• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Magnetic and magnetotransport properties of layered TaCoTe2 single crystals

    2023-12-15 11:48:14MingMei梅明ZhengChen陳正YongNie聶勇YuanyuanWang王園園XiangdeZhu朱相德WeiNing寧偉andMingliangTian田明亮
    Chinese Physics B 2023年12期

    Ming Mei(梅明), Zheng Chen(陳正), Yong Nie(聶勇), Yuanyuan Wang(王園園),Xiangde Zhu(朱相德), Wei Ning(寧偉), and Mingliang Tian(田明亮)

    1Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions,High Magnetic Field Laboratory,HFIPS,Anhui,Chinese Academy of Sciences,Hefei 230031,China

    2Department of Physics,University of Science and Technology of China,Hefei 230031,China

    3School of Physics,Anhui University,Hefei 230601,China

    Keywords: two-dimensional materials,magnetism,electronic transport,nanoflakes

    1.Introduction

    Since the discovery of graphene, two-dimensional (2D)materials have proved to be a fertile ground to explore novel electrical,[1-4]optical,[5-7]mechanical,[8,9]and magnetic properties.[10-13]In 2D materials, it has been confirmed that the decrease in the crystal dimension makes it sensitive to carrier concentration, magnetic field, pressure and electric field, and novel phenomena that are different from the bulk crystal can be observed, such as the observation of the quantum Hall effect in graphene,[14]the strongly thickness-dependent metallic to semiconductor,charge density wave, or superconducting phases in transition metal dichalcogenides,[15,16]the layer-dependent ferromagnetism in 2D magnetic materials,[17,18]the observation of the quantum anomalous Hall effect in few-layer MnBi2Te4,[19]and the enhancement of a weak-antilocalization signature in Nb3SiTe6.[20]During the past decade, a number of important potential applications have been proven in 2D materials.[15,21-28]Many new 2D materials have been predicted that are worth further experimental studies.

    Theoretic investigation has predicted that the Dirac points can be stabilized in 2D materials.However,it remains a challenge to identify concrete 2D materials that host such magnetic Dirac points.Recently, the layered ternary telluride TaCoTe2was predicted to be a new topological semimetal.[29]It is suggested that the monolayer TaCoTe2is stable with an antiferromagnetic (AFM) ground state.It hosts a pair of 2D AFM Dirac points on the Fermi level in the absence of spin-orbit coupling (SOC) and emerged another pair of magnetic Dirac points below the Fermi level when SOC is included.An angleresolved photoelectron spectroscopy study reported the experimental signature of topological Dirac antiferromagnetism in this material.[30]However, the physics properties of this material have not been well studied.In this work, we have synthesized high-quality single crystal TaCoTe2and performed a detailed investigation into both the bulk crystals through magnetization and magnetotransport measurements.We also obtained nanoflakes by the Scotch tape-based micromechanical exfoliation method and fabricated nanodevices based on these nanoflakes.We found that when the thickness is reduced to 18 nm,the crystal shows the same properties as the bulk crystal.

    2.Experiment

    2.1.Crystal growth and nanodevice fabrication

    TaCoTe2single crystals were grown by the chemical vapor transport(CVT)method using TeCl4as a transport agent.Stoichiometric elemental agents Ta (powder), Co (powder),and Te (chunk) were mixed and sealed in a vacuumed silica tube.The tube was 20 cm in length and placed in a twozone furnace.The transport was carried out in the temperature gradient of 930?C to 850?C for 7 days.Then the furnace was cooled naturally to room temperature after the reaction.Shiny black plate-like TaCoTe2single crystals were collected at the cold end.TaCoTe2thin flakes with different thicknesses were obtained by mechanically exfoliating the bulk crystal,followed by directly transferring them onto Si/SiO2substrate.Hall-bar devices were fabricated by standard electron-beam lithography followed by an Au (80 nm)/Ti (10 nm) evaporation and a liftoff process.

    2.2.Material characterization

    X-ray diffraction(XRD)was used to determine the structure of the as-grown single crystals.The XRD data were obtained at room temperature on a Rigaku-TTR3(CuKαradiation,λ=1.5418 ?A)operated at 20 kV voltage and 4 mA current with a flat single-crystal specimen mounted on the sample holder in a reflection mode (step size=0.02?).The composition analysis of single crystals was done by an energy dispersive spectroscopy(EDS)upon a dual beam system(Helios nanolab600i),operated at 20 kV voltage and 0.17 nA current.The resistivity measurement was measured by the four-probe method and was carried out by a physical properties measurement system (PPMS-14T, QD Inc.).Magnetization measurement was performed upon a magnetic properties measurement system (MPMS3-7T, QD Inc.).Electron beam lithography was used to prepare devices and was also performed upon a dual beam system(Helios nanolab600i).The measurement of the sample thickness was performed using an atomic force microscope(NX10,PARK Inc.).

    3.Results and discussion

    In previous work,[31]polycrystalline XRD has determined the structure of the TaCoTe2.TaCoTe2has crystallized in space groupP21/c(No.14) witha= 8.1524 ?A,b=6.2649(4) ?A,c=7.7945 ?A,andα=116.789?.The crystal structure of TaCoTe2is shown in Figs.1(a) and 1(b).As illustrated,the crystal has a layered structure aligned along thea-axis.Figure 1(c)depicts the room temperature XRD pattern of our single crystal.All the peaks can be indexed as (L00)reflections.The inset of Fig.1(c) show an optical image of an as-grown TaCoTe2single crystal.This indicates that the largest naturally grown surface of the crystals belongs to thebcplane.As shown in Fig.1(d), the obtained chemical composition from the EDS of three elements Ta, Co, and Te is 1:1:2.

    Figure 2(a) depicts the temperature-dependent magnetization curves (M-T) of single crystal TaCoTe2under fieldcooled (FC) and the zero-field-cooled (ZFC) modes, with magnetic fieldH=1 T applied along thea-axis (H‖a-axis)and parallel to thebcplane(H‖bcplane),respectively.It can be found that theM-Tcurves of both the FC and ZFC modes almost overlap at low temperature with the magnetic field applied parallel to thebcplane, while the two curves are not coincident at a high temperature range.Figure 2(b)shows the magnetic-field dependent magnetization at different temperatures at theB‖bcplane.When the field is applied along thea-axis, it exhibits similar magnetic behavior at low temperature range.While at a high temperature range,a rapid increase in magnetization can be observed with temperature decreasing and a broad peak appears at about 250 K.DFT calculations suggest this compound should be an AFM material; thus, the peak at 250 K might be a signature magnetic ordering transition related to the predicted AFM order.[30]However, the magnetic moment is small and local lattice defects can also induce the presence of magnetization, especially at low temperature range.Further measurements are required to study the magnetic properties of TaCoTe2.

    Fig.1.(a)Schematic of a unit cell of TaCoTe2 (inside solid line).(b)A layered structure of TaCoTe2 that is aligned parallel to the a-axis(space group P21/c).(c) Single-crystal XRD results along the (L00) plane for TaCoTe2.The inset shows an optical image of a typical as-grown TaCoTe2 single crystal.(d) Typical EDS data collected on a flat clean surface of crystal showing elemental composition.

    Fig.2.(a)Temperature-dependent magnetization as function of temperature at H=1 T with H applied along the a-axis(solid lines)and parallel to the bc plane(dotted lines).The inset shows the enlargement area above 150 K.(b)and(c)The magnetic-field dependent magnetization at different temperatures for the H‖bc plane and a-axis,respectively.

    Figure 3(a) shows the temperature-dependent resistivityρof bulk crystal measured with the current applied parallel to thebcplane.The resistivityρexhibits a semiconducting behavior at high temperature range.As the temperature decreases,it shows a semiconducting to metallic transition with a broad peak around 38 K.When the magnetic field is applied,the curves show an upturn at low temperature.Figure 3(b)showsR-Tcurves for a nanodevice with thicknessd=40 nm.It exhibits behavior similar to that of the bulk crystal, except the temperature of the peak is a little lower than that of the bulk crystal,i.e.,at 32 K.In two samples,the peak moves slightly to lower temperatures under magnetic fields.The upturn behavior is more obvious in the nanodevice.It can be expected that the resistivity may turn fully to semiconductor behavior when the magnetic field is high enough.Similar nonmetallic transport has been observed in the work,[30]which showed that the TaCoTe2crystal shows an even broader around 50 K.

    Fig.3.(a)Temperature-dependent resistivity ρ measured with the current applied parallel to the bc plane for bulk crystal.The inset shows a ρ-T curve for the whole temperature range from 2 K-300 K.(b)Temperaturedependent resistivity ρ of a nanodevice with thickness d=40 nm under different magnetic fields.The inset shows an image of a nanodevice obtained with AFM.

    Figure 4(a)shows temperature-dependent MR,defined as MR(%)=[R(B)-R(0)]/R(0)×100%, of bulk crystal with magnetic field applied along thea-axis.The value positive MR is 0.625%at 2 K at 9 T.With an increase in temperature,it reduces to about 0.05%at 40 K,9 T.As displayed in Fig.4(b),the MR behavior with theH‖bcplane at a different temperature is almost the same as theH‖a-axis, suggesting a weak anisotropy between the two directions.Figures 4(c) and 4(d)show MR behavior of the nanodevice atd=40 nm,measured at different temperatures with theH‖bcplane andH‖a-axis,respectively.The value of MR is 0.61%at 2 K and 0.045%at 40 K at 9 T.Obviously, the magnetotransport property is the same as bulk crystal when the thickness is lowered down to 40 nm.

    In order to further investigate the physical properties,we fabricated a nanodevice to even lower thickness.Figure 5(a)shows theρ-Tcurves of the bulk crystal and three nanodevices with different thicknesses, i.e.,d=40 nm, 25 nm, and 18 nm for samples S1, S2, and S3, respectively.Theρ-Tcurves are shifted for clarify.Similar temperature dependence resistivity of all four samples can be observed.The temperature of the transition from semiconductor to metal moved to a lower temperature gradually,as indicated by the arrow.Figure 5(b)presents the MR behavior att=2 K for the three samples.All the samples exhibit similar unsaturated linear MR behavior, which indicates that the physical properties remain nearly the same even when the thickness is lowered to 18 nm.To further explore the predicted AFM behavior in monolayer TaCoTe2, further work on nanoflakes with lower thickness is required.

    Fig.4.(a)The MR as a function of magnetic field measured at different temperatures with H applied along the a-axis for bulk crystal.(b)Single crystal:the MR as a function of magnetic field measured at different temperatures with the H‖bc plane for bulk crystal.(c)The MR as function of magnetic field measured at different temperatures with H‖a-axis for sample S1(d=40 nm).(d)The MR as function of magnetic field measured at different temperatures with the H‖bc plane for sample S1(d=40 nm).

    Fig.5.(a)Temperature-dependent resistivity ρ of different samples measured with the current applied parallel to the bc plane.The curves of different samples are shifted for clarify.(b)The MR of different samples as a function of magnetic field measured at 2 K with the magnetic field applied along the a-axis.

    We note that upturn behavior in resistivity below 10 K has been observed in other materials.A possible reason is the Kondo effect.[32]However, the applied magnetic field could suppress the upturn.This is not the case in our work and thus this cause could be ruled out.Another reason is the existence of a metallic surface state in the crystals.The broad hump of the temperature-dependent resistance was then considered to be the competition of the conductivity between the surface state and the bulk.[33]When the temperature decreases, the contribution of the surface conductivity dominates the transport and leads to the downturn in theR-Tcurves.However,in this case, the upturn behavior in thinner samples at low temperature should not appear due to the enhanced surface conductivity.This is not consistent with our observation and thus the existence of a metallic surface state is also not the origin of the upturn at the low temperature region.We will aim to get more information on these observations in our future work.

    4.Conclusion

    In summary, we have successfully synthesized layered TaCoTe2crystals using the CVT method.We performed a detailed study of magnetic and magnetotransport properties on both bulk crystal and nanosheets with thickness down to 18 nm.The bulk TaCoTe2shows magnetic ordering even at room temperature.The temperature-dependent resistivity of TaCoTe2shows a transition from semiconductor to metal near 38 K.Comparing the magnetotransport behavior of samples with different thicknesses, we found that the magnetotransport properties of bulk crystal and the nanoflakes even down to 18 nm are the same.To further explore the predicted 2D Dirac AFM behavior,nanoflakes with even lower thicknesses are needed.

    Acknowledgments

    Project supported by the National Key Research and Development Program of China(Grant No.2021YFA1600201),the National Natural Science Foundation of China (Grant Nos.U19A2093, U2032214, and U2032163), Collaborative Innovation Program of Hefei Science Center,CAS(Grant No.2019HSC-CIP 001), Youth Innovation Promotion Association of CAS (Grant No.2021117), the HFIPS Director’s Fund (Grant No.YZJJQY202304), and the CASHIPS Director’s Fund (Grant No.E26MMG71131).A portion of this work was supported by the High Magnetic Field Laboratory of Anhui Province.

    深爱激情五月婷婷| 亚洲最大成人av| 岛国毛片在线播放| 国产乱来视频区| 综合色av麻豆| 精品熟女少妇av免费看| 在线播放国产精品三级| 久久午夜福利片| 99国产精品一区二区蜜桃av| 国产精品无大码| 国产亚洲精品av在线| 久久精品国产亚洲网站| 国产精品爽爽va在线观看网站| 天天躁夜夜躁狠狠久久av| 青春草视频在线免费观看| 禁无遮挡网站| 亚洲自偷自拍三级| 精品一区二区三区人妻视频| 成人综合一区亚洲| 国产老妇伦熟女老妇高清| 五月玫瑰六月丁香| 永久免费av网站大全| 秋霞伦理黄片| 久久人人爽人人片av| 18禁在线播放成人免费| 亚洲自拍偷在线| 不卡视频在线观看欧美| 女的被弄到高潮叫床怎么办| 日本av手机在线免费观看| 舔av片在线| 中文欧美无线码| 亚洲最大成人中文| 精品99又大又爽又粗少妇毛片| av国产久精品久网站免费入址| 国产私拍福利视频在线观看| 高清午夜精品一区二区三区| 丝袜喷水一区| 国产人妻一区二区三区在| 亚洲内射少妇av| 久久久亚洲精品成人影院| 国产精品不卡视频一区二区| 色视频www国产| 91在线精品国自产拍蜜月| 搡女人真爽免费视频火全软件| 夫妻性生交免费视频一级片| 99国产精品一区二区蜜桃av| 只有这里有精品99| 九草在线视频观看| 观看免费一级毛片| 丝袜喷水一区| 简卡轻食公司| 亚洲欧美清纯卡通| 日本黄色片子视频| 在线免费观看不下载黄p国产| 中国国产av一级| 精品久久久久久久久亚洲| 精品酒店卫生间| av在线老鸭窝| 狂野欧美白嫩少妇大欣赏| 青青草视频在线视频观看| 日韩精品有码人妻一区| 欧美日韩一区二区视频在线观看视频在线 | av在线观看视频网站免费| 中国美白少妇内射xxxbb| 一卡2卡三卡四卡精品乱码亚洲| 国产成人a∨麻豆精品| 亚洲熟妇中文字幕五十中出| 日日啪夜夜撸| 亚洲色图av天堂| 欧美一级a爱片免费观看看| 国产美女午夜福利| 久久99热这里只频精品6学生 | 亚洲欧美清纯卡通| 免费在线观看成人毛片| 水蜜桃什么品种好| 亚洲av不卡在线观看| 日本一本二区三区精品| 亚洲av成人精品一区久久| 99久久九九国产精品国产免费| 只有这里有精品99| 床上黄色一级片| 亚洲高清免费不卡视频| 麻豆av噜噜一区二区三区| 欧美97在线视频| 在线a可以看的网站| 在线观看66精品国产| 久久久午夜欧美精品| 亚洲国产欧洲综合997久久,| av在线播放精品| 国产老妇伦熟女老妇高清| 又爽又黄无遮挡网站| 国产精华一区二区三区| 视频中文字幕在线观看| 少妇的逼好多水| 国产av不卡久久| 国模一区二区三区四区视频| 老司机影院成人| 男人和女人高潮做爰伦理| 一本一本综合久久| 麻豆精品久久久久久蜜桃| 欧美另类亚洲清纯唯美| 日韩视频在线欧美| 夫妻性生交免费视频一级片| 日本与韩国留学比较| 久久久久精品久久久久真实原创| 日韩强制内射视频| 一本久久精品| 久久草成人影院| av在线老鸭窝| 欧美人与善性xxx| 国产精品1区2区在线观看.| 成人毛片a级毛片在线播放| 久久久久久久久久久免费av| 久久精品国产亚洲av涩爱| 伦理电影大哥的女人| 日日啪夜夜撸| 久久久久久伊人网av| 一边亲一边摸免费视频| 亚洲av成人av| 少妇的逼好多水| 一本久久精品| 麻豆av噜噜一区二区三区| 国产乱人偷精品视频| 国产伦精品一区二区三区四那| 中文字幕熟女人妻在线| 波多野结衣巨乳人妻| 成人综合一区亚洲| 特级一级黄色大片| 男人舔奶头视频| 国产私拍福利视频在线观看| 国产欧美另类精品又又久久亚洲欧美| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲精品日韩av片在线观看| 国产精品,欧美在线| 在线观看美女被高潮喷水网站| 美女cb高潮喷水在线观看| 观看免费一级毛片| 亚洲精品久久久久久婷婷小说 | 亚洲人成网站高清观看| 亚洲精品久久久久久婷婷小说 | 啦啦啦韩国在线观看视频| 91久久精品电影网| 我要看日韩黄色一级片| 内地一区二区视频在线| 全区人妻精品视频| 淫秽高清视频在线观看| 亚洲人成网站在线播| 国产精品1区2区在线观看.| 日日撸夜夜添| 免费在线观看成人毛片| 老司机影院毛片| 亚洲精品色激情综合| 亚洲国产色片| 天天一区二区日本电影三级| 亚洲熟妇中文字幕五十中出| 91精品国产九色| 国产黄片美女视频| 国产成人精品婷婷| 亚洲欧美精品综合久久99| 久久久久久久久久久免费av| 国产亚洲午夜精品一区二区久久 | 男插女下体视频免费在线播放| 免费观看精品视频网站| 久久99蜜桃精品久久| 岛国在线免费视频观看| 久久人妻av系列| 91久久精品电影网| 色播亚洲综合网| 国产综合懂色| 亚洲自拍偷在线| 毛片一级片免费看久久久久| 亚洲丝袜综合中文字幕| 欧美bdsm另类| 精品人妻熟女av久视频| 亚洲经典国产精华液单| 少妇的逼好多水| 成年免费大片在线观看| 夜夜看夜夜爽夜夜摸| 国产一区二区在线av高清观看| 久久99热6这里只有精品| 女人久久www免费人成看片 | 日韩国内少妇激情av| 亚洲怡红院男人天堂| 午夜福利视频1000在线观看| 麻豆一二三区av精品| 村上凉子中文字幕在线| 美女cb高潮喷水在线观看| 成人午夜精彩视频在线观看| 男人舔女人下体高潮全视频| 日韩亚洲欧美综合| 日韩,欧美,国产一区二区三区 | 欧美潮喷喷水| 中文欧美无线码| 欧美成人a在线观看| 男女那种视频在线观看| 国产亚洲5aaaaa淫片| 日韩av在线大香蕉| 国产精品麻豆人妻色哟哟久久 | 有码 亚洲区| 韩国高清视频一区二区三区| 精品熟女少妇av免费看| 精品免费久久久久久久清纯| 国产探花在线观看一区二区| 久久精品久久久久久噜噜老黄 | 男人舔奶头视频| 欧美zozozo另类| 亚洲人成网站高清观看| 国产一区二区在线观看日韩| 三级毛片av免费| 黄色配什么色好看| 久久久久久国产a免费观看| 成人二区视频| 精品一区二区三区人妻视频| 91精品伊人久久大香线蕉| 日韩视频在线欧美| 婷婷六月久久综合丁香| 少妇熟女欧美另类| 亚洲第一区二区三区不卡| 国产视频首页在线观看| 丝袜喷水一区| 3wmmmm亚洲av在线观看| 热99re8久久精品国产| 亚洲国产精品合色在线| 日韩精品有码人妻一区| 日本爱情动作片www.在线观看| 久热久热在线精品观看| 看免费成人av毛片| 久久这里只有精品中国| 男女视频在线观看网站免费| 久久久久性生活片| 免费av观看视频| 中文字幕av成人在线电影| 国产国拍精品亚洲av在线观看| 亚洲精品国产av成人精品| 亚洲精品乱码久久久v下载方式| 黄色配什么色好看| av免费观看日本| 天美传媒精品一区二区| 成人二区视频| 天天一区二区日本电影三级| 97人妻精品一区二区三区麻豆| 青青草视频在线视频观看| 成人鲁丝片一二三区免费| 91精品一卡2卡3卡4卡| 只有这里有精品99| 免费观看人在逋| 欧美成人午夜免费资源| 亚洲精品自拍成人| 国产亚洲精品久久久com| 欧美日韩国产亚洲二区| 高清av免费在线| 亚洲av电影不卡..在线观看| av在线观看视频网站免费| 亚洲va在线va天堂va国产| 久久亚洲国产成人精品v| 日韩制服骚丝袜av| 色视频www国产| 国产精品久久久久久久电影| 日本av手机在线免费观看| 国产国拍精品亚洲av在线观看| 国产精品蜜桃在线观看| 日韩av在线免费看完整版不卡| 天天躁日日操中文字幕| 色5月婷婷丁香| 国产精品,欧美在线| 国产亚洲一区二区精品| 永久网站在线| 18禁在线无遮挡免费观看视频| 亚洲成av人片在线播放无| 亚洲av男天堂| 久久精品国产99精品国产亚洲性色| 亚洲欧美精品自产自拍| 欧美成人a在线观看| 在线播放无遮挡| 爱豆传媒免费全集在线观看| 免费黄网站久久成人精品| 久久精品人妻少妇| 久久久色成人| 国产精品久久久久久久电影| 欧美成人a在线观看| 91精品一卡2卡3卡4卡| 在线免费观看的www视频| 干丝袜人妻中文字幕| 亚洲中文字幕一区二区三区有码在线看| 天美传媒精品一区二区| 国产成人午夜福利电影在线观看| 长腿黑丝高跟| 国产亚洲av片在线观看秒播厂 | 亚洲av成人精品一二三区| 久久人人爽人人片av| 夜夜看夜夜爽夜夜摸| 亚洲av熟女| 国产成人午夜福利电影在线观看| 日本猛色少妇xxxxx猛交久久| 高清毛片免费看| 国产av在哪里看| 一本一本综合久久| 亚洲中文字幕日韩| 97热精品久久久久久| 国产伦一二天堂av在线观看| 国产精品爽爽va在线观看网站| 99热这里只有是精品50| 久久精品国产自在天天线| 免费黄色在线免费观看| 日韩欧美 国产精品| videossex国产| 日本熟妇午夜| 美女xxoo啪啪120秒动态图| 欧美一级a爱片免费观看看| 久久这里只有精品中国| 精品久久久久久成人av| av国产免费在线观看| 狂野欧美白嫩少妇大欣赏| 欧美日韩一区二区视频在线观看视频在线 | 又黄又爽又刺激的免费视频.| 国产不卡一卡二| 少妇熟女欧美另类| 国产乱人视频| 午夜爱爱视频在线播放| 1000部很黄的大片| 精品欧美国产一区二区三| 成年版毛片免费区| 免费大片18禁| 国产激情偷乱视频一区二区| 亚洲内射少妇av| videos熟女内射| 少妇被粗大猛烈的视频| 99久国产av精品| 汤姆久久久久久久影院中文字幕 | 三级毛片av免费| 永久网站在线| 午夜老司机福利剧场| 国内精品一区二区在线观看| av在线天堂中文字幕| 久久久精品大字幕| 国产午夜精品久久久久久一区二区三区| 精品久久久久久久末码| 国产黄片美女视频| 国产精品久久久久久av不卡| 国产免费男女视频| 国产黄色小视频在线观看| 中文字幕av在线有码专区| 国产一区亚洲一区在线观看| 久久久精品大字幕| 国产亚洲91精品色在线| 久久久久久久亚洲中文字幕| www.色视频.com| 精品久久久久久成人av| 男女下面进入的视频免费午夜| 欧美3d第一页| 亚洲欧美精品专区久久| 欧美丝袜亚洲另类| 日韩av在线免费看完整版不卡| 1024手机看黄色片| 一区二区三区高清视频在线| 国产老妇伦熟女老妇高清| 国产极品精品免费视频能看的| 国产成人a∨麻豆精品| 中文字幕久久专区| 欧美bdsm另类| 亚洲欧美中文字幕日韩二区| 国产毛片a区久久久久| 亚洲精品色激情综合| 免费看日本二区| 国内精品美女久久久久久| 午夜亚洲福利在线播放| 国产色爽女视频免费观看| 成人毛片a级毛片在线播放| 日本免费a在线| 国产大屁股一区二区在线视频| 国产极品天堂在线| 性插视频无遮挡在线免费观看| 亚洲丝袜综合中文字幕| 久久精品国产自在天天线| 久久久久网色| 天天一区二区日本电影三级| 国产一区亚洲一区在线观看| 女人被狂操c到高潮| av福利片在线观看| 97在线视频观看| 极品教师在线视频| 寂寞人妻少妇视频99o| 国产精品精品国产色婷婷| 精品人妻一区二区三区麻豆| 午夜福利在线在线| 亚洲欧美日韩卡通动漫| 欧美一级a爱片免费观看看| 男女下面进入的视频免费午夜| 国产黄色视频一区二区在线观看 | 成人无遮挡网站| h日本视频在线播放| 一个人观看的视频www高清免费观看| 亚洲最大成人中文| 免费搜索国产男女视频| 夫妻性生交免费视频一级片| 亚洲高清免费不卡视频| 高清午夜精品一区二区三区| 中文乱码字字幕精品一区二区三区 | 1000部很黄的大片| 国产麻豆成人av免费视频| 一区二区三区高清视频在线| 三级毛片av免费| 亚洲精品日韩在线中文字幕| 亚洲人与动物交配视频| 午夜日本视频在线| 欧美3d第一页| 少妇丰满av| 国产精品久久电影中文字幕| 婷婷六月久久综合丁香| 最近最新中文字幕大全电影3| 在线免费观看的www视频| 丝袜喷水一区| 又粗又硬又长又爽又黄的视频| 黄色欧美视频在线观看| 久久精品综合一区二区三区| kizo精华| 一级二级三级毛片免费看| 亚洲性久久影院| 成人漫画全彩无遮挡| 高清视频免费观看一区二区 | 成人鲁丝片一二三区免费| 成人三级黄色视频| 内地一区二区视频在线| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 人妻制服诱惑在线中文字幕| 又粗又硬又长又爽又黄的视频| 欧美成人午夜免费资源| 日韩人妻高清精品专区| 欧美zozozo另类| 日日摸夜夜添夜夜添av毛片| 美女xxoo啪啪120秒动态图| 观看免费一级毛片| 日本午夜av视频| 三级毛片av免费| 精品熟女少妇av免费看| 亚洲精品影视一区二区三区av| 丝袜喷水一区| 免费av毛片视频| 蜜桃久久精品国产亚洲av| 日本色播在线视频| 日韩一区二区三区影片| 在线天堂最新版资源| 视频中文字幕在线观看| 欧美潮喷喷水| 日日撸夜夜添| 老司机福利观看| 国产精品国产三级专区第一集| 丰满少妇做爰视频| 熟妇人妻久久中文字幕3abv| 日韩大片免费观看网站 | 欧美日本视频| 成人三级黄色视频| 国产高潮美女av| 最近中文字幕高清免费大全6| 精品久久久噜噜| 日本与韩国留学比较| 久久韩国三级中文字幕| 熟妇人妻久久中文字幕3abv| 91久久精品国产一区二区三区| 久久久久久久久久久丰满| 婷婷色综合大香蕉| 极品教师在线视频| 欧美人与善性xxx| 一级毛片电影观看 | 亚洲无线观看免费| 亚洲熟妇中文字幕五十中出| 老师上课跳d突然被开到最大视频| 国产成人精品久久久久久| 午夜福利在线在线| 欧美色视频一区免费| 成人亚洲欧美一区二区av| 岛国在线免费视频观看| 国产成人午夜福利电影在线观看| 亚洲精品色激情综合| av线在线观看网站| 亚洲成人精品中文字幕电影| 三级毛片av免费| av在线蜜桃| 美女cb高潮喷水在线观看| 波野结衣二区三区在线| 99久久无色码亚洲精品果冻| 国产黄片美女视频| 一级毛片我不卡| 高清午夜精品一区二区三区| 能在线免费看毛片的网站| 网址你懂的国产日韩在线| 日韩高清综合在线| 日韩精品青青久久久久久| 亚洲欧美精品综合久久99| 我的女老师完整版在线观看| 国产午夜精品一二区理论片| 99国产精品一区二区蜜桃av| 国产一级毛片七仙女欲春2| 最近的中文字幕免费完整| 免费观看a级毛片全部| av线在线观看网站| 成年女人永久免费观看视频| 亚洲国产精品合色在线| 国产精品熟女久久久久浪| 神马国产精品三级电影在线观看| 欧美另类亚洲清纯唯美| 天堂√8在线中文| 亚洲无线观看免费| 日韩高清综合在线| 2022亚洲国产成人精品| 别揉我奶头 嗯啊视频| 亚洲内射少妇av| 搞女人的毛片| 国产精华一区二区三区| 国产三级在线视频| 中文在线观看免费www的网站| 精品久久国产蜜桃| 欧美激情久久久久久爽电影| 在现免费观看毛片| 自拍偷自拍亚洲精品老妇| 久久精品国产亚洲av天美| АⅤ资源中文在线天堂| 亚洲欧美日韩东京热| 毛片女人毛片| 天天躁夜夜躁狠狠久久av| 国产一级毛片在线| 国产高清视频在线观看网站| 特级一级黄色大片| 国产精华一区二区三区| 久久99蜜桃精品久久| 级片在线观看| 欧美性猛交╳xxx乱大交人| 波野结衣二区三区在线| 欧美xxxx性猛交bbbb| 欧美日韩精品成人综合77777| 真实男女啪啪啪动态图| 中国国产av一级| 成人亚洲欧美一区二区av| 午夜激情福利司机影院| 亚洲欧洲国产日韩| 一级毛片aaaaaa免费看小| 一夜夜www| 亚洲第一区二区三区不卡| 99热这里只有是精品在线观看| 草草在线视频免费看| 亚洲av中文字字幕乱码综合| 日日摸夜夜添夜夜爱| 欧美一区二区精品小视频在线| 三级国产精品片| 国产午夜精品久久久久久一区二区三区| 欧美3d第一页| 国产真实伦视频高清在线观看| 免费黄色在线免费观看| 亚洲激情五月婷婷啪啪| 日韩亚洲欧美综合| 精品人妻偷拍中文字幕| 国产精品一二三区在线看| 亚洲欧美成人综合另类久久久 | 免费观看在线日韩| 久久久色成人| 日韩av不卡免费在线播放| 日本欧美国产在线视频| 小说图片视频综合网站| 免费搜索国产男女视频| 免费av不卡在线播放| 天天躁日日操中文字幕| 成人亚洲欧美一区二区av| 最近手机中文字幕大全| 亚洲av日韩在线播放| 成人性生交大片免费视频hd| 国内少妇人妻偷人精品xxx网站| 人妻少妇偷人精品九色| 午夜福利在线在线| 99久国产av精品| 久久99热这里只有精品18| 最近最新中文字幕大全电影3| 国产国拍精品亚洲av在线观看| 韩国av在线不卡| 日韩,欧美,国产一区二区三区 | 国产成人a∨麻豆精品| 久久精品91蜜桃| 乱系列少妇在线播放| 亚洲自拍偷在线| 日本三级黄在线观看| 美女黄网站色视频| 看片在线看免费视频| 亚洲av一区综合| 九草在线视频观看| 嫩草影院入口| 夜夜看夜夜爽夜夜摸| 插阴视频在线观看视频| 人体艺术视频欧美日本| 2021少妇久久久久久久久久久| av.在线天堂| 亚洲四区av| 边亲边吃奶的免费视频| 免费观看的影片在线观看| 三级国产精品欧美在线观看| 美女脱内裤让男人舔精品视频| 69人妻影院| 日日摸夜夜添夜夜添av毛片| 亚洲精品国产成人久久av| 少妇高潮的动态图| 在线免费观看不下载黄p国产| 我的女老师完整版在线观看| 熟妇人妻久久中文字幕3abv| 亚洲内射少妇av| 国产伦一二天堂av在线观看| 好男人在线观看高清免费视频| 成人三级黄色视频| 成人亚洲精品av一区二区| 色吧在线观看| 亚洲丝袜综合中文字幕| 赤兔流量卡办理| 欧美日韩综合久久久久久| 欧美一区二区国产精品久久精品| 秋霞在线观看毛片| 久久亚洲精品不卡| 晚上一个人看的免费电影| 日韩欧美三级三区|