, as calculated using Eq.(4).The barrier width of the depletion region is related to the effective free carrier concentration of the semiconductor.The relationship between the width of the depletion region and the effective free carrier concentration is shown below:[34]

    whereεsis the dielectric constant of semiconductors,Vbiis the built-in potential andNeffis the effective free carrier concentration.

    Fig.1.(a)Schematic diagram of a lateral structured Au/CIPS/MoS2/Au vdW FTJ.(b)Band diagrams for the ON and OFF states of the Au/CIPS/MoS2/Au vdW FTJ.(c)I-V curve of the Au/CIPS/MoS2/Au vdW FTJ with clear switching behavior and low operation voltage.(d)Schematic diagram of a vertical structured Au/CIPS/Au FTJ.(e)Band diagrams for the ON and OFF states of the Au/CIPS/Au FTJ.(f)I-V curve of the Au/CIPS/Au vdW FTJ with switching behavior.(g) Schematic diagram of a lateral structured Au/MoS2/Au.(h) Band diagrams at different bias voltages of the lateral structured Au/MoS2/Au.The green curve above represents the conduction band before the voltage sweep and the red dotted line represents the change in the Schottky barrier height.(i)I-V characteristics of the Au/MoS2/Au junction in both forward and backward states;the inset is an optical image of the device.

    For the case of n+-type MoS2, the effective free carrier concentration decreases at high resistance (OFF state),which can be attributed to the depletion of electrons at the MoS2surface, increasing the width of the depletion region.However, for the Au/CIPS/Au device, it is difficult to change the barrier width at the CIPS-Au interface.Therefore,the change in the barrier width shows that the TER of the Au/CIPS/MoS2/Au vdW FTJ is higher than that of the Au/CIPS/Au FTJ.Thus, the analysis of the effects of barrier height and width on the improvement of TER suggested that an Au/CIPS/MoS2/Au vdW FTJ can significantly improve TER.

    ExperimentalI-Vhysteresis loops of Au/CIPS/MoS2/Au and Au/CIPS/Au junctions are shown in Figs.1(c) and 1(f).The asymmetric hysteresis of the Au/CIPS/MoS2/Au FTJ may be attributed to the asymmetric contact.[35]I-Vcharacteristics of the devices in the voltage range from 3 to-3 V are shown in Fig.S2.In the OFF state, the tunnelling current of the proposed Au/CIPS/MoS2/Au FTJ is one order of magnitude smaller than that of the Au/CIPS/Au FTJ.In the ON state,the tunnelling current of the proposed Au/CIPS/MoS2/Au FTJ is two orders of magnitude larger than that of the Au/CIPS/Au FTJ.Thus, introducing MoS2to the construction of lateral structured Au/CIPS/MoS2/Au vdW FTJ devices significantly improves the TER(by three orders of magnitude).A TER of~1.4×104was obtained for the proposed lateral structured Au/CIPS/MoS2/Au vdW FTJ devices.

    The ferroelectric properties of CIPS are crucial.The Au/MoS2/Au junction without the CIPS flakes[Fig.1(g)]resembles only a Schottky diode.[36]The inhibitory behavior of the MoS2-Au potential barrier for improving TER is almost negligible.The modulation of the MoS2/Au SBH can be qualitatively described by the band diagrams shown in Fig.1(h).According to Liet al., the switching behavior of resistance states is mainly attributed to the redistribution of sulfur(S)vacancies under the electric field.[37]The influence of impurity movement on the interface between MoS2and the substrate,and the adsorption of charged impurities by MoS2in the environment, are ignored.Under negative bias (backward), S vacancies drift from the left to the right electrode.[37]This decreases and increases the density of S vacancies at the left and right electrodes, respectively.As a result, the SBH on the left and right sides decreases and increases, respectively.Conversely, under positive bias (forward), S vacancies drift from the right to the left electrode.TheirI-Vcharacteristics are shown in Fig.1(i).TheIforward/Ibackwardratio is extremely small under both positive and negative biases.The defects of S vacancies drift under voltage bias,and any further influence of barrier height and width in the Au/CIPS/MoS2/Au devices is almost negligible.Thus, data retention can be attributed to the polarization-induced ON-OFF states.

    Fig.2.(a)Raman spectra of CIPS flakes measured at room temperature.(b)I-V characteristics of CIPS flakes.(c)Raman spectra of MoS2 flakes measured at room temperature.(d)IDS-VG characteristics of the MoS2 transistors.

    The CIPS and MoS2materials were characterized using Raman andI-Vcharacteristic curve tests.Figure 2(a) shows the Raman spectra of the CIPS flakes at room temperature.Because of the anion (P2S4-6 ) liberation, a peak at 102 cm-1is easily observed.The presence ofδ(S-P-P) andδ(S-PS) modes leads to multiple Raman peaks of 140-290 cm-1.The presence of the cations (CuI, InIII) leads to the appearance of a Raman peak at 316.5 cm-1.Theν(P-P)mode results in a peak at 373.7 cm-1.[38]Figure 2(b) shows theI-Vcharacteristics of the CIPS flakes.TheI-Vcurves were divided into six parts at 0 V→1 V→0 V and 0 V→-1 V→0 V, with multiple peaks appearing in the sweep voltage.The two-step 90?switch polarization reversal was responsible for these peaks,demonstrating the ferroelectric nature of CIPS flakes.[39]Figure 2(c) shows the Raman spectra of the MoS2flakes.The out-of-plane (E12g) and in-plane resonance peaks(A1g)of MoS2can be observed at 383.5 cm-1and 406.6 cm-1,respectively.[40]The distance between the two characteristic peaks is approximately 23.1 cm-1.Referring to the previous data, this difference of approximately 23.1 cm-1represents four layers of MoS2flakes.[41,42]Figure 2(d)tests theIDS-VGcharacteristics of the MoS2transistors.The transmission characteristics show typical n-type semiconductor characteristics under a sweep gate voltage from-33 V to 33 V.[43,44]

    Fig.3.(a)Data retention characteristics of the device in the ON and OFF states.(b)Endurance characteristics of the device.Experimental measurements were obtained for 1000 switching cycles.(c)Resistances(ON and OFF states)of the 11 different FTJ devices and the corresponding TERs.(d)TERs of the reported lateral structured devices.

    Our proposed Au/CIPS/MoS2/Au vdW FTJs with 11 nm CIPS and 2 nm MoS2(figure S3 shows material thickness)exhibited good reliability, such as long data retention, excellent endurance performance and uniformity.The electrical characteristics and properties were tested and analyzed and are shown in Fig.3.Figure 3(a) shows the data retention properties at room temperature.The TER was stable at 1.4×104after more than 2 months, which showed that the proposed device has a robust performance.[12,45]Figure 3(b)shows the endurance test of the FTJ over 1000 cycles.After 1000 cycles,the TER remained above 1.4×104,indicating good endurance of the device.Several devices were prepared and tested for different values of resistance and TER in the ON and OFF states, as shown in Fig.3(c).The device exhibited good uniformity.The TER of the proposed vdW FTJ compared with that of the other lateral structured devices[46-54]is shown in Fig.3(d).Our proposed vdW FTJ showed the highest TER for the lateral structured devices.The Au/CIPS/MoS2/Au vdW FTJ demonstrated non-volatile switching and non-destructive readout reliability and is thus considered an ideal candidate for high-TER memory.[55]

    The direct tunneling and Fowler-Nordheim tunnelling(FNT)mechanisms are the main transport mechanisms in our proposed Au/CIPS/MoS2/Au vdW FTJ.There are three main possible transport mechanisms: direct tunnelling, FNT and thermionic emission.[56]The physical phenomenon of FNT is the same as that of direct tunnelling; however, at different voltage states, FNT tunnelling occurs at higher voltages.[24]To prove that the tunnelling mechanism of carriers is also independent of thermal emission, theI-Vcharacteristics of the proposed Au/CIPS/MoS2/Au vdW FTJ at different temperatures and the corresponding TER were obtained and are shown in Fig.S4.The current exhibited a weak change in the temperature range 250-340 K for the ON and OFF states,and the TER remained almost the same.According to the current density formula for the thermionic emission[57,58]

    the thermal activation process of the thermionic emission mechanism led to strong temperature dependence(J∝T).The unchanged TER shows that the transport mechanism is independent of the thermionic emission.TheI-Vcharacteristic curve of the device under different voltages was fitted as shown in Fig.S5.It is known that if ln(I/V2)∝1/Vis satisfied FNT prevails,[59]and if ln(I/V2)∝ln(1/V)is satisfied direct tunnelling plays a leading role.Both FNT and direct tunnelling can be observed in the fitting results.[60]By fitting the experimental data, it can be found that the primary tunnelling mechanism is direct tunneling under low voltage.As the voltage increases,FNT becomes dominant.

    The proposed Au/CIPS/MoS2/Au vdW FTJ also exhibited excellent photoresponsive properties, benefiting from the light absorption properties of the MoS2semiconductor.The Au/CIPS/MoS2/Au vdW FTJ had a rather low current when the polarization direction of CIPS was downward(OFF state) (Fig.1(c)).A low dark current has been found to be critical for high-performance photodetectors.To elaborate the performance mechanism when the device was laserilluminated (449 nm laser), the energy band arrangements of the CIPS/MoS2heterojunction under different polarization states are shown in Fig.4(a); the inset of Fig.4(a) shows a schematic diagram of the device.The photogenerated electrons and holes are easily separated and collected to form photocurrents.When the polarization direction of CIPS is upward(ON state),the bending of the MoS2energy band at the interface changes from bottom to top.Due to the positive polarized charges accumulating at the interface, free electrons are attracted and free holes are repelled opposite to the current direction.The dark current is also larger, because of which the change in the photocurrent is insignificant in the ON state.When the polarization direction of CIPS is downward (OFF state), the energy band remains upward.Free electrons are repelled,and free holes are attracted due to the negatively polarized charges accumulating at the interface,the same as the current direction.At this time, the dark current is small, and the photocurrent easily increases under illumination.Therefore, the photocurrent can be mainly attributed to the contribution of photogenerated electrons under positive bias and the dark current is smaller,which improves the photoresponse behavior.

    Figure 4(b)shows the hysteresis loops(VDSwas between-4 V and 4 V) of the generated photocurrents with different polarization states under 449 nm laser irradiation.Figure 4(c) shows the dependence of photocurrent as a function of light intensity (VDS= 1.3 V).In the ON state, the magnitude of the current is almost constant.However, the photocurrent of this device in the OFF state strongly depends on the light intensity and increases with increase in light intensity.In the OFF state,the current of the device increases from 4×10-12A to 1.2×10-10A when light intensity increases from 0 to 0.57 mW·cm-2; the value ofIlight/Idarkis 30.A better linear relationship is obtained, demonstrating that the device has excellent photoresponsive performance in the OFF state.

    Fig.4.(a) Band diagrams of the photodetector in the ON and OFF states; at VDS =1.3 V, the green dotted line is the energy band without light and the 0 V bias voltage,and the solid orange line is the energy band at 1.3 V bias voltage with a 449 nm laser.(b)Hysteresis loops under different light intensities for a 449 nm laser.(c) Photocurrent as a function of light intensity in the ON and OFF states.(d) Photosensitive rate as a function of the light intensity of the device in the ON and OFF states.(e)Responsivity and detectivity of the proposed Au/CIPS/MoS2/Au vdW FTJ photodetector as a function of light intensity in the OFF state.(f)Hysteresis loop area as a function of light intensity.

    The difference in the dark currents in the ON and OFF states is the main reason for the difference in the photoresponsive performance in the ON and OFF states.The dark current in the ON state is much higher than that in the OFF state.Light stimulation onto the device in the ON state cannot easily increase the current, because the dark current in the ON state is already very high.Light stimulation onto the device in the OFF state easily increases the current, benefiting from the very slow dark current in the OFF state.A new parameter of the photosensitive rate(Rp)as a function of the light intensity is proposed here to analyze the effects of the ON and OFF states;the relationship is defined using

    whereIlightis the light current andIdarkis the dark current.As shown in Fig.4(d),the photosensitive rate in the OFF state to the light stimulation is much greater than that in the ON state.

    Photoresponsivity (Rλ) and detectivity (D?), which are important parameters for evaluating the ability to convert light signals into electrical signals,[61]were analyzed in the OFF state and are shown in Fig.4(e).RλandD?can be calculated as defined in Ref.[62]

    wherePis the light power,Ais the photosensitive area andeis the electron charge.Values ofRλ=7.1×10-2A·W-1andD?=2.06×109Jones were obtained in the OFF state.Our experiment shows excellent detector sensitivity in the OFF state.

    Light stimulation can be used to modulate the ferroelectric properties,and the ferroelectric properties can yield a new type of photodetector with the new parameters.The new parameter of the hysteresis loop area as a function of light intensity was analyzed to obtain the relationship between the ferroelectric and photodetection properties, as shown in Fig.4(f).The linear relationship provides a new characteristic for analyzing the photodetector.

    The modulated relationship between ferroelectric TER and photosensitive rateRpcan be summarized by

    The photosensitive rates(Rp)in the different ferroelectric ON and OFF states are defined as

    It should be mentioned that a larger TERdarkis the key point for obtaining two types of photodetection properties in a device.For our proposed ferroelectric CIPS/semiconductor MoS2-based heterojunction,if TERdarkis already large enough(~104),the dark current in the ON state(~10-8A)is already comparable to or of the same order as the current of the MoS2junction under light irradiation and the photoresponsive performance in the ON state is weak.

    Schematic diagrams of the ferroelectric TER parameter in the ferroelectric/semiconductor heterojunction and the photoelectricIlight/darkparameter in the semiconductor junction are shown in Fig.5.When the TERON/OFFis the same order asIlight/dark, the photoresponsive performance in the ON state is negligible.Two types of photodetection properties in one device can be obtained.

    Fig.5.Schematic diagrams of the ferroelectric TER and the photoelectric Ilight/dark parameter in the ferroelectric/semiconductor heterojunction and semiconductor junction.

    3.Conclusion

    A combination of higher TER and excellent optoelectronic properties can be obtained by using a lateral structured Au/CIPS/MoS2/Au vdW FTJ.CIPS polarization directions are easily modulated by an applied voltage to form the ON and OFF states.The barrier width and height at the CIPSMoS2interface were modulated to improve the TER.The ferroelectric and photodetection properties modulated each other.The results show that the devices composed of 2D ferroelectric materials and 2D semiconductors exhibit excellent nonvolatile and photoresponsive performance,providing an excellent method for developing high-TER memristors or preparing new photodetectors.

    Acknowledgement

    Project supported by the National Natural Science Foundation of China(Grant Nos.11874244 and 11974222).

    老鸭窝网址在线观看| 亚洲中文日韩欧美视频| 午夜精品国产一区二区电影| 在线免费观看的www视频| 中文字幕另类日韩欧美亚洲嫩草| 两人在一起打扑克的视频| 免费观看精品视频网站| 婷婷成人精品国产| 久久中文看片网| 99国产综合亚洲精品| 男人操女人黄网站| 国产成人啪精品午夜网站| 两性午夜刺激爽爽歪歪视频在线观看 | 色综合欧美亚洲国产小说| 中文字幕av电影在线播放| 欧美成人午夜精品| 亚洲,欧美精品.| 最近最新免费中文字幕在线| 在线播放国产精品三级| 欧美日韩av久久| 在线观看一区二区三区激情| 免费观看人在逋| 国产麻豆69| 国精品久久久久久国模美| 亚洲欧美激情在线| 91麻豆精品激情在线观看国产 | 欧美日韩亚洲国产一区二区在线观看 | 老熟女久久久| 久久中文字幕人妻熟女| 狂野欧美激情性xxxx| 欧美日韩国产mv在线观看视频| 日韩免费av在线播放| 日本黄色日本黄色录像| 免费在线观看黄色视频的| 淫妇啪啪啪对白视频| 久久香蕉精品热| 久久精品熟女亚洲av麻豆精品| 国产男女超爽视频在线观看| 99久久精品国产亚洲精品| 少妇猛男粗大的猛烈进出视频| 国产成人欧美| videosex国产| 操美女的视频在线观看| 国产精品乱码一区二三区的特点 | 免费在线观看影片大全网站| av有码第一页| 欧美日韩一级在线毛片| 亚洲成人手机| av天堂在线播放| 成人亚洲精品一区在线观看| 精品无人区乱码1区二区| 国产1区2区3区精品| 国产99白浆流出| 欧美老熟妇乱子伦牲交| 69精品国产乱码久久久| 精品卡一卡二卡四卡免费| 99久久人妻综合| 亚洲人成77777在线视频| 极品人妻少妇av视频| 丁香六月欧美| 亚洲成人免费av在线播放| 日韩视频一区二区在线观看| 大码成人一级视频| 又紧又爽又黄一区二区| 久久精品国产清高在天天线| 两性夫妻黄色片| xxx96com| 自线自在国产av| 亚洲av电影在线进入| 久久这里只有精品19| 少妇猛男粗大的猛烈进出视频| 三上悠亚av全集在线观看| 欧美激情极品国产一区二区三区| 99热网站在线观看| 美女国产高潮福利片在线看| 亚洲av美国av| 午夜老司机福利片| 国产免费男女视频| 一a级毛片在线观看| 久久99一区二区三区| 国产亚洲欧美精品永久| 精品国产超薄肉色丝袜足j| 国产精品二区激情视频| 99精品久久久久人妻精品| 一级毛片精品| 在线视频色国产色| 1024视频免费在线观看| 国产在线精品亚洲第一网站| 91字幕亚洲| 一个人免费在线观看的高清视频| 成年女人毛片免费观看观看9 | 岛国毛片在线播放| 国产单亲对白刺激| 一级黄色大片毛片| 啦啦啦 在线观看视频| 亚洲一卡2卡3卡4卡5卡精品中文| 天天躁日日躁夜夜躁夜夜| 午夜影院日韩av| 亚洲精品中文字幕一二三四区| 久久久久国产一级毛片高清牌| 91大片在线观看| 国产精品99久久99久久久不卡| 99久久人妻综合| 欧美老熟妇乱子伦牲交| 欧美人与性动交α欧美精品济南到| 国产99久久九九免费精品| 久久久久久久国产电影| 天天添夜夜摸| 大码成人一级视频| 国产一区二区三区视频了| 国产一区二区三区综合在线观看| 可以免费在线观看a视频的电影网站| 国产精品乱码一区二三区的特点 | 久久久国产欧美日韩av| 久久精品成人免费网站| 国产激情欧美一区二区| 日本欧美视频一区| 国产熟女午夜一区二区三区| 亚洲自偷自拍图片 自拍| 日韩 欧美 亚洲 中文字幕| 视频在线观看一区二区三区| 免费观看精品视频网站| 一级a爱片免费观看的视频| 国产精品久久久久久人妻精品电影| 欧美精品av麻豆av| 美女福利国产在线| 日韩精品免费视频一区二区三区| 一区在线观看完整版| 色综合婷婷激情| 日韩成人在线观看一区二区三区| 人成视频在线观看免费观看| 人人妻人人添人人爽欧美一区卜| 十八禁高潮呻吟视频| 狠狠狠狠99中文字幕| 久久久久精品国产欧美久久久| 动漫黄色视频在线观看| 国内毛片毛片毛片毛片毛片| 国产精品一区二区免费欧美| 国产成人系列免费观看| 亚洲精品自拍成人| 午夜日韩欧美国产| 在线永久观看黄色视频| 日本撒尿小便嘘嘘汇集6| 成人永久免费在线观看视频| 久久精品国产清高在天天线| e午夜精品久久久久久久| 岛国在线观看网站| 久久香蕉国产精品| 欧美国产精品一级二级三级| 国产精品影院久久| 丝袜人妻中文字幕| 丝袜美足系列| 亚洲视频免费观看视频| 99久久精品国产亚洲精品| 亚洲午夜精品一区,二区,三区| 黄片小视频在线播放| 视频区图区小说| 老司机亚洲免费影院| 久久天堂一区二区三区四区| 最新在线观看一区二区三区| 久久香蕉精品热| 五月开心婷婷网| 国产单亲对白刺激| 悠悠久久av| 欧美激情高清一区二区三区| 黄色a级毛片大全视频| 亚洲伊人色综图| 亚洲一码二码三码区别大吗| 在线观看免费高清a一片| 在线视频色国产色| 午夜精品久久久久久毛片777| 精品国产国语对白av| 亚洲片人在线观看| 亚洲色图 男人天堂 中文字幕| 国产成人免费无遮挡视频| 欧美在线黄色| 无人区码免费观看不卡| 亚洲精品一卡2卡三卡4卡5卡| 国产欧美日韩精品亚洲av| e午夜精品久久久久久久| 水蜜桃什么品种好| 国产精品九九99| 中出人妻视频一区二区| 中文字幕制服av| 亚洲精品中文字幕一二三四区| 国产精品一区二区免费欧美| av在线播放免费不卡| 国产欧美日韩一区二区精品| 午夜激情av网站| 十八禁网站免费在线| 嫁个100分男人电影在线观看| 国精品久久久久久国模美| 国产在线观看jvid| 久99久视频精品免费| 免费在线观看视频国产中文字幕亚洲| 欧美激情极品国产一区二区三区| 高清在线国产一区| 乱人伦中国视频| 亚洲五月天丁香| 日日摸夜夜添夜夜添小说| 国产又爽黄色视频| 国产精品秋霞免费鲁丝片| 亚洲午夜精品一区,二区,三区| 精品人妻熟女毛片av久久网站| 久久久久视频综合| 亚洲精品国产区一区二| 电影成人av| 少妇猛男粗大的猛烈进出视频| 国产精品香港三级国产av潘金莲| 99香蕉大伊视频| 亚洲国产精品合色在线| 久久久久精品人妻al黑| 午夜成年电影在线免费观看| 91成人精品电影| 母亲3免费完整高清在线观看| 久久 成人 亚洲| 久久精品aⅴ一区二区三区四区| 欧美日韩一级在线毛片| 国产亚洲精品久久久久久毛片 | 中文字幕精品免费在线观看视频| 一本一本久久a久久精品综合妖精| e午夜精品久久久久久久| 欧美日韩精品网址| 欧美日韩乱码在线| 久久人人爽av亚洲精品天堂| 精品亚洲成国产av| 日韩人妻精品一区2区三区| 一级毛片高清免费大全| 亚洲男人天堂网一区| 国产单亲对白刺激| 日韩欧美国产一区二区入口| 亚洲五月婷婷丁香| 成年版毛片免费区| 中文字幕人妻丝袜制服| 看黄色毛片网站| 国产主播在线观看一区二区| 日韩大码丰满熟妇| 亚洲情色 制服丝袜| 亚洲 国产 在线| 国产精品.久久久| 成年女人毛片免费观看观看9 | 夜夜爽天天搞| 成人永久免费在线观看视频| 久久久国产精品麻豆| 久久ye,这里只有精品| 人人妻,人人澡人人爽秒播| 亚洲一区二区三区欧美精品| 色婷婷久久久亚洲欧美| 丝袜美腿诱惑在线| 日日爽夜夜爽网站| 黄片小视频在线播放| 少妇的丰满在线观看| 999精品在线视频| 交换朋友夫妻互换小说| av电影中文网址| 91精品三级在线观看| 国产男女内射视频| 极品少妇高潮喷水抽搐| 视频区图区小说| 亚洲欧美激情在线| 国产精品久久视频播放| 老熟妇乱子伦视频在线观看| 久久人妻熟女aⅴ| 日日夜夜操网爽| 久热这里只有精品99| 免费不卡黄色视频| 美女视频免费永久观看网站| 十八禁人妻一区二区| 欧美性长视频在线观看| 国产精品自产拍在线观看55亚洲 | 国产av精品麻豆| 精品久久久久久久久久免费视频 | 亚洲av成人av| 精品第一国产精品| 国产av一区二区精品久久| 久久久久久亚洲精品国产蜜桃av| 久久人人97超碰香蕉20202| 超色免费av| www日本在线高清视频| 免费在线观看完整版高清| 久久这里只有精品19| 激情视频va一区二区三区| 久久久久久久精品吃奶| 热99国产精品久久久久久7| 国产三级黄色录像| 欧美最黄视频在线播放免费 | 五月开心婷婷网| 国产日韩一区二区三区精品不卡| 亚洲精品久久成人aⅴ小说| 女人精品久久久久毛片| 极品少妇高潮喷水抽搐| x7x7x7水蜜桃| 悠悠久久av| 日韩人妻精品一区2区三区| 在线国产一区二区在线| 成年人免费黄色播放视频| 久久ye,这里只有精品| 美女午夜性视频免费| 99精品久久久久人妻精品| 国产精品免费视频内射| 久久久久精品人妻al黑| 人人妻人人添人人爽欧美一区卜| 人人妻人人爽人人添夜夜欢视频| 久久国产精品人妻蜜桃| 丰满的人妻完整版| av一本久久久久| 美女午夜性视频免费| 国产区一区二久久| 女人高潮潮喷娇喘18禁视频| 免费不卡黄色视频| 极品少妇高潮喷水抽搐| 国产成人免费观看mmmm| 国产野战对白在线观看| av片东京热男人的天堂| 涩涩av久久男人的天堂| 操美女的视频在线观看| 涩涩av久久男人的天堂| 亚洲免费av在线视频| 999久久久国产精品视频| 嫁个100分男人电影在线观看| 欧美日韩av久久| 男女免费视频国产| 757午夜福利合集在线观看| 久久中文字幕一级| 国产成+人综合+亚洲专区| 女性生殖器流出的白浆| 国产成人免费无遮挡视频| 一二三四社区在线视频社区8| 丰满人妻熟妇乱又伦精品不卡| 国产真人三级小视频在线观看| 国产区一区二久久| 精品久久久久久,| 极品人妻少妇av视频| 亚洲全国av大片| 久9热在线精品视频| 一区二区三区激情视频| 中文欧美无线码| 国产亚洲精品久久久久久毛片 | 老司机靠b影院| 黄片大片在线免费观看| 热re99久久精品国产66热6| 中国美女看黄片| 老司机深夜福利视频在线观看| 极品教师在线免费播放| 国产成+人综合+亚洲专区| 国产精品自产拍在线观看55亚洲 | 人成视频在线观看免费观看| 老司机在亚洲福利影院| 一级,二级,三级黄色视频| 欧美不卡视频在线免费观看 | 国产亚洲欧美精品永久| 精品一品国产午夜福利视频| 免费av中文字幕在线| 亚洲精品久久成人aⅴ小说| 成熟少妇高潮喷水视频| 国产高清激情床上av| 亚洲综合色网址| tube8黄色片| 操美女的视频在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 欧美成人免费av一区二区三区 | 精品一区二区三区四区五区乱码| 十八禁高潮呻吟视频| 日韩一卡2卡3卡4卡2021年| 日韩欧美国产一区二区入口| 国产97色在线日韩免费| 国产成人系列免费观看| 国产亚洲欧美精品永久| 国产蜜桃级精品一区二区三区 | 日韩三级视频一区二区三区| 国精品久久久久久国模美| 捣出白浆h1v1| 黑人欧美特级aaaaaa片| 亚洲成人国产一区在线观看| 精品少妇久久久久久888优播| 男女床上黄色一级片免费看| 精品一区二区三区av网在线观看| 天堂√8在线中文| 精品一区二区三区av网在线观看| 日韩三级视频一区二区三区| 午夜日韩欧美国产| 日韩欧美免费精品| 不卡av一区二区三区| 狠狠狠狠99中文字幕| 欧美乱色亚洲激情| 国产成人精品久久二区二区91| 在线十欧美十亚洲十日本专区| 久久99一区二区三区| 色老头精品视频在线观看| 免费人成视频x8x8入口观看| 一级a爱视频在线免费观看| 中国美女看黄片| 国产精品亚洲一级av第二区| 香蕉国产在线看| 身体一侧抽搐| 国产成人影院久久av| 亚洲成人免费电影在线观看| 69精品国产乱码久久久| 人人妻,人人澡人人爽秒播| 亚洲成a人片在线一区二区| 色在线成人网| 777米奇影视久久| 日韩精品免费视频一区二区三区| 伦理电影免费视频| 国产91精品成人一区二区三区| 久久久久久久久免费视频了| 国产三级黄色录像| 日韩免费高清中文字幕av| 亚洲精品中文字幕一二三四区| 又黄又爽又免费观看的视频| 18在线观看网站| 黄网站色视频无遮挡免费观看| 午夜精品在线福利| 韩国精品一区二区三区| 成年女人毛片免费观看观看9 | 国产麻豆69| 精品亚洲成a人片在线观看| 国产区一区二久久| 精品一品国产午夜福利视频| 丰满迷人的少妇在线观看| 中文字幕人妻丝袜一区二区| 热re99久久国产66热| 黑丝袜美女国产一区| 两性午夜刺激爽爽歪歪视频在线观看 | 国产成人精品久久二区二区91| 国产乱人伦免费视频| a在线观看视频网站| 成人特级黄色片久久久久久久| 国产熟女午夜一区二区三区| av中文乱码字幕在线| 可以免费在线观看a视频的电影网站| 久久狼人影院| 国产精品一区二区在线不卡| 99在线人妻在线中文字幕 | 天天操日日干夜夜撸| 国产精品98久久久久久宅男小说| 国产精华一区二区三区| 国产精品综合久久久久久久免费 | 丝袜美腿诱惑在线| 国产乱人伦免费视频| 欧美亚洲 丝袜 人妻 在线| 亚洲国产欧美日韩在线播放| 两人在一起打扑克的视频| 日本欧美视频一区| 欧美大码av| 久久久水蜜桃国产精品网| 精品国产国语对白av| 亚洲国产精品一区二区三区在线| 国产高清视频在线播放一区| 极品人妻少妇av视频| 国产精品久久久av美女十八| 国产激情久久老熟女| 亚洲成人国产一区在线观看| av国产精品久久久久影院| 90打野战视频偷拍视频| 免费在线观看视频国产中文字幕亚洲| 久久久久久久久久久久大奶| 国产欧美日韩一区二区精品| 自线自在国产av| 少妇的丰满在线观看| 80岁老熟妇乱子伦牲交| 亚洲在线自拍视频| 国产成人精品在线电影| 久久精品亚洲熟妇少妇任你| 国产黄色免费在线视频| 不卡一级毛片| 一进一出抽搐动态| 天天躁狠狠躁夜夜躁狠狠躁| svipshipincom国产片| 亚洲久久久国产精品| 在线国产一区二区在线| 狠狠狠狠99中文字幕| 黑人巨大精品欧美一区二区mp4| 免费观看a级毛片全部| 国产日韩欧美亚洲二区| e午夜精品久久久久久久| 美女午夜性视频免费| 久久热在线av| 久久久国产精品麻豆| 在线十欧美十亚洲十日本专区| 在线观看午夜福利视频| 久久久久久人人人人人| 日本撒尿小便嘘嘘汇集6| 日韩 欧美 亚洲 中文字幕| 日韩欧美在线二视频 | 欧美最黄视频在线播放免费 | 一级,二级,三级黄色视频| 超碰97精品在线观看| 免费在线观看亚洲国产| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲欧洲精品一区二区精品久久久| 亚洲精品美女久久av网站| 天天躁日日躁夜夜躁夜夜| 国产精品 国内视频| 12—13女人毛片做爰片一| 欧美黄色淫秽网站| 热99久久久久精品小说推荐| 日日摸夜夜添夜夜添小说| 精品免费久久久久久久清纯 | 老司机午夜十八禁免费视频| 成年动漫av网址| 怎么达到女性高潮| 日韩欧美免费精品| 精品少妇一区二区三区视频日本电影| 一区在线观看完整版| tube8黄色片| 久久ye,这里只有精品| videosex国产| 老熟妇乱子伦视频在线观看| 欧美色视频一区免费| 免费黄频网站在线观看国产| 搡老乐熟女国产| 久久久国产精品麻豆| 老司机在亚洲福利影院| 亚洲一卡2卡3卡4卡5卡精品中文| 国产成人系列免费观看| 精品第一国产精品| 99国产综合亚洲精品| 一级黄色大片毛片| 无人区码免费观看不卡| 亚洲片人在线观看| 99精品在免费线老司机午夜| 18禁美女被吸乳视频| 动漫黄色视频在线观看| e午夜精品久久久久久久| 一进一出好大好爽视频| 国产成人精品久久二区二区免费| 交换朋友夫妻互换小说| 欧美日韩亚洲高清精品| 色综合欧美亚洲国产小说| 亚洲av成人av| 国产精品乱码一区二三区的特点 | 亚洲五月天丁香| 天天躁夜夜躁狠狠躁躁| 国产精品久久电影中文字幕 | 国产aⅴ精品一区二区三区波| 亚洲av电影在线进入| 一二三四在线观看免费中文在| 国产欧美日韩综合在线一区二区| 精品视频人人做人人爽| 丁香六月欧美| 亚洲av欧美aⅴ国产| 久久久久久久国产电影| 国产成人啪精品午夜网站| 女人久久www免费人成看片| 下体分泌物呈黄色| 日本一区二区免费在线视频| 久久亚洲精品不卡| 99国产精品99久久久久| 亚洲av欧美aⅴ国产| 男人舔女人的私密视频| 免费久久久久久久精品成人欧美视频| 国产一区二区激情短视频| 成年版毛片免费区| 黄色片一级片一级黄色片| 久久久精品免费免费高清| 看片在线看免费视频| av超薄肉色丝袜交足视频| 久久人人97超碰香蕉20202| 国内久久婷婷六月综合欲色啪| 女性生殖器流出的白浆| 变态另类成人亚洲欧美熟女 | 亚洲色图 男人天堂 中文字幕| 搡老岳熟女国产| 亚洲 欧美一区二区三区| 免费人成视频x8x8入口观看| 男人舔女人的私密视频| 黄色丝袜av网址大全| 国产男女超爽视频在线观看| 天堂俺去俺来也www色官网| 狂野欧美激情性xxxx| 99在线人妻在线中文字幕 | 欧美人与性动交α欧美精品济南到| 亚洲国产看品久久| 亚洲精品av麻豆狂野| 最近最新免费中文字幕在线| 午夜免费成人在线视频| 两个人看的免费小视频| а√天堂www在线а√下载 | av网站在线播放免费| 大香蕉久久网| 国产精品免费视频内射| 色婷婷av一区二区三区视频| 深夜精品福利| 国产精品国产高清国产av | 一区福利在线观看| 成人精品一区二区免费| 十八禁人妻一区二区| 国产一区有黄有色的免费视频| av国产精品久久久久影院| 亚洲五月天丁香| videos熟女内射| 亚洲欧美日韩高清在线视频| 欧美精品人与动牲交sv欧美| 亚洲少妇的诱惑av| 高潮久久久久久久久久久不卡| 交换朋友夫妻互换小说| 十八禁高潮呻吟视频| 人人妻人人添人人爽欧美一区卜| 亚洲av欧美aⅴ国产| 国产在线一区二区三区精| 国产精品一区二区免费欧美| 69av精品久久久久久| 久久精品国产a三级三级三级| 久久热在线av| 亚洲aⅴ乱码一区二区在线播放 | 天天添夜夜摸| 婷婷成人精品国产| svipshipincom国产片| 91av网站免费观看| 纯流量卡能插随身wifi吗| 国产精品一区二区在线不卡| 男女免费视频国产| 乱人伦中国视频| 人人妻人人添人人爽欧美一区卜|