• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Observation of spin-glass behavior in 1111-type magnetic semiconductor(La,Ba)(Zn,Mn)SbO

    2023-12-15 11:51:22XueqinZhao趙雪芹JinouDong董金甌RufeiZhang張茹菲QiaolinYang楊巧林LingfengXie謝玲鳳LichengFu傅立承YilunGu顧軼倫XunPan潘洵andFanlongNing寧凡龍
    Chinese Physics B 2023年12期
    關(guān)鍵詞:金甌

    Xueqin Zhao(趙雪芹), Jinou Dong(董金甌), Rufei Zhang(張茹菲), Qiaolin Yang(楊巧林),Lingfeng Xie(謝玲鳳), Licheng Fu(傅立承), Yilun Gu(顧軼倫),Xun Pan(潘洵), and Fanlong Ning(寧凡龍),2,3,4,?

    1Zhejiang Province Key Laboratory of Quantum Technology and Device and School of Physics,Zhejiang University,Hangzhou 310027,China

    2State Key Laboratory of Silicon and Advanced Semiconductor Materials,Zhejiang University,Hangzhou 310027,China

    3Collaborative Innovation Center of Advanced Microstructures,Nanjing University,Nanjing 210093,China

    4Science and Technology Innovation Center,Chifeng High-Tech Industrial Development Zone,Chifeng 025250,China

    Keywords: magnetic semiconductors,spin-glass,negative magnetoresistance

    1.Introduction

    The research of spintronics is devoted to manipulating both charge and spin freedom of electrons.[1-3]As an important branch in spintronics, magnetic semiconductors (MSs)provide a new perspective for the preparation of novel electronics devices.III-V MS (Ga,Mn)As is the most wellinvestigated system,[4]which is more compatible with optoelectronic devices applied in industry.In the mid-1990s, the fabrication of(Ga,Mn)As films made significant progress via low temperature molecular beam epitaxy (LT-MBE) method.With the injection of spin-polarized carriers,(Ga,Mn)As provides a new choice for the preparation of multifunctional heterojunctions with non-magnetic semiconductor GaAs.For example, Ohnoet al.has successfully prepared spin-polarized light-emitting diode (Spin-LED) based on (Ga,Mn)As.[5]At present,the Curie temperature(TC)of(Ga,Mn)As has reached~190 K-200 K,[6,7]which is still below room temperature.Moreover, the inequivalent substitutions of(Ga3+, Mn2+)introduce carriers and magnetic moments simultaneously,which makes it difficult to control carrier densities and magnetic moments independently.In addition, the MBE method is a nonequilibrium growth method, which makes the properties of materials sensitive to the growth conditions and may cause defects during the growth process.These challenges have aroused great interest in exploring more novel MSs, if possible,with higherTC.

    In recent years, several series of bulk Zn-based MSs with decoupled carrier and spin doping have been reported,including 111-type Li(Zn,Mn)As,[8]Li(Cd,Mn)P,[9]122-type(Ba,K)(Zn,Mn)2As2,[10](Ca,Na)(Zn,Mn)2Sb2,[11]1111-type (La,Ba)(Zn,Mn)AsO,[12]La(Zn,Mn,Cu)SbO,[13]2114-type Cu2(Zn,Mn)(Sn,Al)Se4.[14]The equivalent substitutions of (Zn2+,Mn2+) result in higher chemical solubility of magnetic atoms, compared with III-V MSs.TheTCof(Ba,K)(Zn,Mn)2As2has reached~230 K,[15]which is already higher than that of(Ga,Mn)As.On the other hand,bulk semiconductor materials enable the measurements of microscopic probes,such as neutron scattering,nuclear magnetic resonance(NMR) and muon spin relaxation (μSR),[10,12,16]which has demonstrated that these bulk MSs share the same mechanism of ferromagnetic ordering as that of(Ga,Mn)As.

    Unlike the magnetic semiconductors mentioned above,which can exhibit long-range ferromagnetic ordering, some magnetic semiconductors exhibit spin-glass behavior.[17]Back to 1980’s,when doping Mn into II-VI semiconductors such as ZnTe and HgTe, spin-glass ordering states had been usually observed in (Zn,Mn)Te[18]and (Hg,Mn)Te.[19]The reason is that the iso-valent substitution of Zn or Hg by Mn only introduces magnetic moments, and there are no enough carriers to build up the long-range ferromagnetic ordering.On the other hand,in some recently reported bulk form MSs,such as Ba(Zn,Mn,Cu)2As2[20]and Na(Zn,Mn)Sb,[21]spin-glass ordering state or glassy ferromagnetism has also been observed.These spin-glass state could be ascribed to the magnetic frustration generated by the competition between the indirect ferromagnetic and direct antiferromagnetic interactions.

    As a valuable method in the study of magnetic condensed materials,pressure has been extensively applied to explore the mechanism of magnetic interactions, especially in magnetic semiconductors where ferromagnetic interactions are mediated by carriers.At present, the effect of physical pressure and chemical pressure on ferromagnetism in MSs has been widely studied.For example, in traditional III-V MS(In,Mn)Sb,TChas increased by 25%under a hydrostatic pressure of 2.7 GPa.[22]In addition,in n-type MS Ba(Zn,Co)2As2,the substitutions of(Ba,Sr)and(As,Sb)introduce positive and negative chemical pressure, respectively, and it was found that negative chemical pressure reducedTC, while positive chemical pressure increasedTCby 18%.[23]Previously, starting from the narrow band-gap semiconductor LaZnSbO,MSs(La,Ca)(Zn,Mn)SbO[24]and (La,Sr)(Zn,Mn)SbO[25]with the maximumTC~40 K and~27 K have been reported.We note that for the same doping level,TCis~20 K for(La0.95Ca0.05)(Zn0.95Mn0.05)SbO, whileTCis~14 K for(La0.95Sr0.05)(Zn0.95Mn0.05)SbO.This is largely because the ionic radius of Sr2+is larger than that of Ca2+, that is, negative chemical pressure suppressesTC.

    In this paper, we attempt to synthesize (La, Ba)(Zn,Mn)SbO, and explore how chemical pressure will affect the magnetic properties in whole (La,AE)(Zn,Mn)SbO (AE=Ca, Sr, Ba) system.The substitutions of (La3+,Ba2+) and(Zn2+,Mn2+)in the parent compound LaZnSbO introduce carriers and local magnetic moments, respectively.Next, we fix the doping levelxof Ba2+at 0.05 and change the amount of magnetic atoms Mn, and explore how the spin densities affect magnetism in (La0.95Ba0.05)(Zn1-xMnx)SbO (x=0.025,0.05,0.075,0.10).The DC magnetization measurements show the presence of short-range ferromagnetic correlations in our specimens.The AC magnetic susceptibility measurements demonstrate that (La,Ba)(Zn,Mn)SbO exhibits the characteristics of spin-glass ordering state below spin freezing temperatureTf, rather than long-range ferromagnetic ordering as in(La,Ca)(Zn,Mn)SbO and (La,Sr)(Zn,Mn)SbO.A local maximum of resistance and negative magnetoresistance under an applied magnetic field have been observed, resulting from multiple interactions between quantum localization and carrier correlations.[26]With more Mn doping, resistivity increases significantly, which is attributed to the scattering of carriers caused by magnetic fluctuations.

    2.Experiments

    Polycrystalline samples (La0.95Ba0.05)(Zn1-xMnx)SbO(x=0.025,0.05,0.075,0.10)were prepared through the solidstate reaction method.First of all, high-purity La (99.9%,Alfa Aesar), Ba (99.2%, Alfa Aesar), Zn (99.9%, Alfa Aesar), MnO (99.5%, Aladdin), and Sb (99.999%, Prmat) were mixed according to the nominal composition.The mixtures were placed in the aluminum crucibles,sealed in evacuated silica tubes,then heated to 900?C and kept for 24 h.The precursors were fully grounded and pressed into pellets with 8 mm in diameter,then placed in aluminum crucibles,and sealed in evacuated silica tubes.Subsequently, the pellets were heated to 1100?C and kept for 40 h.All procedures except evacuating silica tubes are conducted in a glove box filled with high-purity argon.

    To determine the crystal structure of polycrystalline samples LaZnSbO and(La0.95Ba0.05)(Zn1-xMnx)SbO(x=0.025,0.05, 0.075, 0.10), the powder x-ray diffraction was carried out by a powder x-ray diffractometer (Model EMPYREAN)with monochromatic Cu-Kα1radiation.The lattice parameters were calculated by Rietveld refinements using open-source GSAS-II package.[27]The DC magnetization was measured on a Quantum Design magnetic property measurement system(MPMS-3).The AC magnetic susceptibility and magnetoresistance were measured on a Quantum Design physical property measurement system(PPMS).Four-probe technique was applied to the measurements of electrical resistivity.

    3.Results and discussion

    We show the x-ray diffraction patterns in the 2θrange of 10?-100?for polycrystalline samples LaZnSbO and(La0.95Ba0.05)(Zn1-xMnx)SbO(x=0.025,0.05,0.075,0.10)in Fig.1(a).The diffraction peaks are consistent with a ZrCuSiAs-type tetragonal structure(space groupP4/nmm),as shown in the inset of Fig.1(b).The Rietveld refinement for(La0.95Ba0.05)(Zn0.95Mn0.05)SbO is plotted in Fig.1(b).The resultant weighted reliable factorRwpis 7.189%, indicating that the samples are in good quality.LaZnSbO share the same structure as that of the direct-gap semiconductor LaZnAsO[28]and Fe-based layered superconductor LaFeAsO1-δ.[29]The structure of LaZnSbO can be described as the stacking of[LaO]+layers and [ZnSb]-layers alongcaxis.[30]A few small peaks (marked as?) are observed in some samples.These are non-magnetic impurities ZnSb, and will not affect the discussion of magnetism in the following.

    The calculated lattice parametersaandcof parent compound LaZnSbO are 4.2285 ?A and 9.5414 ?A, respectively,which is close to previously reported valuesa=4.2260 ?A andc=9.5369 ?A.[31]In Fig.1(c), we can see that the lattice parametersaandcof(La0.95Ba0.05)(Zn1-xMnx)SbO(x=0.025,0.05, 0.075, 0.10) monotonically increase with the increasing of Mn doping, which is due to the fact that the ionic radius of Mn2+is larger than that of Zn2+.Obviously, with the Mn doping level increasing, the unit cell volume also increases monotonically, as shown in Fig.1(d).These provide strong evidences for the successful solution of (La3+,Ba2+)and(Zn2+,Mn2+).

    Fig.1.(a)The powder x-ray diffraction patterns for polycrystals LaZnSbO and(La0.95Ba0.05)(Zn1-xMnx)SbO(x=0.025,0.05,0.075,0.10).The stars(?)represent the traces of impurities ZnSb.(b)The Rietveld refinement for(La0.95Ba0.05)(Zn0.95Mn0.05)SbO.Inset is the crystal structure of parent compound LaZnSbO.(c)The lattice parameters a and c obtained from the Rietveld refinements for(La0.95Ba0.05)(Zn1-xMnx)SbO(x=0.025,0.05,0.075,0.10).(d)The unit cell volume(V)versus doping level x for(La0.95Ba0.05)(Zn1-xMnx)SbO(x=0.025,0.05,0.075,0.10).

    Fig.2.The temperature dependence of DC magnetization M of(La0.95Ba0.05)(Zn0.975Mn0.025)SbO under field-cooling condition in an external field Hext=100 Oe.Inset is the plot of 1/(χ-χ0)versus temperature.The black solid circles are the data,and the red straight line is a linear fitting of the Curie-Weiss law.

    In Fig.2, we show the temperature dependence of DC magnetization(M)under field-cooling modes with the external fieldHext= 100 Oe for (La0.95Ba0.05)(Zn0.975Mn0.025)SbO.We did not observe obvious magnetic transition in the entire temperature range.We fit the data of high temperature region using the Curie-Weiss law and show it in the inset of Fig.2.The obtained Weiss temperature (θ) is~3.0 K.Positiveθindicates that the exchange interaction is ferromagnetic.However, this value is too small, we will not focus on(La0.95Ba0.05)(Zn0.975Mn0.025)SbO in the following.

    In Fig.3(a), we show the temperature dependence of DC magnetization under zero-field-cooling (ZFC) and fieldcooling (FC) modes in an applied fieldHext= 100 Oe for(La0.95Ba0.05)(Zn1-xMnx)SbO (x=0.05, 0.075, 0.10).Magnetization suddenly increases around 20 K-30 K.In addition,the magnetization under FC mode at the base temperature of 2 K,Mbase, is~0.020μB/Mn forx=0.05, then increases to 0.028μB/Mn forx=0.075,and decreases to 0.017μB/Mn forx=0.10.This probably arises from the competition between ferromagnetic and antiferromagnetic interactions among Mn atoms.The probability that two Mn atoms at the nearestneighbor (NN) sites satisfiesP=C14x(1-x)3.For example,for the doping level ofx=0.075,the probability of finding one Mn atom at its NN sites isP=C14×0.075×0.9253=23.74%,andPincreases to 29.16% forx=0.10.With the increasing of Mn atoms, the possibility of Mn atoms at the NN sites increases, which enhances antiferromagnetic interactions.That is,doping too many Mn atoms is detrimental to the ferromagnetic interactions.

    For the purpose of quantifying the temperature of magnetic transition, we plot dM(T)/dTversusTin Fig.3(c).With the increasing of Mn doping, the minimum values of dM(T)/dT(defined asTdif) increase first and then decrease.On the other hand, we fit the magnetic susceptibility curves at the high temperature region using the Curie-Weiss lawχ=χ0+C/(T-θ),Cis the Curie constant related to the effective magnetic moment,χ0is a temperature-independent term, andθis the Weiss temperature.The fitting results of 1/(χ-χ0) versus temperature under FC mode are shown in Fig.3(d).The Weiss temperaturesθare the intersections of the fitting lines with thexaxis.θis 8 K forx=0.05, then increases to 19 K forx=0.075, and decreases to 15 K forx=0.10.The positive values of the Weiss temperaturesθimply the establishment of ferromagnetic correlation between distant Mn atoms.We find thatTdifandθhave the same trend with the change of doping levelx.That is, both increase at first and decrease afterwards with the increasing of Mn doping levelx.This reflects that more Mn atoms suppress the ferromagnetic interactions, which is attributed to the competition between the short-range antiferromagnetic interactions among the NN Mn atoms and long-range ferromagnetic interactions induced by itinerant electrons.[32]

    Fig.3.(a)The temperature dependence of DC magnetization for(La0.95Ba0.05)(Zn1-xMnx)SbO(x=0.05,0.075,0.10)in zero-field-cooling(ZFC)and field-cooling(FC)modes with Hext=100 Oe.Inset shows the enlarged M(T)curves for(La0.95Ba0.05)(Zn1-xMnx)SbO(x=0.05,0.075,0.10).(b)The iso-thermal magnetization for(La0.95Ba0.05)(Zn1-xMnx)SbO(x=0.05,0.075,0.10)measured at 2 K.(c)The dM(T)/dT versus T plots for(La0.95Ba0.05)(Zn1-xMnx)SbO(x=0.05,0.075,0.10).Inset shows an enlargement of 2 K to 30 K region,and arrows mark the position of the minimum values of dM(T)/dT.(d)The curves of 1/(χ-χ0)versus T for(La0.95Ba0.05)(Zn1-xMnx)SbO(x=0.05,0.075,0.10).The lines represent the fitting of Curie-Weiss law,and arrows mark the Weiss temperatures θ.

    We show the iso-thermal magnetization measured at 2 K for (La0.95Ba0.05)(Zn1-xMnx)SbO (x=0.05, 0.075, 0.10) in Fig.3(b).Clear hysteresis can be observed, demonstrating the presence of ferromagnetic interactions.The coercive field(HC)is~8400 Oe forx=0.05,then increases to~11500 Oe forx= 0.075, and decreases to~8150 Oe forx= 0.10.We calculate the effective magnetic moment(μeff)by formulaC=Nμ0μ2eff/3kB.The obtained parameters are listed in Table 1.

    Table 1.The minimum values (Tdif) of dM(T)/dT, the Weiss temperature θ, the effective magnetic moment μeff, the base temperature moment Mbase, and the coercive field HC for (La0.95Ba0.05)(Zn1-xMnx)SbO(x=0.05,0.075,0.10).

    The Arrot-Noakes plots[33,34](M2versusH/M)obtained from iso-thermal magnetization at different temperatures for(La0.95Ba0.05)(Zn0.925Mn0.075)SbO are displayed in Fig.4.No indication of spontaneous magnetization is observed.Combined with the iso-thermal magnetization curves shown in Fig.3(b), where magnetization is still not saturated with the external magnetic field up to 5 T, we can say that it is not a long-range ferromagnetic ordering but a short-range spin-glass ordering state.

    Fig.4.The Arrott plots of (La0.95Ba0.05)(Zn0.925Mn0.075)SbO under various temperatures.

    To further determine whether the samples is in a spinglass ordering state, we conduct the AC magnetic susceptibility for (La0.95Ba0.05)(Zn0.925Mn0.075)SbO under an external AC field amplitude of 10 Oe with different frequencies(f).The cusp positions of the real partχ′in Fig.5(a)and the imaginary partχ′′in Fig.5(b)are obviously frequency-dependent.With the increasing of frequency,the real partχ′and the imaginary partχ′′move towards the higher temperature region,and the magnitude reduces slightly.We define the cusp position of the real partχ′as the static spin freezing temperature(Tf).According to the formulaK=?Tf/[Tf?logf],[35]we obtain the value ofKin Fig.5(c).TheK ~0.055 is whin the range of canonical spin-glass system(K ~0.005-0.08),[36]this indicates that the samples exhibit a spin-glass ordering state belowTf.The random arrangement of Mn atoms in lattice induces not only ferromagnetic but also antiferromagnetic interactions among Mn atoms.Their competition induces the spin-glass ordering state.The similar behavior has also been observed in Ba(Zn,Mn,Cu)2As2.[20]

    Fig.5.The (a) real part χ′ and (b) imaginary part χ′′ of AC magnetic susceptibility for (La0.95Ba0.05)(Zn0.925Mn0.075)SbO at different frequencies f.(c)The frequency dependence of spin freezing temperature Tf plotted as lnTf versus log f for(La0.95Ba0.05)(Zn0.925Mn0.075)SbO.

    We performed the electrical transport measurements on the parent compound LaZnSbO and doped samples(La0.95Ba0.05)(Zn1-xMnx)SbO(x=0.025,0.05,0.075,0.10).The curves of the temperature-dependent electrical resistivityρ(T)are shown in Fig.6(a).The parent compound LaZnSbO shows the semiconducting behavior, as shown in the inset of Fig.6(a).After the solid solution of(La,Ba)and(Zn,Mn),resistivityρ(T) still retains the semiconducting behavior.On the other hand, with the increasing of the Mn-doped levelsx,the magnitude of the resistivity increases significantly.This can be attributed to the scattering of carriers by spins at low temperatures.

    Fig.6.(a) The temperature-dependent resistivity ρ(T) for LaZnSbO (inset) and (La0.95Ba0.05)(Zn1-xMnx)SbO (x=0.025, 0.05, 0.075, 0.10).(b) The magnetoresistance for (La0.95Ba0.05)(Zn0.925Mn0.075)SbO under the external field Hext =0 T, 3 T, 5 T, 7 T, 9 T.The inset shows the field dependence of magnetoresistance(MR ≡[ρ(H)-ρ(0)]/ρ(0))measured in an external field ranging from 0 T to-9 T and 0 T to 9 T at 2 K.(c)The magnetoresistance of(La0.95Ba0.05)(Zn0.9Mn0.1)SbO with Hext=0 T,3 T,5 T,7 T,9 T.Inset shows resistivity ρ(T)versus lnT under Hext=5 T.

    In Fig.6(b), we show the temperature-dependent magnetoresistance curves for (La0.95Ba0.05)(Zn0.925Mn0.075) SbO under the field of 0 T, 3 T, 5 T, 7 T, 9 T, respectively.The resistivity is suppressed rapidly with the increasing of applied magnetic field, that is, the negative magnetoresistance occurs.As the temperature goes down, a local maximum of resistivity (as marked byTmaxin Fig.6(b)) occurs under an applied magnetic field.Similar phenomenon has been observed in many MSs, such as traditional III-V compound(Ga,Mn)As,and novel bulk materials(Sr,Na)(Zn,Mn)2As2[37]and (Ba,K)(Cd,Mn)2As2.[26]This field-induced insulator-tometal transition is probably caused by multiple interactions between quantum localization and carrier correlations.[26]In(Ga,Mn)As system,the behavior of resistivity maximum near the Curie temperatureTCand associated negative magnetoresistance are ascribed to the existence of randomly oriented ferromagnetic bubbles,which drives efficient spin-disorder scattering of carriers,and thus reduces the anti-localization quantum corrections to conductivity.[38,39]Subsequently, as the temperature continues decreasing, a local minimum of resistance (as marked byTminin Fig.6(b)) occurs, followed by a strong upturn.The suppression of spin-dependent scattering in an external magnetic field leads to large negative magnetoresistance (MR ≡[ρ(H)-ρ(0)]/ρ(0)).As shown in the inset of Fig.6(b), for (La0.95Ba0.05)(Zn0.925Mn0.075)SbO, theMRreaches up to-88% under 9 T.Such a colossal negative magnetoresistanceMRhas also been observed in spin-glass(Cd,Mn)Se.[17]

    Compared with the doping levelx=0.075 in Fig.6(b),when the doping levelxincreases to 0.1 as shown in Fig.6(c),the magnitude of resistivity is lifted up.In the inset of Fig.6(c), the resistivity for(La0.95Ba0.05)(Zn0.9Mn0.1)SbO at low temperature underHext=5 T linearly depends on lnT,which mimics that of the Kondo effect.[40]This phenomenon could also be interpreted by quantum corrections to the conductivity in the weakly localized regime,[38,39,41]because spin polarization of carriers destroys the Kondo effect.[39]

    4.Discussion and conclusion

    The ionic radius of Ca2+, Sr2+, and Ba2+are 0.99 ?A,1.13 ?A, and 1.35 ?A, respectively.Replacing La3+with Ca2+, Sr2+, and Ba2+respectively is expanding the lattice successively, which is equivalent to inducing negative chemical pressure into the system.Thus, the expansion of lattice causes Zn/Mn-Sb bond length to increase continuously, and p-d hybridization between local moments and hole carriers is weaken, which results in the suppression of ferromagnetic interactions.[42]Comparing the whole(La0.95AE0.05)(Zn0.95Mn0.05)SbO (AE=Ca, Sr, Ba) system,the magnetization under FC mode at the base temperature of 2 K is~0.60μB/Mn for (La0.95Ca0.05)(Zn0.95Mn0.05)SbO,0.15μB/Mn for (La0.95Sr0.05)(Zn0.95Mn0.05)SbO, and reduces to 0.02μB/Mn for (La0.95Ba0.05)(Zn0.95Mn0.05)SbO.On the other hand, as the ionic radius ofAEions increases, the Curie temperatureTCdecreases from~20 K for (La0.95Ca0.05)(Zn0.95Mn0.05)SbO to 14 K for(La0.95Sr0.05)(Zn0.95Mn0.05)SbO, and no long-range ordering is formed in (La0.95Ba0.05)(Zn0.95Mn0.05)SbO.Furthermore,in the same 1111-type (La,Ba)(Zn,Mn)AsO MS, μSR measurements indicate that ferromagnetic ordering develops in the entire volume.[12]While for(La,Ba)(Zn,Mn)SbO,the ionic radius of Sb3-(2.45 ?A) is larger than that of As3-(2.22 ?A),which leads to the result that the bond length of Zn/Mn-Sb is larger than that of Zn/Mn-As.Therefore, the p-d hybridization in(La,Ba)(Zn,Mn)SbO is much weaker,which eventually develops into spin-glass ordering state.We should note that in both (La,Ba)(Zn,Mn)AsO and (La,Ba)(Zn,Mn)SbO, carriers are coming from the substitutions of Ba for La which takes place in the La-O layers.While in another 1111-type La(Zn,Mn,Cu)SbO compound,the substitutions of Mn and Cu for Zn are taking place in the same Zn-Sb layers where the holes induced by Cu substitutions for Zn mediate the magnetic moments arising from Mn substitutions for Zn.

    To summarize, we successfully synthesized a new 1111-type bulk MS (La,Ba)(Zn,Mn)SbO.The DC magnetization measurements reveal that the ferromagnetic interactions increase initially and then decrease with more Mn atoms doping,and the coercive fieldHCis as high as~11500 Oe.According to the AC magnetic susceptibility measurements,the samples evolve into conventional spin-glass ordering state below the spin freezing temperatureTf.The negative magnetoresistanceMRforx=0.075 has reached-88% at 2 K under the applied field of 9 T.We note that spin-glass ground state is common in II-VI MSs, and not unusual in recent bulk form MSs with decoupled charge and spin doping.The reason is largely ascribed to the strength of magnetic interactions and the competition between the long-range indirect ferromagnetic interactions of remote spins and the short-range direct antiferromagnetic interactions of moments at the NN sites.To understand the general mechanism for the ferromagnetic ordering in all magnetic semiconductors,this physical phenomenon has to be considered as an important part for the whole picture.Our sample enriches the MS families and is helpful for searching new MS materials with highTC.Furthermore,(La,Ba)(Zn,Mn)SbO has the same ZrSiCuAs-type tetragonal structure and favorable lattice matching as Fe-based layered superconductor LaFeAsO,[29]and it is possible to benefit potential spintronics applications.

    Acknowledgements

    Project supported by the National Key Research and Development Program of China (Grant Nos.2022YFA1402701 and 2022YFA1403202), the National Natural Science Foundation of China (Grant No.12074333), and the Key Research and Development Program of Zhejiang Province,China(Grant No.2021C01002).

    猜你喜歡
    金甌
    一年只用一次的杯子
    陳中建
    金甌永固杯
    百科知識(2022年2期)2022-01-26 04:10:00
    夏逸星
    嚴(yán)復(fù)創(chuàng)作清朝國歌《鞏金甌》
    贊港珠澳大橋
    清乾隆金嵌寶金甌永固杯
    銀潮(2020年4期)2020-04-22 07:23:10
    浣溪沙·鎮(zhèn)遠(yuǎn)東城移民區(qū)
    晚晴(2019年9期)2019-11-01 02:10:27
    浪淘沙·慶祝中國共產(chǎn)黨誕生97周年
    大江南北(2018年5期)2018-11-20 08:29:59
    金甌永固杯
    日韩一区二区视频免费看| 五月伊人婷婷丁香| 我的女老师完整版在线观看| 国精品久久久久久国模美| 亚洲欧美一区二区三区国产| 天天影视国产精品| 全区人妻精品视频| 日韩伦理黄色片| 国产亚洲欧美精品永久| 夜夜骑夜夜射夜夜干| 亚洲图色成人| 成人免费观看视频高清| 免费播放大片免费观看视频在线观看| av免费在线看不卡| 国内精品宾馆在线| 国产乱人偷精品视频| 国产欧美亚洲国产| 亚洲欧美成人综合另类久久久| 综合色丁香网| 国产欧美日韩一区二区三区在线| videosex国产| 一级毛片 在线播放| 丝袜美足系列| 乱码一卡2卡4卡精品| 五月开心婷婷网| 成人毛片a级毛片在线播放| 欧美亚洲 丝袜 人妻 在线| 久久久久精品久久久久真实原创| 极品人妻少妇av视频| 亚洲国产欧美在线一区| 中国国产av一级| 91精品国产国语对白视频| 日本欧美国产在线视频| 精品视频人人做人人爽| 男女边摸边吃奶| 国产激情久久老熟女| 老司机亚洲免费影院| 91成人精品电影| 夫妻性生交免费视频一级片| 成人国产av品久久久| 蜜臀久久99精品久久宅男| 国产激情久久老熟女| 亚洲精品日本国产第一区| 在线观看一区二区三区激情| 男的添女的下面高潮视频| 成人国产av品久久久| 午夜免费鲁丝| 夜夜骑夜夜射夜夜干| 日韩一区二区三区影片| 老女人水多毛片| 国产精品国产av在线观看| 久久精品人人爽人人爽视色| 纵有疾风起免费观看全集完整版| 久久99一区二区三区| 久久99精品国语久久久| 日韩不卡一区二区三区视频在线| 自拍欧美九色日韩亚洲蝌蚪91| 中国国产av一级| 亚洲精品成人av观看孕妇| 日韩精品免费视频一区二区三区 | 男女高潮啪啪啪动态图| 一边摸一边做爽爽视频免费| 少妇被粗大的猛进出69影院 | 国产在视频线精品| 亚洲第一av免费看| 亚洲精品视频女| 久久久精品94久久精品| 久久精品久久久久久久性| 午夜福利,免费看| 永久网站在线| 免费观看a级毛片全部| 成人国语在线视频| 日本av手机在线免费观看| 精品一区二区三区视频在线| 国产69精品久久久久777片| 亚洲国产欧美日韩在线播放| 一级爰片在线观看| 国产av一区二区精品久久| 伦理电影大哥的女人| 精品福利永久在线观看| 亚洲美女黄色视频免费看| 大片电影免费在线观看免费| 韩国av在线不卡| 另类亚洲欧美激情| 五月伊人婷婷丁香| 大香蕉97超碰在线| 97超碰精品成人国产| 亚洲精品久久久久久婷婷小说| 成人国语在线视频| 久久青草综合色| 欧美国产精品va在线观看不卡| 9热在线视频观看99| 国产日韩欧美在线精品| 久久精品国产亚洲av涩爱| 22中文网久久字幕| 一级毛片 在线播放| 99久久综合免费| 国产成人欧美| 在线精品无人区一区二区三| 只有这里有精品99| 国产视频首页在线观看| 熟女人妻精品中文字幕| 久久久久久久亚洲中文字幕| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | xxx大片免费视频| 久久影院123| 国产精品久久久久成人av| 999精品在线视频| 国产又爽黄色视频| 宅男免费午夜| 欧美xxⅹ黑人| 极品人妻少妇av视频| av天堂久久9| 久久国内精品自在自线图片| 国产精品一区www在线观看| 久久精品国产亚洲av天美| 深夜精品福利| 成人亚洲欧美一区二区av| 如日韩欧美国产精品一区二区三区| 成人国产av品久久久| 99九九在线精品视频| 久久精品夜色国产| 老女人水多毛片| 欧美最新免费一区二区三区| 午夜av观看不卡| 国产成人精品婷婷| 18禁在线无遮挡免费观看视频| 水蜜桃什么品种好| 精品人妻一区二区三区麻豆| 国产毛片在线视频| 永久网站在线| 精品久久久久久电影网| 免费av中文字幕在线| 啦啦啦中文免费视频观看日本| 免费观看无遮挡的男女| 国产精品国产三级国产专区5o| 乱码一卡2卡4卡精品| 九草在线视频观看| 插逼视频在线观看| 婷婷色综合大香蕉| 欧美精品av麻豆av| av国产久精品久网站免费入址| 激情视频va一区二区三区| 国产又爽黄色视频| 国产av码专区亚洲av| 一区在线观看完整版| 黑人猛操日本美女一级片| 午夜91福利影院| 欧美亚洲日本最大视频资源| 两个人免费观看高清视频| 国产男女超爽视频在线观看| 国产精品一国产av| 日韩av免费高清视频| 丝袜美足系列| 精品99又大又爽又粗少妇毛片| 久热这里只有精品99| 天堂中文最新版在线下载| 美女国产视频在线观看| 黄色怎么调成土黄色| 一级黄片播放器| 成人综合一区亚洲| 亚洲精品一二三| 成年美女黄网站色视频大全免费| av网站免费在线观看视频| 久久女婷五月综合色啪小说| 免费人成在线观看视频色| 最近的中文字幕免费完整| 日韩 亚洲 欧美在线| 国产高清三级在线| 18禁国产床啪视频网站| 国产精品久久久久久久电影| 91aial.com中文字幕在线观看| av免费观看日本| 欧美精品av麻豆av| 成年人午夜在线观看视频| 亚洲图色成人| 90打野战视频偷拍视频| 99热国产这里只有精品6| 一级毛片我不卡| 人妻 亚洲 视频| 18在线观看网站| 狂野欧美激情性xxxx在线观看| 热re99久久国产66热| 另类精品久久| 亚洲精品一二三| 亚洲精品久久久久久婷婷小说| 女人精品久久久久毛片| 午夜91福利影院| av线在线观看网站| 大香蕉久久网| 26uuu在线亚洲综合色| 91精品伊人久久大香线蕉| 精品一区二区三卡| 少妇被粗大猛烈的视频| 最近的中文字幕免费完整| 女人久久www免费人成看片| 亚洲国产欧美在线一区| 久久精品国产亚洲av天美| 永久免费av网站大全| 视频中文字幕在线观看| 久久精品熟女亚洲av麻豆精品| 国产 一区精品| 春色校园在线视频观看| 欧美激情极品国产一区二区三区 | 国产精品久久久久久精品古装| 免费高清在线观看日韩| 91久久精品国产一区二区三区| 中文字幕亚洲精品专区| 男女下面插进去视频免费观看 | 精品国产一区二区三区久久久樱花| 色哟哟·www| 纯流量卡能插随身wifi吗| 交换朋友夫妻互换小说| 久久国产亚洲av麻豆专区| 秋霞伦理黄片| 各种免费的搞黄视频| 国产精品久久久久久精品古装| av.在线天堂| 免费大片18禁| 少妇被粗大的猛进出69影院 | 国产在视频线精品| 又黄又爽又刺激的免费视频.| 精品国产一区二区三区久久久樱花| 人人妻人人澡人人看| 丰满迷人的少妇在线观看| 国产日韩欧美视频二区| 亚洲精品一二三| 亚洲精品自拍成人| 久久久精品94久久精品| 一级黄片播放器| 十八禁网站网址无遮挡| 亚洲美女视频黄频| 一级毛片我不卡| 免费黄频网站在线观看国产| 久久人妻熟女aⅴ| 国产精品三级大全| 丰满少妇做爰视频| 色视频在线一区二区三区| 啦啦啦啦在线视频资源| 精品视频人人做人人爽| 日韩av不卡免费在线播放| 搡老乐熟女国产| 婷婷色av中文字幕| 欧美人与善性xxx| 国产精品成人在线| 久久久久久久精品精品| 18禁动态无遮挡网站| 国产精品99久久99久久久不卡 | 成人黄色视频免费在线看| 综合色丁香网| 香蕉精品网在线| 一级毛片黄色毛片免费观看视频| 久久久精品94久久精品| 香蕉精品网在线| 夫妻性生交免费视频一级片| 亚洲国产av影院在线观看| av国产精品久久久久影院| 欧美 日韩 精品 国产| 精品酒店卫生间| 中文字幕人妻熟女乱码| 国产免费视频播放在线视频| av线在线观看网站| av.在线天堂| 大片电影免费在线观看免费| 男人爽女人下面视频在线观看| 日本91视频免费播放| 人体艺术视频欧美日本| 美女国产视频在线观看| 一级毛片我不卡| 亚洲国产精品国产精品| 亚洲成人av在线免费| 国产一区二区在线观看av| 亚洲成人手机| 高清在线视频一区二区三区| 国产熟女欧美一区二区| 中国三级夫妇交换| 一本大道久久a久久精品| 久久国产精品男人的天堂亚洲 | 丝袜美足系列| 亚洲图色成人| 国产精品一区二区在线观看99| 国产国语露脸激情在线看| 卡戴珊不雅视频在线播放| 内地一区二区视频在线| 欧美最新免费一区二区三区| 国产成人免费观看mmmm| 在线观看免费高清a一片| 最近2019中文字幕mv第一页| 亚洲三级黄色毛片| 亚洲av日韩在线播放| 国产精品免费大片| 久久久久精品性色| 亚洲人成网站在线观看播放| 国产精品 国内视频| 在线观看美女被高潮喷水网站| 亚洲精品成人av观看孕妇| 国产精品人妻久久久久久| 大香蕉久久成人网| 男女高潮啪啪啪动态图| 最近的中文字幕免费完整| 免费看不卡的av| 99香蕉大伊视频| 91精品伊人久久大香线蕉| 国产亚洲精品第一综合不卡 | 亚洲 欧美一区二区三区| 久久久久久人人人人人| 免费看光身美女| 又大又黄又爽视频免费| 亚洲精品av麻豆狂野| 久久精品国产鲁丝片午夜精品| 国产精品一区二区在线观看99| 国产成人91sexporn| 老司机亚洲免费影院| 亚洲欧美成人精品一区二区| 免费在线观看黄色视频的| 一二三四中文在线观看免费高清| 久久久久久久国产电影| 亚洲成色77777| 亚洲伊人久久精品综合| 午夜免费鲁丝| 欧美 日韩 精品 国产| 精品少妇黑人巨大在线播放| 少妇被粗大猛烈的视频| 久久99热这里只频精品6学生| 丰满饥渴人妻一区二区三| 精品少妇黑人巨大在线播放| 精品久久久久久电影网| 最后的刺客免费高清国语| 亚洲欧美色中文字幕在线| 大话2 男鬼变身卡| 草草在线视频免费看| 欧美精品av麻豆av| 最后的刺客免费高清国语| 亚洲第一av免费看| av在线观看视频网站免费| 日日摸夜夜添夜夜爱| 免费少妇av软件| 两性夫妻黄色片 | 少妇熟女欧美另类| 国产熟女欧美一区二区| 高清av免费在线| 亚洲五月色婷婷综合| 岛国毛片在线播放| 在线观看三级黄色| 99热全是精品| 亚洲成色77777| 亚洲内射少妇av| 国产一级毛片在线| 久久女婷五月综合色啪小说| 久久久久视频综合| 欧美 亚洲 国产 日韩一| 午夜福利乱码中文字幕| 亚洲天堂av无毛| 成人无遮挡网站| 精品人妻在线不人妻| 少妇被粗大猛烈的视频| 婷婷色综合www| 18+在线观看网站| 日韩不卡一区二区三区视频在线| 日韩免费高清中文字幕av| 考比视频在线观看| 91国产中文字幕| videossex国产| 免费少妇av软件| 婷婷色麻豆天堂久久| 精品午夜福利在线看| 麻豆乱淫一区二区| 看十八女毛片水多多多| 国产一区亚洲一区在线观看| 国产精品久久久久久精品电影小说| 国产又色又爽无遮挡免| 婷婷色综合大香蕉| 亚洲高清免费不卡视频| 少妇精品久久久久久久| 欧美亚洲 丝袜 人妻 在线| 久久国产亚洲av麻豆专区| 亚洲三级黄色毛片| 99香蕉大伊视频| 国产精品99久久99久久久不卡 | 国产1区2区3区精品| 日日啪夜夜爽| 永久免费av网站大全| 国产激情久久老熟女| 99热这里只有是精品在线观看| 性高湖久久久久久久久免费观看| 亚洲av.av天堂| 亚洲欧美中文字幕日韩二区| 美女中出高潮动态图| 欧美日韩成人在线一区二区| 亚洲成人手机| 亚洲丝袜综合中文字幕| 哪个播放器可以免费观看大片| 精品久久久精品久久久| 成人午夜精彩视频在线观看| 男人操女人黄网站| 人妻人人澡人人爽人人| 18禁国产床啪视频网站| 日韩制服骚丝袜av| 色婷婷久久久亚洲欧美| 尾随美女入室| 成人国产麻豆网| a级毛片黄视频| 在线精品无人区一区二区三| 亚洲成国产人片在线观看| 国产无遮挡羞羞视频在线观看| 国产免费现黄频在线看| 日韩av免费高清视频| 99热全是精品| videosex国产| 国国产精品蜜臀av免费| 国产精品一二三区在线看| 九九在线视频观看精品| 成人18禁高潮啪啪吃奶动态图| 高清在线视频一区二区三区| 欧美亚洲 丝袜 人妻 在线| 午夜福利视频精品| 亚洲国产看品久久| 又大又黄又爽视频免费| 狂野欧美激情性bbbbbb| 色网站视频免费| 久久久精品94久久精品| 亚洲精品国产av蜜桃| 亚洲av中文av极速乱| 日韩免费高清中文字幕av| 在线精品无人区一区二区三| 亚洲精品色激情综合| 51国产日韩欧美| 亚洲伊人色综图| 亚洲第一区二区三区不卡| 天美传媒精品一区二区| 亚洲第一av免费看| 五月伊人婷婷丁香| 下体分泌物呈黄色| 欧美最新免费一区二区三区| 校园人妻丝袜中文字幕| 国产成人精品一,二区| 免费在线观看黄色视频的| 亚洲五月色婷婷综合| 永久免费av网站大全| 好男人视频免费观看在线| 中国美白少妇内射xxxbb| xxx大片免费视频| 美女视频免费永久观看网站| 日韩人妻精品一区2区三区| 嫩草影院入口| 久久亚洲国产成人精品v| 五月玫瑰六月丁香| 天天躁夜夜躁狠狠躁躁| 国产精品 国内视频| 男男h啪啪无遮挡| 熟女av电影| 热re99久久精品国产66热6| 黄色视频在线播放观看不卡| 亚洲精品美女久久久久99蜜臀 | 国产精品成人在线| 亚洲国产色片| 亚洲成色77777| 搡老乐熟女国产| 欧美 亚洲 国产 日韩一| 一级黄片播放器| 亚洲成色77777| 国产综合精华液| 国产亚洲精品第一综合不卡 | 丰满少妇做爰视频| 99国产精品免费福利视频| www.熟女人妻精品国产 | 看非洲黑人一级黄片| 51国产日韩欧美| 国产一区二区激情短视频 | 飞空精品影院首页| 视频在线观看一区二区三区| 亚洲精品国产av成人精品| 少妇高潮的动态图| 欧美性感艳星| 国产免费又黄又爽又色| 国产麻豆69| 国产成人欧美| 最新的欧美精品一区二区| 日韩免费高清中文字幕av| 国产成人精品在线电影| 国产av国产精品国产| 午夜免费观看性视频| 亚洲伊人久久精品综合| 热re99久久国产66热| 免费看光身美女| 在线观看美女被高潮喷水网站| 久久婷婷青草| xxx大片免费视频| 丝袜喷水一区| 亚洲国产av影院在线观看| 欧美成人午夜免费资源| 日本午夜av视频| 啦啦啦啦在线视频资源| 18在线观看网站| 最近2019中文字幕mv第一页| 边亲边吃奶的免费视频| av不卡在线播放| 中文字幕人妻丝袜制服| 国产在视频线精品| 亚洲成色77777| 久久韩国三级中文字幕| 黄色一级大片看看| 精品少妇久久久久久888优播| 国产成人午夜福利电影在线观看| 国产国拍精品亚洲av在线观看| 精品亚洲成a人片在线观看| 国产成人免费观看mmmm| 精品人妻一区二区三区麻豆| 亚洲国产精品专区欧美| 男人舔女人的私密视频| 最新中文字幕久久久久| 成年av动漫网址| 精品国产乱码久久久久久小说| 999精品在线视频| 哪个播放器可以免费观看大片| 激情视频va一区二区三区| 2022亚洲国产成人精品| 国产成人aa在线观看| 纵有疾风起免费观看全集完整版| 99久久精品国产国产毛片| 免费观看在线日韩| 免费日韩欧美在线观看| 一级毛片黄色毛片免费观看视频| 男男h啪啪无遮挡| 国产精品一区二区在线观看99| 午夜免费鲁丝| 免费看光身美女| 卡戴珊不雅视频在线播放| 亚洲av电影在线进入| 美国免费a级毛片| 国产熟女欧美一区二区| 亚洲综合精品二区| 亚洲欧美精品自产自拍| 在现免费观看毛片| 精品福利永久在线观看| 亚洲国产色片| 亚洲精品乱码久久久久久按摩| 狂野欧美激情性bbbbbb| 男的添女的下面高潮视频| 国产精品99久久99久久久不卡 | 在线亚洲精品国产二区图片欧美| 国产一区二区三区av在线| 婷婷色av中文字幕| 成人黄色视频免费在线看| 欧美日韩亚洲高清精品| 日韩不卡一区二区三区视频在线| 男人舔女人的私密视频| 亚洲av成人精品一二三区| 精品亚洲乱码少妇综合久久| 69精品国产乱码久久久| 国产成人欧美| 最新中文字幕久久久久| 黑人巨大精品欧美一区二区蜜桃 | 亚洲国产成人一精品久久久| 免费在线观看黄色视频的| 中文字幕免费在线视频6| 亚洲欧美成人综合另类久久久| 老熟女久久久| av片东京热男人的天堂| 精品一区二区三卡| 国产激情久久老熟女| 最近最新中文字幕免费大全7| 91成人精品电影| 国产欧美另类精品又又久久亚洲欧美| 欧美成人午夜免费资源| 欧美bdsm另类| 亚洲国产精品国产精品| 国产精品国产三级国产av玫瑰| videos熟女内射| xxx大片免费视频| 赤兔流量卡办理| 免费大片18禁| 不卡视频在线观看欧美| 亚洲成人手机| 欧美日韩一区二区视频在线观看视频在线| av国产久精品久网站免费入址| 色94色欧美一区二区| 好男人视频免费观看在线| av.在线天堂| 欧美 亚洲 国产 日韩一| 大陆偷拍与自拍| 日本欧美国产在线视频| 美女大奶头黄色视频| 国产日韩欧美视频二区| 国产精品成人在线| 男人舔女人的私密视频| 日韩大片免费观看网站| 免费少妇av软件| 亚洲av电影在线观看一区二区三区| 国产成人一区二区在线| 亚洲色图综合在线观看| 欧美日韩综合久久久久久| 国产老妇伦熟女老妇高清| 日产精品乱码卡一卡2卡三| 欧美3d第一页| 最黄视频免费看| 国产乱人偷精品视频| 日韩中文字幕视频在线看片| 久久婷婷青草| 黄片播放在线免费| 女人久久www免费人成看片| 亚洲精品国产av成人精品| 亚洲一区二区三区欧美精品| 国产精品蜜桃在线观看| 日韩制服骚丝袜av| 在线观看免费视频网站a站| 天美传媒精品一区二区| 精品熟女少妇av免费看| 建设人人有责人人尽责人人享有的| 日韩精品有码人妻一区| 一级爰片在线观看| 制服人妻中文乱码| 老司机影院毛片| 日韩 亚洲 欧美在线| 国产熟女午夜一区二区三区|