• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of seed layers on the static and dynamic magnetic properties of CoIr films with negative effective magnetocrystalline anisotropy

    2023-12-15 11:51:22TianyongMa馬天勇ShaZhang張莎ChenhuZhang張晨虎ZhiweiLi李志偉TaoWang王濤andFashenLi李發(fā)伸
    Chinese Physics B 2023年12期

    Tianyong Ma(馬天勇), Sha Zhang(張莎), Chenhu Zhang(張晨虎), Zhiwei Li(李志偉),Tao Wang(王濤),?, and Fashen Li(李發(fā)伸)

    1The Key Laboratory of Physics and Photoelectric Information Functional Materials,North Minzu University,Yinchuan 750021,China

    2Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education,Lanzhou University,Lanzhou 730000,China

    Keywords: seed layers,magnetic anisotropy,surface free energy,soft magnetic thin films

    1.Introduction

    Soft magnetic thin films (SMTFs) are widely investigated and highly desired for practical applications,such as microwave absorbers, inductors, micro-transformers, exchangecoupled composite media,and near field electromagnetic noise absorbers.[1,2]In practical application,SMTFs have to possess the basic demands including high saturation magnetizationMs,low coercivityHc, high permeability, and high natural resonance frequency(fr)as far as possible.Fe-and Co-based soft magnetic films exhibit excellent saturation magnetization,low coercivity,and high electrical resistivity.[3,4]Their microwave properties are governed by the following equation in the bianisotropy model:[5]

    whereμiandfrare the initial permeability and the natural resonance frequency, respectively.γis the gyromagnetic ratio.Hgrain= 2Kgrain/Msis the effective magnetocrystalline anisotropy field with the corresponding magnetocrystalline anisotropy constantKgrain.According to our previous work,[6]oriented hcp-CoIr SMTFs with a certain Ir content have the effective negative magnetocrystalline anisotropy.It is clear that negativeKgraincan increasefrwithout affectingμifrom Eq.(1).Moreover,magnetic moments are strictly restricted in the film plane by negative magnetocrystalline anisotropy.So,the oriented hcp-CoIr film can have sufficient thickness to obtain enough magnetic flux signal in practical uses of magnetic devices.

    The metal seed layers between the substrate and the magnetic film, such as Ta/Pt/Ru, Ti/Au, and Ta/Ru, have made a highly oriented hcp-CoIr film.[6,7]The higher oriented texture of CoIr films has a smaller negative magnetocrystalline anisotropy as the Cu or Cu/Ru seed layers can increase the perpendicular magnetic anisotropy of Co80Pt20films.[8]Moreover, good soft magnetic properties have also been obtained,namely,the seed layer is effective to reduceHcwithout affectingMs.Studies have reported that Co,Cu,and Ru seed layers make FeCo films magnetically softer.[9]Simultaneously, the high-frequency properties determined by the static magnetic parameters are also improved by using a seed layer, such as Fe65Co35thin films with Ru and Rh seed layers.[10]In highfrequency practical applications, the magnetic damping constantαis also a key parameter and varies a bit with the choice of seed layer.[10]With the extrinsic contribution, the lowerαvalue is associated with less magnetic inhomogeneities.[11]And the intrinsic contribution is relative to fundamental properties such asMs.[12]In other words,epitaxial growth induced by a seed layer is the most efficient method to form a higher orientation and make the films magnetically softer and to improve high-frequency properties.

    CoIr grains with strong negative magnetocrystalline anisotropy have an hcp structure.As mentioned above, the hcp-Ru (002) and fcc-Au (111) seed layers were used to induce thec-axis orientation of CoIr grains.Although the fcc-(111) plane of Ni, Cu, Ir, and Pt is similar to the hcp-(002)plane of CoIr, the seed layers of these metals have not been studied for CoIr SMTFs.Moreover, lattice mismatch ratios have a tremendous influence on the crystallographic quality of epitaxial thin films[13,14](e.g.,magnetic film’s stress state and texture formation).Therefore, in order to investigate and understand the effects of other material seed layers and lattice mismatch ratios on the CoIr magnetic layer, we used the fcc-(111)Ni,Cu,Ir,Pt,and Au seed layers to induce the oriented hcp-CoIr thin films with thec-axis of grains perpendicular to the film plane.We studied the effects of different seed layers on microstructure, soft magnetic properties, and negative effective magnetocrystalline anisotropy.Besides the static magnetic properties, dynamic studies were performed using field sweep ferromagnetic resonance(FMR)measurements and the damping constant affected by seed layers was studied through a vector network analyzer(VNA).

    2.Experiment

    All magnetic thin films studied in this work were prepared by the DC magnetron sputtering technique, which is similar to our earlier work with a layered structure of substrate/Ti/M/CoIr (M=Ni, Cu, Ir, Pt, Au, none) as shown in Fig.1(a).A Si wafer with surface oxidation was used as the substrate, and the amorphous Ti layer (8 nm) was deposited on the substrate in order to provide a clean and flat surface.The oriented seed layerM(Ni, Cu, Ir, Pt, Au) of about 25 nm was grown on the Ti layer to help the CoIr magnetic layer reach about 50 nm.Compared with other films,the film was fabricated without a seed layer between the Ti layer and the magnetic layer.When fabricating the Ti and seed layers, purity Ar was used as the sputtering working gas at a pressure of 0.25 Pa.Then under the condition of 0.3 Pa purity Ar, CoIr magnetic layers were sputter deposited using a Co target with five Ir chips symmetrically placed on the Co target.About 10 cm away from the targets, the substrates were mounted on the center of the sample turntable.Chemical composition has been characterized by energy dispersive spectrometry (EDS).The crystalline structures were studied using the x-ray diffraction technique(XRD).The morphologies were observed by transmission electron microscopy (TEM).The static magnetic properties were measured with a vibrating sample magnetometer (VSM).Total out-of-plane anisotropy fields and the effective negative magnetocrystalline anisotropy were thoroughly investigated by electron spin resonance measurements (ESR).The damping constants for all films were thoroughly investigated by a VNA.

    3.Results and discussion

    Schematic diagrams of the hcp-CoIr(002)plane and fcc-M(111) plane are shown in Fig.1(b).Half of the regular hexagon is seen on both the hcp-CoIr(002)plane and the fcc-M(111)plane,suggesting that lattice mismatches come from the difference in inter-atomic distance.The inter-atomic distances of fcc-(111)Ni,Cu,Ir,Pt,and Au are 2.49 ?A,2.55 ?A,2.72 ?A,2.77 ?A,and 2.88 ?A,respectively.The lattice mismatch ratios are about-0.81%,1.59%,8.37%,10.36%,and 14.74%for the lattice spacing of hcp-Co(002)of~2.51 ?A.

    Fig.1.(a) Schematic of the layer structure of our samples.(b) The crystal structures of fcc-(111)Ni,Cu,Ir,Pt,Au,and hcp-CoIr(002),half of the regular hexagon on M(111)plane and CoIr(002)plane are marked with red dotted lines.

    XRD patterns of the samples measured with aθ-2θscan are shown in Fig.2(a).Only two diffraction peaks corresponding to theM(111) plane and the CoIr (002) plane can be seen.For the sample without a seed layer, only CoIr (002)has a diffraction peak.Obviously,the intensity of theM(111)peak gradually increases and the position shifts to low 2θbecause of the enlargement of the lattice parameters from Ni to Au.With the lattice mismatch ratio,the positions of the CoIr(002) peak show no obvious changes, and the intensity first showed small changes,then rapidly became strong and sharp.However, for the film without a seed layer, there is a significant right drift of the CoIr (002) peak, which indicates that the lattice constant of the CoIr phase becomes small.The smaller lattice constant results from the decreasing number of Ir atoms successfully entering the crystal structure of hcp-(CoIr).Meanwhile, the CoIr (002) peak gets broader and its intensity becomes weaker.Therefore, the films with a seed layer are more textured along thec-axis alignment than the film without a seed layer.And the degree of orientation improved by increasing the lattice mismatch ratio.However,the intensity of the CoIr (002) peak for the Au seed layer film is about 11 times that of the Ni seed layer film, which is inexplicable.As shown in Fig.2(b), we plot the crystalclattice parameter and FWHM determined from the profile fit to the CoIr(002)peak.One can see thatcshows little change with the exception of the first one.The mean value of 0.4125 nm is about 0.13%larger than that of the firstcparameter,which has been explained previously.Moreover, the values of the FWHM increase from 0.31 for the Ni seed layer film to 0.35 for the film with an Ir seed layer,then inversely reach 0.28 for the Au seed layer film.Obviously, the value of the no-seed layer film becomes about 1.4 times larger than that of the Au seed layer film.The smaller FWHM of the magnetic layer can be caused either by the reduction in defects and/or internal stress or by the increased crystallite size of the film or both of the reasons above.[15]In Fig.3, we present the images of the morphology of the CoIr films with Au and Ni seed layers from TEM measurements.For the Au seed layer film,the grain size is uniform and grain boundaries are distinct,whereas the size of the crystallization areas is uneven and there are no clear boundaries for the Ni seed layer film.Significantly,the figure showing the Ni seed layer film reveals the mixing of crystallite regions and amorphous regions,which provides an explanation for the large peak intensity ratio.Moreover, Co and Ir atoms may reside at the interstitial site or fill in the interspace between individual grains, which may lead to an increase in defects and/or internal stress.

    Fig.2.(a)XRD patterns of the oriented hcp-Co81Ir19 films with different seed layers.(b)Lattice parameters c and FWHM,obtained by fitting the CoIr(002)peak shown in panel(a),with different seed layers.

    Fig.3.Images of the morphology of the CoIr films with Au and Ni seed layers,respectively.

    The in-plane magnetic hysteresis loops of all the films are shown in Fig.4(a).These loops were measured with the applied magnetic field parallel to the easy axis during measurements.The remanence ratios of all loops are above 0.92 and the nearly rectangular loops are clearly observed.Furthermore, the determined saturation magnetization 4πMsand coercivityHcfrom the above hysteresis measurements are plotted in Fig.4(b).There are no obvious changes in 4πMsabout 12.4 kOe for the CoIr magnetic layer,which agrees well with reported values.[7]For the Ni seed layer film,4πMsof only the CoIr magnetic layer is 12.8 kOe as shown in Fig.4(b),whereas the saturation magnetization containing both a Ni seed layer and CoIr layer is about 10.7 kOe.With increasing the lattice mismatch ratio,Hcincreases from 54.9 Oe for the Ni seed layer film to 74.3 Oe for the film with a Cu seed layer,then decreases gradually to 27.4 Oe.The reduction in coercivity can be linked drastically to the reduction of defects and/or internal stress,[16]the reduction of the crystallite size,and the increase in exchange coupling between the crystallites.[17]Considering that the tendency ofHcis similar to that of the FWHM with the lattice mismatch ratio, we speculate that the main reason for the change inHcand FWHM is the same.As is known, the change in crystallite size may cause the opposite tendency of the FWHM and coercivity.Therefore,the change inHcand FWHM may be mainly attributed to the reduction of defects and/or internal stress with the lattice mismatch ratio.For the film without seed layer,the value remarkably reaches 103.5 Oe about 3.8 times larger than the smallest one.This very large value may come from many defects and/or strong internal stress and/or the large in-plane component of the magnetocrystalline anisotropy field.

    Fig.4.(a) Normalized in-plane magnetic hysteresis loops of the oriented hcp-Co81Ir19 films with different seed layers.(b) The seed layer dependence of the determined 4πMs and Hc for the oriented hcp-Co81Ir19 films.

    As emphasized in our earlier work,[6]we now investigate the magnetic anisotropy properties of our films using ESR measurements.The resonance fields were measured with an external magnetic field applied to the film plane.The microwave magnetic field of about 9 GHz was applied perpendicular to the film plane.As shown in Figs.5(a)-5(f), the resonance fields of all films display a well-defined in-plane uniaxial symmetry as a function of field orientationφH, suggesting the samples have an in-plane uniaxial anisotropy.[18]The uniaxial anisotropy is induced by the slight oblique deposition angle,and can be explained within the framework of the so-called self-shadowing model.[19]TakingHuandHθas adjustable parameters, we fitted the experimental data by the following equations:[20]

    whereHθis the total effective out-of-plane anisotropy field,Hris the resonance field,φ0is the value ofφMwith the equilibrium positions,ωis the angular frequency of about 18π, andγis the gyromagnetic ratio.The fitted results are consistent in the measured datum and drawn in Figs.5(a)-5(f) as black solid lines.The extracted in-plane uniaxial anisotropy fieldsHuare shown in Fig.5(g) as open black squares.Obviously,Huchanges slightly around 18 Oe because of the slight oblique deposition angle.ForHθshown in Fig.5(h),the deduced values increase from 10.9-26 kOe with the lattice mismatch ratio,whereas they reduce to 23.2 kOe for the film without a seed layer.For the Ni seed layer film,the correctedHθis 11.6 kOe when the perpendicular anisotropy of the Ni seed layer is eliminated.According to the equationsHθ=4πMs-HgrainandHgrain=2Kgrain/Ms,the calculatedKgrainis shown in Fig.5(i).The values are all negative and different from each other,suggesting thatKgrainis affected by a seed layer and the seed layer material.

    Fig.5.(a)-(f) Angle dependence of the in-plane resonance field for the oriented hcp-Co81Ir19 films with different seed layers.The black solid lines denote the theoretical fits to the experimental datum represented by red dots.(g) The determined in-plane anisotropy field Hu,(h)the total effective out-of-plane anisotropy field Hθ, (i)the deduced magnetocrystalline anisotropy constant Kgrain as a function of the lattice mismatch ratios for different seed layers.

    According to the reported literature,[21,22]Kgrainis sensitive to the lattice geometry and microstructure, which is restricted by the growth mode of the magnetic layer.The growth modes are mainly governed by the seed-layer surfacefree energyγs, the magnetic layer surface free energyγf, the strain energyγe, and the interface energyγi.[23]Except for Ir(3.231 J·m-2), the surface free energies of Ni (2.364 J·m-2),Cu(1.934 J·m-2),Pt(2.691 J·m-2),Au(1.626 J·m-2),and Ti(2.570 J·m-2)are smaller than that of Co(2.709 J·m-2).[24,25]As the Ir atomic diameter is bigger than that of Co, the lattice constant of the hcp-CoIr phase becomes bigger with the increase in Ir.We speculate that the surface-free energy of Co is smaller than that of CoIr.Furthermore, theγsfor the Ni,Cu, Pt, an Au seed layer and Ti amorphous layer is smaller than theγfof the CoIr magnetic layer, whereas theγsof Ir may be slightly greater than theγfof the CoIr layer.Again takingγiandγeinto consideration,it is easy to satisfy the relationshipγs-γf-γe-γi<0.Therefore,the deposited magnetic layer forms three-dimensional islands or clusters at the initial stage, then the following growth has the trend of random orientation distribution and rough surface.As reported in the literature,[26]defects and/or internal stress and/or dislocations may appear at the interface.However, with increasing the lattice mismatch ratio, the mismatch strain between the seed layer and the magnetic layer varies from compressive stress to tensile stress, and tensile stress gradually becomes larger.In order to relieve the mismatch strain, the degree of the orientation of the hcp-CoIr grains may be improved, the microstructure and appearance may be changed,the defects and/or internal stress may be reduced,the crystallite width may be refined,and dislocations may be decreased.We find that the main contribution is both the increasing degree of orientation and the reduction in defects and/or internal stress so that it is consistent with the reason for decreasedHcand FWHM values.The reduced strain energyγeis favorable to the layer-by-layer growth of the magnetic layer.During the growth process,the layer-by-layer growth is conducive to improving the degree of the orientation and to reducing the defects and/or internal stress;[27]hence, a smallerKgrainis obtained.Apart from these, the different stacking structure ratios and crystallinity and atomic site ordering can also be linked drastically toKgrain.[21]For the Ni seed layer film,amorphous regions appear as shown in Fig.3.And it is difficult to form the hcp-CoIr phase with an easy plane and to improve the degree of orientation because the Ni(111)direction perpendicular to the film plane is an easy axis of magnetization; thus,Kgrainis approximately zero.Despite easily forming hcp stacking,the film without a seed layer has much more random orientation grains and defects, holes, and grain boundaries because of the three-dimensional islands’ growth and un-epitaxial growth.[28]Besides, the different seed layer metals have different seed layer thickness ranges,which yield the highlyc-axis oriented hcp-(CoIr)films.[29]The seed layer thickness of about 25 nm is optimal for Au metal,whereas the range of the thickness of other metals is not discussed.The other seed layer fixed at 25 nm thickness may be not conducive to the realization of thec-axis oriented growth and hcp stacking.Therefore,the Au seed layer film has the minimumKgrainof about-5.299×106erg·cm-3.

    Fig.6.(a)-(f)Permeability spectra of the oriented hcp-Co81Ir19 films with different seed layers.(g)The initial permeabilityμi,(h)the natural resonance frequency fr, (i) the derived damping constant α for different seed layers.The anshown as solid black squares aredetermined from the measured spectra.The calculated values using the determined 4πMs and the in-plane anisotropy field from the VSM and ESR measurements are also shown for comparison.

    In high-frequency applications,the dimensionless damping constantαis one of the key parameters of ultra-high frequency devices.[30]Restricted by the damping constant, the complex permeability spectra can be described by the following formula deduced from the Landau-Lifshitz-Gilbert(LLG)equation[31]

    in whichω1=γ(4πMs-Hgrain+Hu) =γ(Hθ+Hu),ω2=γHu, whereωis the angular frequency andαis the damping constant.Using the in-plane anisotropy field andαas the free fitting parameters, we fitted the experimental curves by Eq.(3)as shown in Figs.6(a)-6(f).The extracted in-plane anisotropy fields are 221 Oe,220 Oe,220 Oe,220 Oe,228 Oe,and 231 Oe for the Ni,Cu,Ir,Pt,Au,and no seed layer films,respectively.These values are very close to the extractedHuplus 200 Oe applied field.As given in Fig.6(i), the obtainedαincreases from 0.063 for the Ni seed layer film to 0.075 for the film with a Cu seed layer,then decreases gradually to 0.034 for the Au seed layer film.However,the value of the no seed layer film reaches 0.06,which is about 1.76 times larger than the smallest one.It is well known that the damping constant consists of two parts, namely, the intrinsic and extrinsic contributions.The intrinsic part largely depends on fundamental properties such asMsand the spin-orbit coupling effect.[11,32]AsMsis extremely close to a constant except for in the Ni seed layer film,this part has no influence onα.With the same origin in spin-orbit coupling,[33]the serious fluctuation inKgrainindicates thatαis subject to variation.In general, there is no linear relationship betweenKgrainandα.Besides, the extrinsic part is generally explained by the defect-induced two magnon model and/or the local resonance model,[34]both of which are associated with magnetic inhomogeneities within the material (e.g., due to anisotropy dispersion and surface or interface roughness).As mentioned above, the improved orientation in the grains and the reduced defects and/or internal stress result in the decrease in magnetic inhomogeneities.With increasing the lattice mismatch ratio,a decreasing trend is shown in both FWHM andα,while the discrepancy is also obvious.Therefore, the extrinsic part plays a vital role in the variation inα, and the intrinsic part is also a supplemental factor.Interestingly,because of the smallest extrinsic part,the minimum ofαis inevitable for the Au seed layer film.

    4.Conclusion

    In summary,c-axis oriented hcp-Co81Ir19magnetic films were successfully prepared on different seed layers(Ni,Cu,Ir,Pt,Au,and no seed),and were investigated thoroughly by different measurement techniques.The orientation and defects of thec-axis oriented hcp-(CoIr) grains are strongly affected by the seed layer.The coercivityHcandKgrainare strongly dependent on the seed layer and seed layer material.While the determined saturation magnetization 4πMsand in-plane uniaxial anisotropy fieldsHuare independent of the lattice parameters, microstructure, and material of the seed layer.As expected,the initial permeability has little relation to the seed layer, while the natural resonance frequency is strongly restricted throughKgrainaffected by the lattice mismatch ratio.The extracted lowerαis relative to the improved grain orientation and the reduced defects and/or internal stress.Among all the films, the film for the Au seed layer has the optimal performance of soft magnetic properties and microwave properties.We expect that these results can further help us improve the static and dynamic frequency properties for further applications.

    Acknowledgements

    Project supported by the Natural Science Foundation of Ningxia in China (Grant No.2022AAC03288)and the Ningxia New Solid Electronic Materials and Devices Research and Development Innovation Team (Grant No.2020CXTDLX12).

    亚洲精品中文字幕在线视频 | 色视频在线一区二区三区| 精品国产三级普通话版| 中文天堂在线官网| 看十八女毛片水多多多| 九草在线视频观看| 久久久久国产网址| 高清视频免费观看一区二区| 久久av网站| 亚洲性久久影院| av.在线天堂| 久久精品久久久久久噜噜老黄| 丰满迷人的少妇在线观看| 99久国产av精品国产电影| 直男gayav资源| 成人高潮视频无遮挡免费网站| 亚洲精品久久久久久婷婷小说| 国产一区亚洲一区在线观看| 国国产精品蜜臀av免费| 在线观看免费高清a一片| 18禁裸乳无遮挡免费网站照片| 亚洲精品第二区| 亚洲精品中文字幕在线视频 | 国产亚洲一区二区精品| 中文字幕制服av| 中文字幕免费在线视频6| 伦精品一区二区三区| 只有这里有精品99| 成人漫画全彩无遮挡| 国产黄色视频一区二区在线观看| 欧美老熟妇乱子伦牲交| 日本av免费视频播放| 噜噜噜噜噜久久久久久91| 亚洲国产精品成人久久小说| 日韩欧美一区视频在线观看 | 少妇的逼好多水| 色婷婷久久久亚洲欧美| 亚洲av中文字字幕乱码综合| 国产高潮美女av| 久久人人爽人人爽人人片va| 韩国av在线不卡| 80岁老熟妇乱子伦牲交| 国产亚洲5aaaaa淫片| 男女国产视频网站| 男人狂女人下面高潮的视频| 十八禁网站网址无遮挡 | av国产精品久久久久影院| 国产精品伦人一区二区| 久久av网站| 中文欧美无线码| 亚洲国产精品一区三区| 香蕉精品网在线| 99re6热这里在线精品视频| 亚洲欧美精品专区久久| 高清不卡的av网站| 高清毛片免费看| 岛国毛片在线播放| 久久久久久伊人网av| 久久午夜福利片| 99久久人妻综合| 久久女婷五月综合色啪小说| 99热网站在线观看| 久久久色成人| 亚洲精华国产精华液的使用体验| 国产真实伦视频高清在线观看| 天堂8中文在线网| 久久精品久久久久久久性| 中国美白少妇内射xxxbb| 精品人妻偷拍中文字幕| 国产精品女同一区二区软件| 欧美成人午夜免费资源| 久久女婷五月综合色啪小说| av又黄又爽大尺度在线免费看| 日本一二三区视频观看| 亚洲av成人精品一区久久| 亚洲欧美精品自产自拍| 在线观看三级黄色| 秋霞在线观看毛片| 看十八女毛片水多多多| 国产亚洲91精品色在线| 青春草国产在线视频| 人妻一区二区av| 欧美精品一区二区免费开放| 99久久综合免费| 欧美日韩亚洲高清精品| 国产伦精品一区二区三区四那| 性高湖久久久久久久久免费观看| 噜噜噜噜噜久久久久久91| 日本爱情动作片www.在线观看| 大香蕉97超碰在线| 欧美变态另类bdsm刘玥| 观看av在线不卡| 亚洲,一卡二卡三卡| 秋霞在线观看毛片| 免费大片黄手机在线观看| 欧美日韩精品成人综合77777| 一区二区三区四区激情视频| 观看免费一级毛片| 男女边摸边吃奶| 久久久久人妻精品一区果冻| 日本黄色片子视频| 老司机影院毛片| 99久久中文字幕三级久久日本| 老司机影院成人| 联通29元200g的流量卡| 亚洲精品自拍成人| 日日摸夜夜添夜夜爱| 欧美成人午夜免费资源| 国产有黄有色有爽视频| 亚洲一级一片aⅴ在线观看| 在线 av 中文字幕| 在线精品无人区一区二区三 | 香蕉精品网在线| 久久精品国产a三级三级三级| 国产男女内射视频| 亚洲精品国产成人久久av| 男男h啪啪无遮挡| 精品一区二区三区视频在线| 精品久久久精品久久久| 国产成人aa在线观看| 成人无遮挡网站| 丰满少妇做爰视频| 嘟嘟电影网在线观看| 成人美女网站在线观看视频| 久久亚洲国产成人精品v| 国产午夜精品久久久久久一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91 | 久久久精品94久久精品| 亚洲精品日本国产第一区| 内地一区二区视频在线| 亚洲,欧美,日韩| 欧美日韩在线观看h| 2018国产大陆天天弄谢| 女性被躁到高潮视频| 尤物成人国产欧美一区二区三区| av天堂中文字幕网| 亚洲国产av新网站| 国产精品一区二区在线不卡| 婷婷色综合www| 又爽又黄a免费视频| 尾随美女入室| 免费人妻精品一区二区三区视频| 国产亚洲91精品色在线| 男人爽女人下面视频在线观看| 老熟女久久久| av专区在线播放| 国产黄片美女视频| 菩萨蛮人人尽说江南好唐韦庄| 免费观看性生交大片5| 国产精品久久久久久久久免| 久久av网站| 欧美精品人与动牲交sv欧美| 观看av在线不卡| 国产精品三级大全| 午夜福利视频精品| 欧美成人午夜免费资源| 国产精品.久久久| 中文字幕av成人在线电影| 亚洲欧洲日产国产| 最近中文字幕高清免费大全6| 亚洲精品日本国产第一区| 日韩欧美一区视频在线观看 | av免费观看日本| 黑人猛操日本美女一级片| 亚洲国产最新在线播放| 久久精品国产亚洲网站| 新久久久久国产一级毛片| 国产精品人妻久久久久久| 日本免费在线观看一区| 五月伊人婷婷丁香| 国产亚洲午夜精品一区二区久久| 亚洲高清免费不卡视频| 国产69精品久久久久777片| 久久这里有精品视频免费| 九九在线视频观看精品| 国产精品成人在线| 日韩强制内射视频| 晚上一个人看的免费电影| 国产欧美亚洲国产| 婷婷色综合大香蕉| 成人国产av品久久久| 在线免费观看不下载黄p国产| 久久久久性生活片| 亚洲精品乱码久久久v下载方式| 午夜免费观看性视频| 免费av不卡在线播放| 亚洲欧美精品专区久久| 国产亚洲欧美精品永久| 欧美xxxx黑人xx丫x性爽| 婷婷色av中文字幕| 国产精品国产av在线观看| av福利片在线观看| 国产精品福利在线免费观看| 亚洲精品乱久久久久久| 能在线免费看毛片的网站| 美女视频免费永久观看网站| av在线蜜桃| 免费观看性生交大片5| 亚洲第一av免费看| 久久久久精品久久久久真实原创| 亚洲精品第二区| 黄色日韩在线| 亚洲国产精品国产精品| 1000部很黄的大片| 大片免费播放器 马上看| 午夜视频国产福利| 丰满人妻一区二区三区视频av| 国产精品一区www在线观看| 欧美激情极品国产一区二区三区 | 国产av一区二区精品久久 | 简卡轻食公司| 久久久久久久久久人人人人人人| 日本av手机在线免费观看| tube8黄色片| 街头女战士在线观看网站| 最近手机中文字幕大全| 亚洲色图av天堂| 日本猛色少妇xxxxx猛交久久| 国产精品蜜桃在线观看| 汤姆久久久久久久影院中文字幕| 精品一区二区三区视频在线| 国产高清不卡午夜福利| 日韩成人av中文字幕在线观看| 久久精品国产a三级三级三级| 国产永久视频网站| 大片免费播放器 马上看| 午夜免费男女啪啪视频观看| 亚洲自偷自拍三级| av黄色大香蕉| 日韩精品有码人妻一区| 男人狂女人下面高潮的视频| 亚洲一区二区三区欧美精品| 国内精品宾馆在线| 久久女婷五月综合色啪小说| 日韩大片免费观看网站| 春色校园在线视频观看| 精品亚洲成a人片在线观看 | 欧美成人a在线观看| 国产91av在线免费观看| 国产毛片在线视频| 一区二区三区精品91| 少妇的逼好多水| 夜夜骑夜夜射夜夜干| 丝袜喷水一区| 大陆偷拍与自拍| 日本vs欧美在线观看视频 | 欧美日韩国产mv在线观看视频 | 成人国产麻豆网| 久久6这里有精品| 国产深夜福利视频在线观看| 亚洲激情五月婷婷啪啪| 精品一区二区三区视频在线| 国产精品久久久久久久电影| 少妇猛男粗大的猛烈进出视频| 18+在线观看网站| 久久久久久久久大av| 国产精品一二三区在线看| 夜夜看夜夜爽夜夜摸| 日韩成人av中文字幕在线观看| 联通29元200g的流量卡| 国产一区亚洲一区在线观看| 新久久久久国产一级毛片| 日日啪夜夜撸| 国产av国产精品国产| 日日啪夜夜爽| 纵有疾风起免费观看全集完整版| 亚洲精品国产色婷婷电影| 国产爽快片一区二区三区| 永久网站在线| 深爱激情五月婷婷| 赤兔流量卡办理| 亚州av有码| 久久久久久人妻| 国产精品福利在线免费观看| 99热6这里只有精品| 免费观看av网站的网址| 亚洲婷婷狠狠爱综合网| 国产精品.久久久| 欧美性感艳星| 久久亚洲国产成人精品v| 2018国产大陆天天弄谢| 日本欧美视频一区| 成人国产麻豆网| 日本黄色片子视频| 一区二区三区精品91| 下体分泌物呈黄色| 你懂的网址亚洲精品在线观看| 久久 成人 亚洲| 亚洲欧美成人精品一区二区| 国产亚洲午夜精品一区二区久久| 精品视频人人做人人爽| 日本vs欧美在线观看视频 | 大香蕉久久网| 校园人妻丝袜中文字幕| 尾随美女入室| 亚洲av电影在线观看一区二区三区| 国产色婷婷99| 免费不卡的大黄色大毛片视频在线观看| 亚洲精品国产av蜜桃| 国产亚洲5aaaaa淫片| 亚洲国产精品成人久久小说| 纵有疾风起免费观看全集完整版| 国产精品嫩草影院av在线观看| 免费av不卡在线播放| 国产高清有码在线观看视频| 人妻制服诱惑在线中文字幕| 黄色怎么调成土黄色| av视频免费观看在线观看| 国产精品国产三级国产av玫瑰| 中文字幕制服av| 深夜a级毛片| 一级黄片播放器| 成人毛片60女人毛片免费| 国语对白做爰xxxⅹ性视频网站| 成人高潮视频无遮挡免费网站| 国产精品精品国产色婷婷| 亚洲丝袜综合中文字幕| 有码 亚洲区| 少妇精品久久久久久久| 五月玫瑰六月丁香| 中文字幕久久专区| 成人国产av品久久久| 久热这里只有精品99| 国产极品天堂在线| 欧美日韩国产mv在线观看视频 | 精品久久久久久久久av| 久久99热6这里只有精品| 91精品一卡2卡3卡4卡| 欧美区成人在线视频| 久久久久精品久久久久真实原创| 校园人妻丝袜中文字幕| 老师上课跳d突然被开到最大视频| 22中文网久久字幕| a 毛片基地| 免费观看在线日韩| 国产精品久久久久成人av| 亚洲成人av在线免费| 久久韩国三级中文字幕| 女人久久www免费人成看片| 天堂8中文在线网| 日日摸夜夜添夜夜添av毛片| 国产高清国产精品国产三级 | 久久久精品94久久精品| 18+在线观看网站| 一级毛片电影观看| 91精品一卡2卡3卡4卡| 精品一区在线观看国产| 午夜免费观看性视频| 少妇的逼好多水| 国产色婷婷99| 多毛熟女@视频| 男女无遮挡免费网站观看| 国产一区亚洲一区在线观看| 男女无遮挡免费网站观看| 国产精品99久久久久久久久| av一本久久久久| 小蜜桃在线观看免费完整版高清| 国产精品一区二区在线不卡| 久久久久久久久久成人| 亚洲欧美日韩卡通动漫| 大香蕉久久网| 精品久久久久久久末码| 色网站视频免费| 国产免费一区二区三区四区乱码| 亚洲成人av在线免费| 国模一区二区三区四区视频| 九九在线视频观看精品| 久久久色成人| 日韩人妻高清精品专区| 青春草国产在线视频| 高清黄色对白视频在线免费看 | 99久国产av精品国产电影| 精品少妇黑人巨大在线播放| 18禁裸乳无遮挡动漫免费视频| 国产黄色视频一区二区在线观看| 亚洲国产日韩一区二区| 各种免费的搞黄视频| 性色av一级| 成年美女黄网站色视频大全免费 | 身体一侧抽搐| av在线播放精品| 国产色婷婷99| 久久久国产一区二区| 久久国产精品男人的天堂亚洲 | 国产毛片在线视频| 国精品久久久久久国模美| 十八禁网站网址无遮挡 | 熟妇人妻不卡中文字幕| 草草在线视频免费看| 久久久久久人妻| 日韩制服骚丝袜av| 亚洲av成人精品一区久久| 777米奇影视久久| 日本欧美视频一区| a级毛片免费高清观看在线播放| 国产成人午夜福利电影在线观看| 综合色丁香网| 国产黄片美女视频| 99久久精品国产国产毛片| 亚洲电影在线观看av| 99久久精品国产国产毛片| 在线看a的网站| 亚洲国产色片| av在线观看视频网站免费| 青春草国产在线视频| 深夜a级毛片| 国产欧美日韩一区二区三区在线 | 久久国产乱子免费精品| 久久精品国产亚洲av天美| 亚洲av男天堂| 欧美97在线视频| 亚洲内射少妇av| 少妇的逼水好多| 青春草亚洲视频在线观看| 亚洲在久久综合| 在线观看免费高清a一片| 黑丝袜美女国产一区| 高清欧美精品videossex| 国产免费一级a男人的天堂| 亚洲人与动物交配视频| 国产黄频视频在线观看| 熟妇人妻不卡中文字幕| 日韩三级伦理在线观看| 国产精品国产av在线观看| 超碰av人人做人人爽久久| 在线精品无人区一区二区三 | 两个人的视频大全免费| 午夜激情福利司机影院| 精华霜和精华液先用哪个| 亚洲图色成人| 国产精品人妻久久久影院| av专区在线播放| 亚洲国产精品一区三区| 色综合色国产| 大香蕉97超碰在线| freevideosex欧美| 午夜精品国产一区二区电影| 日韩大片免费观看网站| 人妻 亚洲 视频| 免费大片18禁| 亚洲色图av天堂| 亚洲欧美清纯卡通| 精品人妻偷拍中文字幕| 91精品国产九色| 亚洲伊人久久精品综合| 中文字幕久久专区| 一级毛片久久久久久久久女| 久久久久国产网址| 久久国内精品自在自线图片| 国产黄色免费在线视频| 久久久久久久国产电影| 国产精品人妻久久久影院| 国产在线男女| 国精品久久久久久国模美| 插逼视频在线观看| 国产黄色视频一区二区在线观看| 亚洲成人中文字幕在线播放| 国产 一区 欧美 日韩| 麻豆国产97在线/欧美| 在线播放无遮挡| 国产高清有码在线观看视频| 免费观看av网站的网址| 人妻系列 视频| 美女主播在线视频| 在线观看人妻少妇| 国产精品爽爽va在线观看网站| 国产一区二区三区综合在线观看 | 国产亚洲精品久久久com| 在线天堂最新版资源| 国产精品99久久99久久久不卡 | 蜜臀久久99精品久久宅男| 美女高潮的动态| 欧美亚洲 丝袜 人妻 在线| 亚洲国产色片| 99热这里只有是精品50| 欧美极品一区二区三区四区| 国产精品国产三级专区第一集| 免费在线观看成人毛片| 欧美亚洲 丝袜 人妻 在线| 久久久久国产精品人妻一区二区| 亚洲电影在线观看av| 欧美xxxx黑人xx丫x性爽| 成人免费观看视频高清| 欧美日韩视频高清一区二区三区二| 成人午夜精彩视频在线观看| 大码成人一级视频| 国产免费又黄又爽又色| 在线观看三级黄色| 国产欧美日韩精品一区二区| a级毛片免费高清观看在线播放| 九九爱精品视频在线观看| 日韩中字成人| 久久99热6这里只有精品| 高清黄色对白视频在线免费看 | 91精品伊人久久大香线蕉| 久久精品国产亚洲av涩爱| 97在线视频观看| 80岁老熟妇乱子伦牲交| 高清av免费在线| 成人综合一区亚洲| 亚洲精品乱久久久久久| 精品亚洲成a人片在线观看 | 乱码一卡2卡4卡精品| av免费在线看不卡| 国产高清三级在线| 免费不卡的大黄色大毛片视频在线观看| 老师上课跳d突然被开到最大视频| 亚洲av.av天堂| 97在线人人人人妻| 一级毛片 在线播放| 尤物成人国产欧美一区二区三区| 精品国产乱码久久久久久小说| 亚洲精品一区蜜桃| 男女国产视频网站| av天堂中文字幕网| 久久人人爽人人片av| 亚洲怡红院男人天堂| 人妻 亚洲 视频| 91精品伊人久久大香线蕉| 久久久久久九九精品二区国产| 中文字幕亚洲精品专区| 久久人人爽人人爽人人片va| 看免费成人av毛片| 国产精品一区www在线观看| 亚洲一区二区三区欧美精品| 成年免费大片在线观看| 亚洲精品日韩在线中文字幕| 韩国av在线不卡| 日韩av在线免费看完整版不卡| 日韩 亚洲 欧美在线| 深爱激情五月婷婷| 久热这里只有精品99| 精品久久久久久久久av| 亚洲精华国产精华液的使用体验| 日韩成人av中文字幕在线观看| 一二三四中文在线观看免费高清| 熟女电影av网| 99久国产av精品国产电影| 日产精品乱码卡一卡2卡三| 亚洲av综合色区一区| 日本av免费视频播放| 久久精品国产亚洲av天美| 美女国产视频在线观看| 日韩视频在线欧美| 激情 狠狠 欧美| 国产成人精品福利久久| 欧美日韩国产mv在线观看视频 | 国产淫片久久久久久久久| 国产熟女欧美一区二区| 国产人妻一区二区三区在| 亚洲精品,欧美精品| 久久久久久久大尺度免费视频| 久久久久久久久大av| 成人一区二区视频在线观看| 夫妻午夜视频| 国产伦在线观看视频一区| 国产黄片视频在线免费观看| 久久久久久久久久久免费av| 午夜福利影视在线免费观看| 成人毛片60女人毛片免费| 在线免费观看不下载黄p国产| 国产精品福利在线免费观看| 中文字幕亚洲精品专区| 高清日韩中文字幕在线| 日本欧美视频一区| 久久ye,这里只有精品| 免费看光身美女| 97热精品久久久久久| 亚洲欧美一区二区三区黑人 | 国产黄片视频在线免费观看| 免费av不卡在线播放| 99久久综合免费| 你懂的网址亚洲精品在线观看| 国产老妇伦熟女老妇高清| 成人毛片a级毛片在线播放| 久久久久性生活片| 少妇丰满av| 中文字幕人妻熟人妻熟丝袜美| 一本—道久久a久久精品蜜桃钙片| 成人一区二区视频在线观看| 男女国产视频网站| 不卡视频在线观看欧美| 卡戴珊不雅视频在线播放| 国产精品久久久久久久电影| 下体分泌物呈黄色| 亚洲美女黄色视频免费看| 中文字幕免费在线视频6| 爱豆传媒免费全集在线观看| 赤兔流量卡办理| 啦啦啦中文免费视频观看日本| 网址你懂的国产日韩在线| 国产精品久久久久成人av| 男女边摸边吃奶| 欧美 日韩 精品 国产| 久久久久久久久大av| 在线观看免费视频网站a站| 少妇裸体淫交视频免费看高清| 久久久久久久久久久免费av| 色婷婷久久久亚洲欧美| 在线观看免费日韩欧美大片 | 99九九线精品视频在线观看视频| 黄色配什么色好看| 国产片特级美女逼逼视频| 精品国产三级普通话版| 久久av网站| 人妻少妇偷人精品九色| 久久久久久伊人网av| 日韩,欧美,国产一区二区三区| 少妇人妻精品综合一区二区| av免费在线看不卡| 黄色一级大片看看| 秋霞在线观看毛片| 又粗又硬又长又爽又黄的视频| 久久久久久久久久久免费av| 啦啦啦啦在线视频资源|