• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Observation of spin-glass behavior in 1111-type magnetic semiconductor(La,Ba)(Zn,Mn)SbO

    2023-12-15 11:51:22XueqinZhao趙雪芹JinouDong董金甌RufeiZhang張茹菲QiaolinYang楊巧林LingfengXie謝玲鳳LichengFu傅立承YilunGu顧軼倫XunPan潘洵andFanlongNing寧凡龍
    Chinese Physics B 2023年12期
    關(guān)鍵詞:金甌

    Xueqin Zhao(趙雪芹), Jinou Dong(董金甌), Rufei Zhang(張茹菲), Qiaolin Yang(楊巧林),Lingfeng Xie(謝玲鳳), Licheng Fu(傅立承), Yilun Gu(顧軼倫),Xun Pan(潘洵), and Fanlong Ning(寧凡龍),2,3,4,?

    1Zhejiang Province Key Laboratory of Quantum Technology and Device and School of Physics,Zhejiang University,Hangzhou 310027,China

    2State Key Laboratory of Silicon and Advanced Semiconductor Materials,Zhejiang University,Hangzhou 310027,China

    3Collaborative Innovation Center of Advanced Microstructures,Nanjing University,Nanjing 210093,China

    4Science and Technology Innovation Center,Chifeng High-Tech Industrial Development Zone,Chifeng 025250,China

    Keywords: magnetic semiconductors,spin-glass,negative magnetoresistance

    1.Introduction

    The research of spintronics is devoted to manipulating both charge and spin freedom of electrons.[1-3]As an important branch in spintronics, magnetic semiconductors (MSs)provide a new perspective for the preparation of novel electronics devices.III-V MS (Ga,Mn)As is the most wellinvestigated system,[4]which is more compatible with optoelectronic devices applied in industry.In the mid-1990s, the fabrication of(Ga,Mn)As films made significant progress via low temperature molecular beam epitaxy (LT-MBE) method.With the injection of spin-polarized carriers,(Ga,Mn)As provides a new choice for the preparation of multifunctional heterojunctions with non-magnetic semiconductor GaAs.For example, Ohnoet al.has successfully prepared spin-polarized light-emitting diode (Spin-LED) based on (Ga,Mn)As.[5]At present,the Curie temperature(TC)of(Ga,Mn)As has reached~190 K-200 K,[6,7]which is still below room temperature.Moreover, the inequivalent substitutions of(Ga3+, Mn2+)introduce carriers and magnetic moments simultaneously,which makes it difficult to control carrier densities and magnetic moments independently.In addition, the MBE method is a nonequilibrium growth method, which makes the properties of materials sensitive to the growth conditions and may cause defects during the growth process.These challenges have aroused great interest in exploring more novel MSs, if possible,with higherTC.

    In recent years, several series of bulk Zn-based MSs with decoupled carrier and spin doping have been reported,including 111-type Li(Zn,Mn)As,[8]Li(Cd,Mn)P,[9]122-type(Ba,K)(Zn,Mn)2As2,[10](Ca,Na)(Zn,Mn)2Sb2,[11]1111-type (La,Ba)(Zn,Mn)AsO,[12]La(Zn,Mn,Cu)SbO,[13]2114-type Cu2(Zn,Mn)(Sn,Al)Se4.[14]The equivalent substitutions of (Zn2+,Mn2+) result in higher chemical solubility of magnetic atoms, compared with III-V MSs.TheTCof(Ba,K)(Zn,Mn)2As2has reached~230 K,[15]which is already higher than that of(Ga,Mn)As.On the other hand,bulk semiconductor materials enable the measurements of microscopic probes,such as neutron scattering,nuclear magnetic resonance(NMR) and muon spin relaxation (μSR),[10,12,16]which has demonstrated that these bulk MSs share the same mechanism of ferromagnetic ordering as that of(Ga,Mn)As.

    Unlike the magnetic semiconductors mentioned above,which can exhibit long-range ferromagnetic ordering, some magnetic semiconductors exhibit spin-glass behavior.[17]Back to 1980’s,when doping Mn into II-VI semiconductors such as ZnTe and HgTe, spin-glass ordering states had been usually observed in (Zn,Mn)Te[18]and (Hg,Mn)Te.[19]The reason is that the iso-valent substitution of Zn or Hg by Mn only introduces magnetic moments, and there are no enough carriers to build up the long-range ferromagnetic ordering.On the other hand,in some recently reported bulk form MSs,such as Ba(Zn,Mn,Cu)2As2[20]and Na(Zn,Mn)Sb,[21]spin-glass ordering state or glassy ferromagnetism has also been observed.These spin-glass state could be ascribed to the magnetic frustration generated by the competition between the indirect ferromagnetic and direct antiferromagnetic interactions.

    As a valuable method in the study of magnetic condensed materials,pressure has been extensively applied to explore the mechanism of magnetic interactions, especially in magnetic semiconductors where ferromagnetic interactions are mediated by carriers.At present, the effect of physical pressure and chemical pressure on ferromagnetism in MSs has been widely studied.For example, in traditional III-V MS(In,Mn)Sb,TChas increased by 25%under a hydrostatic pressure of 2.7 GPa.[22]In addition,in n-type MS Ba(Zn,Co)2As2,the substitutions of(Ba,Sr)and(As,Sb)introduce positive and negative chemical pressure, respectively, and it was found that negative chemical pressure reducedTC, while positive chemical pressure increasedTCby 18%.[23]Previously, starting from the narrow band-gap semiconductor LaZnSbO,MSs(La,Ca)(Zn,Mn)SbO[24]and (La,Sr)(Zn,Mn)SbO[25]with the maximumTC~40 K and~27 K have been reported.We note that for the same doping level,TCis~20 K for(La0.95Ca0.05)(Zn0.95Mn0.05)SbO, whileTCis~14 K for(La0.95Sr0.05)(Zn0.95Mn0.05)SbO.This is largely because the ionic radius of Sr2+is larger than that of Ca2+, that is, negative chemical pressure suppressesTC.

    In this paper, we attempt to synthesize (La, Ba)(Zn,Mn)SbO, and explore how chemical pressure will affect the magnetic properties in whole (La,AE)(Zn,Mn)SbO (AE=Ca, Sr, Ba) system.The substitutions of (La3+,Ba2+) and(Zn2+,Mn2+)in the parent compound LaZnSbO introduce carriers and local magnetic moments, respectively.Next, we fix the doping levelxof Ba2+at 0.05 and change the amount of magnetic atoms Mn, and explore how the spin densities affect magnetism in (La0.95Ba0.05)(Zn1-xMnx)SbO (x=0.025,0.05,0.075,0.10).The DC magnetization measurements show the presence of short-range ferromagnetic correlations in our specimens.The AC magnetic susceptibility measurements demonstrate that (La,Ba)(Zn,Mn)SbO exhibits the characteristics of spin-glass ordering state below spin freezing temperatureTf, rather than long-range ferromagnetic ordering as in(La,Ca)(Zn,Mn)SbO and (La,Sr)(Zn,Mn)SbO.A local maximum of resistance and negative magnetoresistance under an applied magnetic field have been observed, resulting from multiple interactions between quantum localization and carrier correlations.[26]With more Mn doping, resistivity increases significantly, which is attributed to the scattering of carriers caused by magnetic fluctuations.

    2.Experiments

    Polycrystalline samples (La0.95Ba0.05)(Zn1-xMnx)SbO(x=0.025,0.05,0.075,0.10)were prepared through the solidstate reaction method.First of all, high-purity La (99.9%,Alfa Aesar), Ba (99.2%, Alfa Aesar), Zn (99.9%, Alfa Aesar), MnO (99.5%, Aladdin), and Sb (99.999%, Prmat) were mixed according to the nominal composition.The mixtures were placed in the aluminum crucibles,sealed in evacuated silica tubes,then heated to 900?C and kept for 24 h.The precursors were fully grounded and pressed into pellets with 8 mm in diameter,then placed in aluminum crucibles,and sealed in evacuated silica tubes.Subsequently, the pellets were heated to 1100?C and kept for 40 h.All procedures except evacuating silica tubes are conducted in a glove box filled with high-purity argon.

    To determine the crystal structure of polycrystalline samples LaZnSbO and(La0.95Ba0.05)(Zn1-xMnx)SbO(x=0.025,0.05, 0.075, 0.10), the powder x-ray diffraction was carried out by a powder x-ray diffractometer (Model EMPYREAN)with monochromatic Cu-Kα1radiation.The lattice parameters were calculated by Rietveld refinements using open-source GSAS-II package.[27]The DC magnetization was measured on a Quantum Design magnetic property measurement system(MPMS-3).The AC magnetic susceptibility and magnetoresistance were measured on a Quantum Design physical property measurement system(PPMS).Four-probe technique was applied to the measurements of electrical resistivity.

    3.Results and discussion

    We show the x-ray diffraction patterns in the 2θrange of 10?-100?for polycrystalline samples LaZnSbO and(La0.95Ba0.05)(Zn1-xMnx)SbO(x=0.025,0.05,0.075,0.10)in Fig.1(a).The diffraction peaks are consistent with a ZrCuSiAs-type tetragonal structure(space groupP4/nmm),as shown in the inset of Fig.1(b).The Rietveld refinement for(La0.95Ba0.05)(Zn0.95Mn0.05)SbO is plotted in Fig.1(b).The resultant weighted reliable factorRwpis 7.189%, indicating that the samples are in good quality.LaZnSbO share the same structure as that of the direct-gap semiconductor LaZnAsO[28]and Fe-based layered superconductor LaFeAsO1-δ.[29]The structure of LaZnSbO can be described as the stacking of[LaO]+layers and [ZnSb]-layers alongcaxis.[30]A few small peaks (marked as?) are observed in some samples.These are non-magnetic impurities ZnSb, and will not affect the discussion of magnetism in the following.

    The calculated lattice parametersaandcof parent compound LaZnSbO are 4.2285 ?A and 9.5414 ?A, respectively,which is close to previously reported valuesa=4.2260 ?A andc=9.5369 ?A.[31]In Fig.1(c), we can see that the lattice parametersaandcof(La0.95Ba0.05)(Zn1-xMnx)SbO(x=0.025,0.05, 0.075, 0.10) monotonically increase with the increasing of Mn doping, which is due to the fact that the ionic radius of Mn2+is larger than that of Zn2+.Obviously, with the Mn doping level increasing, the unit cell volume also increases monotonically, as shown in Fig.1(d).These provide strong evidences for the successful solution of (La3+,Ba2+)and(Zn2+,Mn2+).

    Fig.1.(a)The powder x-ray diffraction patterns for polycrystals LaZnSbO and(La0.95Ba0.05)(Zn1-xMnx)SbO(x=0.025,0.05,0.075,0.10).The stars(?)represent the traces of impurities ZnSb.(b)The Rietveld refinement for(La0.95Ba0.05)(Zn0.95Mn0.05)SbO.Inset is the crystal structure of parent compound LaZnSbO.(c)The lattice parameters a and c obtained from the Rietveld refinements for(La0.95Ba0.05)(Zn1-xMnx)SbO(x=0.025,0.05,0.075,0.10).(d)The unit cell volume(V)versus doping level x for(La0.95Ba0.05)(Zn1-xMnx)SbO(x=0.025,0.05,0.075,0.10).

    Fig.2.The temperature dependence of DC magnetization M of(La0.95Ba0.05)(Zn0.975Mn0.025)SbO under field-cooling condition in an external field Hext=100 Oe.Inset is the plot of 1/(χ-χ0)versus temperature.The black solid circles are the data,and the red straight line is a linear fitting of the Curie-Weiss law.

    In Fig.2, we show the temperature dependence of DC magnetization(M)under field-cooling modes with the external fieldHext= 100 Oe for (La0.95Ba0.05)(Zn0.975Mn0.025)SbO.We did not observe obvious magnetic transition in the entire temperature range.We fit the data of high temperature region using the Curie-Weiss law and show it in the inset of Fig.2.The obtained Weiss temperature (θ) is~3.0 K.Positiveθindicates that the exchange interaction is ferromagnetic.However, this value is too small, we will not focus on(La0.95Ba0.05)(Zn0.975Mn0.025)SbO in the following.

    In Fig.3(a), we show the temperature dependence of DC magnetization under zero-field-cooling (ZFC) and fieldcooling (FC) modes in an applied fieldHext= 100 Oe for(La0.95Ba0.05)(Zn1-xMnx)SbO (x=0.05, 0.075, 0.10).Magnetization suddenly increases around 20 K-30 K.In addition,the magnetization under FC mode at the base temperature of 2 K,Mbase, is~0.020μB/Mn forx=0.05, then increases to 0.028μB/Mn forx=0.075,and decreases to 0.017μB/Mn forx=0.10.This probably arises from the competition between ferromagnetic and antiferromagnetic interactions among Mn atoms.The probability that two Mn atoms at the nearestneighbor (NN) sites satisfiesP=C14x(1-x)3.For example,for the doping level ofx=0.075,the probability of finding one Mn atom at its NN sites isP=C14×0.075×0.9253=23.74%,andPincreases to 29.16% forx=0.10.With the increasing of Mn atoms, the possibility of Mn atoms at the NN sites increases, which enhances antiferromagnetic interactions.That is,doping too many Mn atoms is detrimental to the ferromagnetic interactions.

    For the purpose of quantifying the temperature of magnetic transition, we plot dM(T)/dTversusTin Fig.3(c).With the increasing of Mn doping, the minimum values of dM(T)/dT(defined asTdif) increase first and then decrease.On the other hand, we fit the magnetic susceptibility curves at the high temperature region using the Curie-Weiss lawχ=χ0+C/(T-θ),Cis the Curie constant related to the effective magnetic moment,χ0is a temperature-independent term, andθis the Weiss temperature.The fitting results of 1/(χ-χ0) versus temperature under FC mode are shown in Fig.3(d).The Weiss temperaturesθare the intersections of the fitting lines with thexaxis.θis 8 K forx=0.05, then increases to 19 K forx=0.075, and decreases to 15 K forx=0.10.The positive values of the Weiss temperaturesθimply the establishment of ferromagnetic correlation between distant Mn atoms.We find thatTdifandθhave the same trend with the change of doping levelx.That is, both increase at first and decrease afterwards with the increasing of Mn doping levelx.This reflects that more Mn atoms suppress the ferromagnetic interactions, which is attributed to the competition between the short-range antiferromagnetic interactions among the NN Mn atoms and long-range ferromagnetic interactions induced by itinerant electrons.[32]

    Fig.3.(a)The temperature dependence of DC magnetization for(La0.95Ba0.05)(Zn1-xMnx)SbO(x=0.05,0.075,0.10)in zero-field-cooling(ZFC)and field-cooling(FC)modes with Hext=100 Oe.Inset shows the enlarged M(T)curves for(La0.95Ba0.05)(Zn1-xMnx)SbO(x=0.05,0.075,0.10).(b)The iso-thermal magnetization for(La0.95Ba0.05)(Zn1-xMnx)SbO(x=0.05,0.075,0.10)measured at 2 K.(c)The dM(T)/dT versus T plots for(La0.95Ba0.05)(Zn1-xMnx)SbO(x=0.05,0.075,0.10).Inset shows an enlargement of 2 K to 30 K region,and arrows mark the position of the minimum values of dM(T)/dT.(d)The curves of 1/(χ-χ0)versus T for(La0.95Ba0.05)(Zn1-xMnx)SbO(x=0.05,0.075,0.10).The lines represent the fitting of Curie-Weiss law,and arrows mark the Weiss temperatures θ.

    We show the iso-thermal magnetization measured at 2 K for (La0.95Ba0.05)(Zn1-xMnx)SbO (x=0.05, 0.075, 0.10) in Fig.3(b).Clear hysteresis can be observed, demonstrating the presence of ferromagnetic interactions.The coercive field(HC)is~8400 Oe forx=0.05,then increases to~11500 Oe forx= 0.075, and decreases to~8150 Oe forx= 0.10.We calculate the effective magnetic moment(μeff)by formulaC=Nμ0μ2eff/3kB.The obtained parameters are listed in Table 1.

    Table 1.The minimum values (Tdif) of dM(T)/dT, the Weiss temperature θ, the effective magnetic moment μeff, the base temperature moment Mbase, and the coercive field HC for (La0.95Ba0.05)(Zn1-xMnx)SbO(x=0.05,0.075,0.10).

    The Arrot-Noakes plots[33,34](M2versusH/M)obtained from iso-thermal magnetization at different temperatures for(La0.95Ba0.05)(Zn0.925Mn0.075)SbO are displayed in Fig.4.No indication of spontaneous magnetization is observed.Combined with the iso-thermal magnetization curves shown in Fig.3(b), where magnetization is still not saturated with the external magnetic field up to 5 T, we can say that it is not a long-range ferromagnetic ordering but a short-range spin-glass ordering state.

    Fig.4.The Arrott plots of (La0.95Ba0.05)(Zn0.925Mn0.075)SbO under various temperatures.

    To further determine whether the samples is in a spinglass ordering state, we conduct the AC magnetic susceptibility for (La0.95Ba0.05)(Zn0.925Mn0.075)SbO under an external AC field amplitude of 10 Oe with different frequencies(f).The cusp positions of the real partχ′in Fig.5(a)and the imaginary partχ′′in Fig.5(b)are obviously frequency-dependent.With the increasing of frequency,the real partχ′and the imaginary partχ′′move towards the higher temperature region,and the magnitude reduces slightly.We define the cusp position of the real partχ′as the static spin freezing temperature(Tf).According to the formulaK=?Tf/[Tf?logf],[35]we obtain the value ofKin Fig.5(c).TheK ~0.055 is whin the range of canonical spin-glass system(K ~0.005-0.08),[36]this indicates that the samples exhibit a spin-glass ordering state belowTf.The random arrangement of Mn atoms in lattice induces not only ferromagnetic but also antiferromagnetic interactions among Mn atoms.Their competition induces the spin-glass ordering state.The similar behavior has also been observed in Ba(Zn,Mn,Cu)2As2.[20]

    Fig.5.The (a) real part χ′ and (b) imaginary part χ′′ of AC magnetic susceptibility for (La0.95Ba0.05)(Zn0.925Mn0.075)SbO at different frequencies f.(c)The frequency dependence of spin freezing temperature Tf plotted as lnTf versus log f for(La0.95Ba0.05)(Zn0.925Mn0.075)SbO.

    We performed the electrical transport measurements on the parent compound LaZnSbO and doped samples(La0.95Ba0.05)(Zn1-xMnx)SbO(x=0.025,0.05,0.075,0.10).The curves of the temperature-dependent electrical resistivityρ(T)are shown in Fig.6(a).The parent compound LaZnSbO shows the semiconducting behavior, as shown in the inset of Fig.6(a).After the solid solution of(La,Ba)and(Zn,Mn),resistivityρ(T) still retains the semiconducting behavior.On the other hand, with the increasing of the Mn-doped levelsx,the magnitude of the resistivity increases significantly.This can be attributed to the scattering of carriers by spins at low temperatures.

    Fig.6.(a) The temperature-dependent resistivity ρ(T) for LaZnSbO (inset) and (La0.95Ba0.05)(Zn1-xMnx)SbO (x=0.025, 0.05, 0.075, 0.10).(b) The magnetoresistance for (La0.95Ba0.05)(Zn0.925Mn0.075)SbO under the external field Hext =0 T, 3 T, 5 T, 7 T, 9 T.The inset shows the field dependence of magnetoresistance(MR ≡[ρ(H)-ρ(0)]/ρ(0))measured in an external field ranging from 0 T to-9 T and 0 T to 9 T at 2 K.(c)The magnetoresistance of(La0.95Ba0.05)(Zn0.9Mn0.1)SbO with Hext=0 T,3 T,5 T,7 T,9 T.Inset shows resistivity ρ(T)versus lnT under Hext=5 T.

    In Fig.6(b), we show the temperature-dependent magnetoresistance curves for (La0.95Ba0.05)(Zn0.925Mn0.075) SbO under the field of 0 T, 3 T, 5 T, 7 T, 9 T, respectively.The resistivity is suppressed rapidly with the increasing of applied magnetic field, that is, the negative magnetoresistance occurs.As the temperature goes down, a local maximum of resistivity (as marked byTmaxin Fig.6(b)) occurs under an applied magnetic field.Similar phenomenon has been observed in many MSs, such as traditional III-V compound(Ga,Mn)As,and novel bulk materials(Sr,Na)(Zn,Mn)2As2[37]and (Ba,K)(Cd,Mn)2As2.[26]This field-induced insulator-tometal transition is probably caused by multiple interactions between quantum localization and carrier correlations.[26]In(Ga,Mn)As system,the behavior of resistivity maximum near the Curie temperatureTCand associated negative magnetoresistance are ascribed to the existence of randomly oriented ferromagnetic bubbles,which drives efficient spin-disorder scattering of carriers,and thus reduces the anti-localization quantum corrections to conductivity.[38,39]Subsequently, as the temperature continues decreasing, a local minimum of resistance (as marked byTminin Fig.6(b)) occurs, followed by a strong upturn.The suppression of spin-dependent scattering in an external magnetic field leads to large negative magnetoresistance (MR ≡[ρ(H)-ρ(0)]/ρ(0)).As shown in the inset of Fig.6(b), for (La0.95Ba0.05)(Zn0.925Mn0.075)SbO, theMRreaches up to-88% under 9 T.Such a colossal negative magnetoresistanceMRhas also been observed in spin-glass(Cd,Mn)Se.[17]

    Compared with the doping levelx=0.075 in Fig.6(b),when the doping levelxincreases to 0.1 as shown in Fig.6(c),the magnitude of resistivity is lifted up.In the inset of Fig.6(c), the resistivity for(La0.95Ba0.05)(Zn0.9Mn0.1)SbO at low temperature underHext=5 T linearly depends on lnT,which mimics that of the Kondo effect.[40]This phenomenon could also be interpreted by quantum corrections to the conductivity in the weakly localized regime,[38,39,41]because spin polarization of carriers destroys the Kondo effect.[39]

    4.Discussion and conclusion

    The ionic radius of Ca2+, Sr2+, and Ba2+are 0.99 ?A,1.13 ?A, and 1.35 ?A, respectively.Replacing La3+with Ca2+, Sr2+, and Ba2+respectively is expanding the lattice successively, which is equivalent to inducing negative chemical pressure into the system.Thus, the expansion of lattice causes Zn/Mn-Sb bond length to increase continuously, and p-d hybridization between local moments and hole carriers is weaken, which results in the suppression of ferromagnetic interactions.[42]Comparing the whole(La0.95AE0.05)(Zn0.95Mn0.05)SbO (AE=Ca, Sr, Ba) system,the magnetization under FC mode at the base temperature of 2 K is~0.60μB/Mn for (La0.95Ca0.05)(Zn0.95Mn0.05)SbO,0.15μB/Mn for (La0.95Sr0.05)(Zn0.95Mn0.05)SbO, and reduces to 0.02μB/Mn for (La0.95Ba0.05)(Zn0.95Mn0.05)SbO.On the other hand, as the ionic radius ofAEions increases, the Curie temperatureTCdecreases from~20 K for (La0.95Ca0.05)(Zn0.95Mn0.05)SbO to 14 K for(La0.95Sr0.05)(Zn0.95Mn0.05)SbO, and no long-range ordering is formed in (La0.95Ba0.05)(Zn0.95Mn0.05)SbO.Furthermore,in the same 1111-type (La,Ba)(Zn,Mn)AsO MS, μSR measurements indicate that ferromagnetic ordering develops in the entire volume.[12]While for(La,Ba)(Zn,Mn)SbO,the ionic radius of Sb3-(2.45 ?A) is larger than that of As3-(2.22 ?A),which leads to the result that the bond length of Zn/Mn-Sb is larger than that of Zn/Mn-As.Therefore, the p-d hybridization in(La,Ba)(Zn,Mn)SbO is much weaker,which eventually develops into spin-glass ordering state.We should note that in both (La,Ba)(Zn,Mn)AsO and (La,Ba)(Zn,Mn)SbO, carriers are coming from the substitutions of Ba for La which takes place in the La-O layers.While in another 1111-type La(Zn,Mn,Cu)SbO compound,the substitutions of Mn and Cu for Zn are taking place in the same Zn-Sb layers where the holes induced by Cu substitutions for Zn mediate the magnetic moments arising from Mn substitutions for Zn.

    To summarize, we successfully synthesized a new 1111-type bulk MS (La,Ba)(Zn,Mn)SbO.The DC magnetization measurements reveal that the ferromagnetic interactions increase initially and then decrease with more Mn atoms doping,and the coercive fieldHCis as high as~11500 Oe.According to the AC magnetic susceptibility measurements,the samples evolve into conventional spin-glass ordering state below the spin freezing temperatureTf.The negative magnetoresistanceMRforx=0.075 has reached-88% at 2 K under the applied field of 9 T.We note that spin-glass ground state is common in II-VI MSs, and not unusual in recent bulk form MSs with decoupled charge and spin doping.The reason is largely ascribed to the strength of magnetic interactions and the competition between the long-range indirect ferromagnetic interactions of remote spins and the short-range direct antiferromagnetic interactions of moments at the NN sites.To understand the general mechanism for the ferromagnetic ordering in all magnetic semiconductors,this physical phenomenon has to be considered as an important part for the whole picture.Our sample enriches the MS families and is helpful for searching new MS materials with highTC.Furthermore,(La,Ba)(Zn,Mn)SbO has the same ZrSiCuAs-type tetragonal structure and favorable lattice matching as Fe-based layered superconductor LaFeAsO,[29]and it is possible to benefit potential spintronics applications.

    Acknowledgements

    Project supported by the National Key Research and Development Program of China (Grant Nos.2022YFA1402701 and 2022YFA1403202), the National Natural Science Foundation of China (Grant No.12074333), and the Key Research and Development Program of Zhejiang Province,China(Grant No.2021C01002).

    猜你喜歡
    金甌
    一年只用一次的杯子
    陳中建
    金甌永固杯
    百科知識(2022年2期)2022-01-26 04:10:00
    夏逸星
    嚴(yán)復(fù)創(chuàng)作清朝國歌《鞏金甌》
    贊港珠澳大橋
    清乾隆金嵌寶金甌永固杯
    銀潮(2020年4期)2020-04-22 07:23:10
    浣溪沙·鎮(zhèn)遠(yuǎn)東城移民區(qū)
    晚晴(2019年9期)2019-11-01 02:10:27
    浪淘沙·慶祝中國共產(chǎn)黨誕生97周年
    大江南北(2018年5期)2018-11-20 08:29:59
    金甌永固杯
    国产探花在线观看一区二区| 亚洲电影在线观看av| 2021天堂中文幕一二区在线观| 高清日韩中文字幕在线| 最近最新免费中文字幕在线| 桃色一区二区三区在线观看| 人人妻人人看人人澡| 1000部很黄的大片| 一a级毛片在线观看| av国产免费在线观看| 欧美zozozo另类| 国产一区二区亚洲精品在线观看| 一个人观看的视频www高清免费观看| 日本一二三区视频观看| 国产成人欧美在线观看| 欧美日韩福利视频一区二区| 性欧美人与动物交配| 在线免费观看不下载黄p国产 | 亚洲最大成人中文| 欧美乱色亚洲激情| 精品国产超薄肉色丝袜足j| 在线视频色国产色| 久久久久久久久久黄片| 香蕉av资源在线| 哪里可以看免费的av片| 久久久色成人| 天堂网av新在线| 久久精品91蜜桃| 国产欧美日韩一区二区三| 日韩av在线大香蕉| 亚洲久久久久久中文字幕| 日本熟妇午夜| 精华霜和精华液先用哪个| 制服丝袜大香蕉在线| 欧美色欧美亚洲另类二区| 天堂av国产一区二区熟女人妻| av在线蜜桃| 美女大奶头视频| 国产精品一及| 亚洲精品国产精品久久久不卡| 亚洲av美国av| 噜噜噜噜噜久久久久久91| 欧美zozozo另类| 一本久久中文字幕| 亚洲人成伊人成综合网2020| 色综合婷婷激情| 国产三级中文精品| 亚洲av电影在线进入| 国产真实乱freesex| 天堂网av新在线| 亚洲一区二区三区色噜噜| 久久久久久久久久黄片| 精品久久久久久久末码| 1024手机看黄色片| 久久午夜亚洲精品久久| 成年人黄色毛片网站| 亚洲精品影视一区二区三区av| 俄罗斯特黄特色一大片| а√天堂www在线а√下载| 男插女下体视频免费在线播放| 国产成人aa在线观看| 日日摸夜夜添夜夜添小说| 身体一侧抽搐| 国产三级黄色录像| 三级毛片av免费| 午夜免费男女啪啪视频观看 | 日本黄色片子视频| 无限看片的www在线观看| 日韩欧美精品v在线| 日韩欧美免费精品| 中出人妻视频一区二区| 网址你懂的国产日韩在线| 国产伦精品一区二区三区视频9 | 亚洲欧美日韩东京热| 在线视频色国产色| 久久亚洲真实| 国产久久久一区二区三区| 一个人看的www免费观看视频| 九九久久精品国产亚洲av麻豆| 欧美激情在线99| 法律面前人人平等表现在哪些方面| 国产精品99久久99久久久不卡| 99久久精品热视频| 亚洲精华国产精华精| 久久伊人香网站| 手机成人av网站| 草草在线视频免费看| 亚洲精品久久国产高清桃花| 久久人妻av系列| 成年女人看的毛片在线观看| 国产成年人精品一区二区| 日日干狠狠操夜夜爽| 亚洲精品久久国产高清桃花| 热99re8久久精品国产| 免费在线观看亚洲国产| 99久久精品国产亚洲精品| 久久伊人香网站| 欧美大码av| 中文字幕人妻丝袜一区二区| 国产精品香港三级国产av潘金莲| www.www免费av| 久久久久精品国产欧美久久久| 九九在线视频观看精品| 亚洲国产欧洲综合997久久,| 午夜激情欧美在线| 国产探花极品一区二区| 中文字幕人成人乱码亚洲影| 深爱激情五月婷婷| 成年人黄色毛片网站| 观看免费一级毛片| 香蕉久久夜色| 在线观看66精品国产| 两个人的视频大全免费| 国产高清视频在线播放一区| 国产主播在线观看一区二区| 精品久久久久久久毛片微露脸| 天天躁日日操中文字幕| 97超级碰碰碰精品色视频在线观看| 人人妻人人看人人澡| 亚洲国产精品sss在线观看| 久久久久久久精品吃奶| 99热这里只有是精品50| 人人妻,人人澡人人爽秒播| 亚洲七黄色美女视频| 99久久成人亚洲精品观看| 亚洲电影在线观看av| 国产一区二区激情短视频| 老司机午夜十八禁免费视频| 日韩国内少妇激情av| 久久精品国产亚洲av香蕉五月| 亚洲五月婷婷丁香| 一级毛片高清免费大全| 无遮挡黄片免费观看| 国产精品 国内视频| 国产精品永久免费网站| 亚洲va日本ⅴa欧美va伊人久久| 国产av麻豆久久久久久久| 黄色日韩在线| 国产精品影院久久| 国产一区二区三区在线臀色熟女| 亚洲avbb在线观看| 国产99白浆流出| 成人特级av手机在线观看| 久久草成人影院| 黄色日韩在线| 国产一区二区亚洲精品在线观看| 特大巨黑吊av在线直播| 亚洲成人免费电影在线观看| 国产精品自产拍在线观看55亚洲| 亚洲国产精品久久男人天堂| 亚洲精品一卡2卡三卡4卡5卡| 黄片小视频在线播放| 精品熟女少妇八av免费久了| 亚洲最大成人中文| 色吧在线观看| 少妇人妻精品综合一区二区 | av天堂中文字幕网| 国产一区二区在线av高清观看| 国产97色在线日韩免费| 免费av不卡在线播放| 哪里可以看免费的av片| 婷婷丁香在线五月| 成人特级黄色片久久久久久久| 亚洲国产欧美人成| 成熟少妇高潮喷水视频| 成人特级黄色片久久久久久久| 久久精品影院6| 成人鲁丝片一二三区免费| 亚洲精品一卡2卡三卡4卡5卡| 99在线人妻在线中文字幕| 桃色一区二区三区在线观看| 在线观看66精品国产| 国产一区二区激情短视频| 老司机午夜福利在线观看视频| 久久香蕉精品热| 久久久久久国产a免费观看| www国产在线视频色| 亚洲人成网站在线播放欧美日韩| 综合色av麻豆| 日本在线视频免费播放| 国产三级中文精品| 一边摸一边抽搐一进一小说| 9191精品国产免费久久| 国产欧美日韩一区二区三| 一进一出抽搐动态| 少妇高潮的动态图| 亚洲精品美女久久久久99蜜臀| 国产视频内射| 日本黄色视频三级网站网址| 国产一区二区三区在线臀色熟女| 成人18禁在线播放| 男人舔奶头视频| 亚洲五月天丁香| 成人欧美大片| 亚洲美女视频黄频| 少妇人妻精品综合一区二区 | 日本黄大片高清| 亚洲av一区综合| 国产aⅴ精品一区二区三区波| 神马国产精品三级电影在线观看| 国模一区二区三区四区视频| 亚洲无线观看免费| 中文字幕人妻丝袜一区二区| 亚洲av电影不卡..在线观看| 老熟妇仑乱视频hdxx| 性色av乱码一区二区三区2| 99久久成人亚洲精品观看| 久久久久亚洲av毛片大全| 精品久久久久久久毛片微露脸| 亚洲最大成人手机在线| 国产 一区 欧美 日韩| 国产精品国产高清国产av| 国产精品久久久久久亚洲av鲁大| 亚洲av免费在线观看| 18美女黄网站色大片免费观看| 欧美一级毛片孕妇| 国产伦在线观看视频一区| 91av网一区二区| 久久6这里有精品| 99久久精品国产亚洲精品| 美女高潮喷水抽搐中文字幕| 国产精品精品国产色婷婷| av片东京热男人的天堂| 99久久99久久久精品蜜桃| 国产真人三级小视频在线观看| 亚洲欧美日韩卡通动漫| svipshipincom国产片| 在线观看免费视频日本深夜| 国产精品久久久人人做人人爽| 欧美色视频一区免费| 久久久精品大字幕| 国产av在哪里看| 中亚洲国语对白在线视频| 美女 人体艺术 gogo| av片东京热男人的天堂| 欧美绝顶高潮抽搐喷水| 亚洲专区中文字幕在线| 婷婷亚洲欧美| 欧美激情久久久久久爽电影| 成人三级黄色视频| 成人午夜高清在线视频| 亚洲avbb在线观看| 亚洲va日本ⅴa欧美va伊人久久| 可以在线观看毛片的网站| 999久久久精品免费观看国产| 亚洲熟妇熟女久久| 日本黄色片子视频| 小说图片视频综合网站| 亚洲国产欧洲综合997久久,| 热99re8久久精品国产| 岛国在线观看网站| 国产精品香港三级国产av潘金莲| 母亲3免费完整高清在线观看| 国产97色在线日韩免费| 久久精品国产亚洲av涩爱 | 最新在线观看一区二区三区| 9191精品国产免费久久| 国产精品av视频在线免费观看| 国产精品 国内视频| 亚洲欧美日韩高清在线视频| 中文字幕av成人在线电影| 亚洲七黄色美女视频| 日本在线视频免费播放| 国产一级毛片七仙女欲春2| 亚洲av免费在线观看| 国产精品爽爽va在线观看网站| 国产老妇女一区| 久久99热这里只有精品18| 亚洲五月婷婷丁香| 国产激情偷乱视频一区二区| 嫩草影视91久久| 亚洲无线在线观看| av片东京热男人的天堂| 成人国产综合亚洲| 国产欧美日韩一区二区三| 欧美色视频一区免费| 欧美+日韩+精品| 中文字幕人成人乱码亚洲影| 热99re8久久精品国产| 精品国产亚洲在线| 中国美女看黄片| 免费看光身美女| 90打野战视频偷拍视频| 免费在线观看日本一区| 黄色女人牲交| 国产精品久久电影中文字幕| 亚洲成人中文字幕在线播放| 夜夜夜夜夜久久久久| 91久久精品电影网| 亚洲成av人片免费观看| 麻豆成人av在线观看| 日本a在线网址| 午夜日韩欧美国产| 国产伦精品一区二区三区视频9 | 国产成人欧美在线观看| 日本熟妇午夜| 日韩 欧美 亚洲 中文字幕| 午夜免费激情av| 美女被艹到高潮喷水动态| www日本黄色视频网| 天天躁日日操中文字幕| 精品久久久久久久久久免费视频| 嫩草影视91久久| 欧美在线一区亚洲| 日本一本二区三区精品| 久久精品人妻少妇| а√天堂www在线а√下载| 真实男女啪啪啪动态图| 人人妻,人人澡人人爽秒播| 亚洲国产精品成人综合色| 黑人欧美特级aaaaaa片| 国产真实伦视频高清在线观看 | 亚洲成人久久爱视频| 午夜免费男女啪啪视频观看 | 国产精品美女特级片免费视频播放器| 在线观看舔阴道视频| 亚洲精品成人久久久久久| 久久九九热精品免费| 在线国产一区二区在线| 成人三级黄色视频| 亚洲最大成人手机在线| 日韩大尺度精品在线看网址| 精品人妻偷拍中文字幕| 麻豆国产97在线/欧美| 精品午夜福利视频在线观看一区| 三级男女做爰猛烈吃奶摸视频| 国产国拍精品亚洲av在线观看 | 午夜日韩欧美国产| 热99在线观看视频| 好男人在线观看高清免费视频| 中文字幕久久专区| 精品不卡国产一区二区三区| 亚洲美女黄片视频| 欧美成人a在线观看| 欧美一级毛片孕妇| 日本成人三级电影网站| 亚洲精品国产精品久久久不卡| 美女高潮的动态| 小说图片视频综合网站| 女生性感内裤真人,穿戴方法视频| 欧美一级毛片孕妇| 99视频精品全部免费 在线| 亚洲内射少妇av| 一本一本综合久久| 一级毛片高清免费大全| 嫩草影视91久久| 久久久久国内视频| 国产伦一二天堂av在线观看| 久久这里只有精品中国| 国产蜜桃级精品一区二区三区| 久久精品国产清高在天天线| x7x7x7水蜜桃| 全区人妻精品视频| 中文字幕熟女人妻在线| 最新美女视频免费是黄的| 午夜福利在线观看免费完整高清在 | eeuss影院久久| 1024手机看黄色片| 香蕉久久夜色| 中文字幕熟女人妻在线| 国产伦在线观看视频一区| 精品人妻偷拍中文字幕| 国产成人av教育| 身体一侧抽搐| 欧美成人性av电影在线观看| 亚洲av成人精品一区久久| 精品一区二区三区视频在线观看免费| 精品久久久久久久毛片微露脸| 欧美日韩亚洲国产一区二区在线观看| h日本视频在线播放| 国产亚洲欧美在线一区二区| 人妻久久中文字幕网| 成年女人看的毛片在线观看| 国产精品女同一区二区软件 | 少妇裸体淫交视频免费看高清| 一区二区三区国产精品乱码| a级毛片a级免费在线| 波多野结衣巨乳人妻| 亚洲av日韩精品久久久久久密| av专区在线播放| 99在线人妻在线中文字幕| 免费人成在线观看视频色| 国产成人福利小说| 亚洲午夜理论影院| 日本a在线网址| 少妇熟女aⅴ在线视频| 亚洲七黄色美女视频| 成人国产综合亚洲| 国产精品久久视频播放| 在线观看免费视频日本深夜| 日韩亚洲欧美综合| 99久久久亚洲精品蜜臀av| 在线观看日韩欧美| 国内少妇人妻偷人精品xxx网站| 在线观看免费午夜福利视频| av天堂在线播放| 夜夜夜夜夜久久久久| 亚洲自拍偷在线| 久久草成人影院| 国产一区在线观看成人免费| 精品久久久久久久久久久久久| 亚洲美女视频黄频| 级片在线观看| 亚洲国产欧洲综合997久久,| 成人精品一区二区免费| 听说在线观看完整版免费高清| 国产精品亚洲美女久久久| 69人妻影院| 婷婷亚洲欧美| 黄片大片在线免费观看| 色哟哟哟哟哟哟| 亚洲成人久久爱视频| 亚洲精品在线观看二区| 99久久综合精品五月天人人| 免费av毛片视频| 制服人妻中文乱码| 亚洲精品国产精品久久久不卡| 怎么达到女性高潮| 一个人免费在线观看的高清视频| 久久精品国产亚洲av涩爱 | av片东京热男人的天堂| 国产不卡一卡二| 亚洲av不卡在线观看| 久久亚洲精品不卡| 精品久久久久久久久久久久久| 国产精品一及| 免费一级毛片在线播放高清视频| 免费观看人在逋| 老熟妇乱子伦视频在线观看| 欧美激情在线99| 日本成人三级电影网站| 一级作爱视频免费观看| 午夜福利18| 亚洲国产中文字幕在线视频| 在线免费观看的www视频| 可以在线观看毛片的网站| 亚洲狠狠婷婷综合久久图片| 18+在线观看网站| 国内毛片毛片毛片毛片毛片| 黄色日韩在线| 最近最新中文字幕大全免费视频| 亚洲中文日韩欧美视频| 亚洲,欧美精品.| 亚洲欧美精品综合久久99| 好男人电影高清在线观看| 国产精华一区二区三区| 欧美激情久久久久久爽电影| 亚洲狠狠婷婷综合久久图片| 欧美最黄视频在线播放免费| 丰满的人妻完整版| 亚洲第一欧美日韩一区二区三区| 久久伊人香网站| 国产私拍福利视频在线观看| 国产激情欧美一区二区| 叶爱在线成人免费视频播放| 国语自产精品视频在线第100页| 嫁个100分男人电影在线观看| 国产精品综合久久久久久久免费| 两人在一起打扑克的视频| 午夜福利欧美成人| 亚洲av成人精品一区久久| 亚洲av日韩精品久久久久久密| 老司机深夜福利视频在线观看| 欧美黑人巨大hd| 99久久九九国产精品国产免费| 狠狠狠狠99中文字幕| 在线播放无遮挡| 床上黄色一级片| 观看免费一级毛片| 免费av毛片视频| 一卡2卡三卡四卡精品乱码亚洲| 婷婷亚洲欧美| 超碰av人人做人人爽久久 | 1000部很黄的大片| 国产精华一区二区三区| 久久国产精品影院| 亚洲黑人精品在线| 少妇熟女aⅴ在线视频| 欧美一区二区亚洲| 看免费av毛片| 宅男免费午夜| 国产精品 欧美亚洲| 国产男靠女视频免费网站| 国产美女午夜福利| 精品电影一区二区在线| 午夜精品久久久久久毛片777| 亚洲成人免费电影在线观看| www.www免费av| 日本成人三级电影网站| 亚洲精华国产精华精| 亚洲av二区三区四区| 夜夜爽天天搞| 亚洲成人免费电影在线观看| 免费在线观看亚洲国产| 国内揄拍国产精品人妻在线| 成人欧美大片| 69av精品久久久久久| 亚洲国产高清在线一区二区三| 一级黄片播放器| 热99在线观看视频| 国产伦精品一区二区三区四那| 亚洲七黄色美女视频| 国产午夜福利久久久久久| 欧美色欧美亚洲另类二区| 男女做爰动态图高潮gif福利片| 国产激情欧美一区二区| 亚洲av熟女| 三级国产精品欧美在线观看| 久久久国产成人精品二区| 日韩 欧美 亚洲 中文字幕| 亚洲久久久久久中文字幕| av国产免费在线观看| www国产在线视频色| 午夜影院日韩av| 首页视频小说图片口味搜索| 亚洲乱码一区二区免费版| 夜夜夜夜夜久久久久| 2021天堂中文幕一二区在线观| 亚洲久久久久久中文字幕| 变态另类丝袜制服| 国产精品国产高清国产av| 久久久国产成人免费| 美女免费视频网站| 高潮久久久久久久久久久不卡| 18禁在线播放成人免费| 精品不卡国产一区二区三区| 国产日本99.免费观看| 国产欧美日韩一区二区三| 日韩欧美在线乱码| 欧美xxxx黑人xx丫x性爽| 精品电影一区二区在线| 欧洲精品卡2卡3卡4卡5卡区| 欧美性猛交黑人性爽| 亚洲av五月六月丁香网| 欧美日韩福利视频一区二区| 欧美bdsm另类| 亚洲av中文字字幕乱码综合| 亚洲精华国产精华精| 男人舔奶头视频| 国内久久婷婷六月综合欲色啪| 久久久久久大精品| 在线a可以看的网站| 99热6这里只有精品| 国产精品av视频在线免费观看| 一级毛片高清免费大全| 欧美成人一区二区免费高清观看| 97碰自拍视频| 国内久久婷婷六月综合欲色啪| or卡值多少钱| 国产精品久久久久久久电影 | 麻豆一二三区av精品| 母亲3免费完整高清在线观看| 亚洲 国产 在线| 国内久久婷婷六月综合欲色啪| 露出奶头的视频| 欧美日韩综合久久久久久 | 欧美日韩乱码在线| av在线蜜桃| 午夜福利成人在线免费观看| 国产黄a三级三级三级人| 国产黄片美女视频| 精品熟女少妇八av免费久了| 亚洲美女视频黄频| 在线国产一区二区在线| 国模一区二区三区四区视频| 日韩精品青青久久久久久| 丰满人妻熟妇乱又伦精品不卡| 亚洲av电影在线进入| 全区人妻精品视频| 亚洲第一欧美日韩一区二区三区| 变态另类丝袜制服| 波野结衣二区三区在线 | 12—13女人毛片做爰片一| 欧美日韩亚洲国产一区二区在线观看| www.999成人在线观看| 小蜜桃在线观看免费完整版高清| 听说在线观看完整版免费高清| 国内精品一区二区在线观看| 免费看十八禁软件| 久久国产精品影院| 亚洲国产色片| 黄色女人牲交| 91在线观看av| tocl精华| 一a级毛片在线观看| 午夜免费男女啪啪视频观看 | 久久国产精品影院| 18禁裸乳无遮挡免费网站照片| 国产99白浆流出| av片东京热男人的天堂| 亚洲片人在线观看| 中文在线观看免费www的网站| 久久久久久国产a免费观看| 久久国产精品影院| www国产在线视频色| 国产一区二区激情短视频| 国产视频一区二区在线看| 女人被狂操c到高潮| 19禁男女啪啪无遮挡网站| 小说图片视频综合网站| 免费看日本二区| 久久久久久久午夜电影| 夜夜看夜夜爽夜夜摸| 午夜福利成人在线免费观看| 久久久久久久午夜电影| 亚洲欧美日韩东京热| 久久精品91无色码中文字幕| 麻豆久久精品国产亚洲av| 亚洲成a人片在线一区二区| 欧美午夜高清在线| 亚洲va日本ⅴa欧美va伊人久久| bbb黄色大片| 香蕉av资源在线| 又黄又粗又硬又大视频| 操出白浆在线播放|