• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Revising the H216O line-shape parameters around 1.1μm based on the speed-dependent Nelkin-Ghatak profile and the Hartmann-Tran profile

    2023-12-15 11:47:54HuiZhang張惠JianjieZheng鄭健捷QiangLiu劉強WenyueZhu朱文越XianmeiQian錢仙妹GuishengJiang江貴生ShenlongZha查申龍QileiZhang張啟磊andHongliangMa馬宏亮
    Chinese Physics B 2023年12期

    Hui Zhang(張惠), Jianjie Zheng(鄭健捷), Qiang Liu(劉強), Wenyue Zhu(朱文越),Xianmei Qian(錢仙妹), Guisheng Jiang(江貴生), Shenlong Zha(查申龍),Qilei Zhang(張啟磊), and Hongliang Ma(馬宏亮),?

    1School of Electrical Engineering and Intelligent Manufacturing,Anqing Normal University,Anqing 246133,China

    2Key Laboratory of Atmospheric Optics,Anhui Institute of Optics and Fine Mechanics,HFIPS,Chinese Academy of Sciences,Hefei 230031,China

    3Advanced Laser Technology Laboratory of Anhui Province,Hefei 230037,China

    Keywords: pure water vapor molecule,the speed-dependent Nelkin-Ghatak profile,the Hartmann-Tran profile,line intensities

    1.Introduction

    In the Earth’s atmosphere,the pure water vapor molecule(H216O)is the principal atmospheric absorber of infrared(IR)radiation with many strong absorption bands ranging from the microwave to the visible portions of the spectrum.[1]Among these bands are the window regions with much weaker absorption.[2]The analysis of H216O weak absorption characteristics in the atmospheric transmission window is of great significance for the study of atmospheric optics.Indeed,1.1μm is one of the important atmospheric transmission windows that are of key importance for various fields of science and technology, such as remote sensing of the atmosphere,[3]atmospheric absorption simulation,[4]and reliable quantitative studies of laser atmospheric transmission.[5]To fulfill the requirements of these important applications, precise line parameters (i.e., positions, intensities, and broadening coefficients)of the H216O spectral lines are required.

    Currently, the HITRAN molecular spectroscopic database[6]is a prime resource for the reference spectroscopic data for H216O at 1.1μm for atmospheric applications.However,the new edition of the HITRAN 2020 database can only provide Voigt profile (VP) parameters.Additionally, due to the importance of H216O spectral parameters in this region,the region has been extensively studied by many groups.Previously, the line parameters of H216O around 1.1 μm were studied by Regaliaet al.,[7]Oudotet al.,[8]and Schermaulet al.,[9]but all the studies were also performed with the VP.For a long time, the VP accounting for pressure/collision and Doppler broadening has been the standard for the highresolution line-by-line modeling of IR molecular absorption due to its simplicity and its fast computation time.However,with the ever-increasing sensitivity and accuracy of measurement techniques,the non-Voigt line-shapes that consider more physical effects should be introduced for the correct fit of the experiments.[10-12]To the best knowledge of the authors,for the H216O spectrum around 1.1μm, only Zhenget al.[13]have reported the line-shape parameters fitted by the quadratic speed-dependent Voigt profile(qSDVP).Therefore,further research on H216O spectra with more refined profiles is needed for 1.1μm.

    Using a narrow line-width external cavity diode laser combined with a high-precision Fabry-P′erot etalon, we recently measured 31 spectral lines of H216O near the 1.1 μm band based on direct laser absorption spectroscopy.[13]A multi-spectrum fitting (MSF) program was used in conjunction with the qSDVP and the VP to extract the line parameters.This work is the continuation of a series devoted to the systematic study of the absorption spectrum of H216O around 1.1μm by our group.[13,14]In this study, we revisit our analysis using the speed-dependent Nelkin-Ghatak profile(SDNGP)and the Hartmann-Tran profile(HTP)because of their more physically realistic properties.

    The organization of this paper is as follows.Section 2 introduces the experimental equipment and describes the HTP and SDNGP models used as well as the fitting quality.In Section 3, the fitting quality for the HTP, SDNGP, speeddependent Voigt profile (SDVP), and VP is compared.Next,the uncertainty of the line intensity and self-broadening are analyzed.Then, the line intensities and the self-broadening coefficients obtained in this work are compared with the values in the HITRAN 2016 database and HITRAN 2020 database,and the correlation between the self-broadening coefficients and the rotation frequency is observed.Finally,the Dicke narrowing effect,the speed-dependent broadening,and the correlation between them are discussed.

    2.Experimental setup and basic principles

    2.1.Experimental setup

    The experimental equipment used for data collection is described in detail in Ref.[13],so it is only briefly discussed here.As shown in Fig.1, the external cavity diode laser(ECDL) is selected as the laser source in this device, and the wavelength coverage of the laser is from 9090 cm-1to 9750 cm-1.The output laser light source is divided into two parts.One light source enters the gas absorption cell (which can provide a long optical path of 7246 cm and a short optical path of 3623 cm) for optical path absorption, and the other light source enters the Fabry-P′erot cavity for relative wavenumber calibration (the FSR of the Fabry-P′erot etalon is 750 MHz and the resolution is 1.2 MHz).Because nearinfrared light is invisible, a He-Ne laser is used for optical path tracking.Finally, a data acquisition card controlled by the LabVIEW program receives the signal detected by the detector.

    Fig.1.Experimental apparatus for spectral measurement.

    To obtain a high signal-to-noise ratio, the long optical path (7246 cm) of the gas absorption cell was selected in the experiment.The temperature was controlled at approximately 300 K in the process of data acquisition.Spectral data were measured at the three pressures of 1400 Pa, 1800 Pa, and 2000 Pa.Five sets of data were measured for each spectral line at the three pressures.In the process of pressure stabilization,the water vapor in the cell is filled and emptied many times.The purpose is to ensure that the water is absorbed by the cavity wall of the cell until the cavity wall is close to the saturation point and can no longer absorb water vapor easily.In this way,the experimental error caused by pressure fluctuation caused by water adsorption can be reduced.

    2.2.Line-shape models

    The HTP model is described as the partially correlated quadratic-speed-dependent hard-collision profile(pCqSDHCP).[15]The model is represented as

    The termsA(v) andB(v) depend on the complex probability function

    This model fully considers the influence of multiple physical effects on spectral fitting.[16]It not only contains the Doppler broadening (ΓD), pressure shift (?0), and collision broadening (Γ0) parameters of the VP but also includes the non-Voigt-effect parameters,such as the speed-dependent collision broadening coefficients(Γ2),the speed-dependent shift coefficients(?2),and the Dicke narrowing coefficients(νVC).It also considers the relationship between the Dicke narrowing effect and the speed-dependent effect.The relationship is denoted byη.

    The ratio of the speed-dependent broadening to the collisional broadening(αW)[17]can be expressed as

    wherekBis the Boltzmann constant,cis the speed of light,mis the H2O molecular mass,andD12is the mass diffusion coefficient,which can be calculated based solely on the molecular gas properties.[19]Whenη=0, the modified model can be simplified to the SDNGP.[20]

    2.3.The quality-of-fit

    In addition to the SNR, the effect of spectral fitting can also be evaluated using the quality-of-fit(QF),[21]which is expressed as follows:

    whereMis the number of measured spectral points,kpis the number of adjustable parameters in multi-spectral fitting,viis the first frequency of the measured spectrum,andaexp(vi)andafit(vi)are the experimental and fitted absorption coefficients of the given spectral measurement points,respectively.

    3.Results and discussion

    3.1.Comparison of line-shapes

    In this work, the measured data are reprocessed and then fitted with the multi-spectrum analysis tool for spectroscopy (MATS).[22]To better distinguish the fitting effects among different line-shapes, we test four line-shapes, which are the VP, SDVP, SDNGP, and HTP for spectrum fitting.Figure 2 displays an example of a spectrum recorded near 9129.21791 cm-1for the fitting residuals of the HTP,SDNGP,SDVP,and VP for the same experimental conditions.As can be seen from Fig.2,the residual values for the HTP,SDNGP,and SDVP are clinically almost indistinguishable but are all smaller than those determined with the VP.This is also similar to the situation mentioned in Ref.[15]in that the obvious residual with the VP is mainly caused by the line narrowing effect.

    Fig.2.Absorbance profiles fitted by HTP and the residuals for VP,SDVP,SDNGP,and HTP for the transition at 9129.21791 cm-1 in pure H216O at the pressures of 1400 Pa(a),1800 Pa(b)and 2200 Pa(c).

    To investigate the fitting effects of different line-shapes,the QF have been computed.In Fig.3, we have noticed that:firstly,all the QF values increase with the pressure; secondly,QFHTP>QFSDNGP>QFSDVP>QFVPwas noticed from the dataset.Since the better results are obtained using the SDNGP and HTP, these two line-shapes were used for the following data processing.

    Fig.3.The QF values as a function of the pressure at various profiles for the transition of 9129.21791 cm-1 of H216O.

    3.2.Uncertainty analysis

    The integral absorbance of the absorption line of a water molecule transition is

    whereN(molecule·cm-3)is the number concentration of water molecules,L(cm)is the actual optical path of the absorption spectrum,NAis the Avogadro constant,andP(Pa)is the pressure of water molecules.According to Eqs.(16)and(17),the line intensity of the absorption spectrum can be obtained as follows:

    where ?P/P=1% (due to the pressure gauge error and the adsorption of water), ?L/L=0.13% (standard deviation obtained by averaging the optical path lengths of the inversion at different pressures), and ?T/T=0.1% (the floating range is 0.3 K for the temperature of 300 K).The uncertainty ?A/Ais obtained with MATS software fitting (converting the error of the integral absorbance into the error of the line intensity).The values of ?A/Afrom SDNGP-based fitting and HTP-based fitting are 2.50% and 3.27%, respectively.The comprehensive uncertainty estimates of the SDNP and HTP spectral line intensities obtained from Eq.(19)are 2.70%and 3.42%.

    The total uncertainty of the self-broadening coefficient is calculated as follows:

    where the uncertainty ?P/P=1%,?T/T=0.1%,and ?γCis the value of the collision broadening.The uncertainty ?γC/γCis obtained with MATS software fitting(the error of collision broadening is converted into the error for the self-broadening coefficient).The values of ?γC/γCfrom the SDNGP-based fitting and HTP-based fitting are 4.17%and 4.82%,respectively.According to Eq.(20), the total uncertainty estimates of the self-broadening coefficient are 4.29% (for the SDNGP) and 4.94%(for the HTP).

    3.3.Line intensities analysis

    In this work, thirty-one lines of H216O in the 9090-9750 cm-1region have been studied.All the parameters were converted to 296 K and 1 atm conditions.

    In Figs.4 and 5, the line intensities from our measurements were compared with those given in the HITRAN 2020 database and the HITRAN 2016 database, respectively.The percent differences (present work- other results)/(other results)×100% between our SDNGP results and the HITRAN 2020 values are shown in Fig.4(a).Except for the lines of 9182.87814 cm-1, 9731.64094 cm-1, and 9734.20309 cm-1,our line intensities are smaller than those of HITRAN 2020.The average percent difference between our results and HITRAN 2020 is-3.85%.Additionally, the percent differences between our HTP values and those from HITRAN 2020 are shown in Fig.4(b).Similarly,the line intensities with HTP fitting are smaller than those of HITRAN 2020,except for the three absorption lines of 9323.18107 cm-1,9731.64094 cm-1, and 9734.20309 cm-1.The average percent difference between our HTP results and HITRAN 2020 is-3.71%.Overall,the HTP results of this work are close to the HITRAN 2020 values.

    We also compared our work with the results in HITRAN 2016, and the percent differences are shown in Fig.5.It can be noticed that the percent differences of these 31 absorption lines,whether for SDNGP-based fitting or HTP-based fitting,are evenly distributed on both sides of the axis 0.Additionally,the average percent differences between HITRAN 2016 and SDNGP-based fitting as well as HTP-based fitting are 2.61%and 2.40%.It should be noted that the HTP values are slightly larger than the SDNGP values.

    Fig.4.The percent differences of the line intensities of the pure water vapor molecular lines obtained using the SDNGP (a) and the HTP (b)to those reported by HITRAN 2020.

    Fig.5.The percent differences of the line intensities of the pure water vapor molecular lines obtained using the SDNGP (a) and the HTP (b)to those reported by HITRAN 2016.

    For the two absorption lines of 9731.64094 cm-1and 9734.20309 cm-1, our line intensities are obviously smaller than the HITRAN 2016 values.The percent differences are about-30.5% and-28.4% between our results by SDNGP fitting and those from HITRAN 2016, respectively.At the same time, the percent differences are about-27.5% and-27.3% between our results by HTP fitting and those from HITRAN 2016, respectively.It is worth mentioning that the line intensities of these two pure water vapor molecular lines have been updated in HITRAN 2020, and their values have changed greatly.The line intensities obtained with SDNGP fitting are slightly larger than those reported in HITRAN 2020 with average differences of 0.08% and 0.93%.Similarly, the percent differences for these two lines between our study by HTP fitting and the values in HITRAN 2020 are 4.45% and 1.67%,respectively.

    3.4.Self-broadening coefficients analysis

    The self-broadening coefficients for the SDNGP and HTP fitting from this study are presented in Fig.6 and compared with the data from HITRAN 2020 (the self-broadening coefficients of these thirty-one water vapor absorption lines are consistent in HITRAN 2016 and HITRAN 2020).As shown in Fig.6, the average percent differences between HITRAN 2020 and SDNGP-based fitting as well as HTP-based fitting are 2.70%and 3.26%.Most of the self-broadening coefficients of each spectral line that is fitted with the SDNGP and HTP in this work are larger than those provided by the HITRAN 2020 database.Note that the self-broadening coefficients of these lines from the HITRAN database are obtained using the VP.It is however worth mentioning that when using more refined models,several studies showed that the line broadening determined by the VP can be significantly underestimated.[23-27]

    Fig.6.The percent differences of the self-broadening coefficients of the pure water vapor molecular lines obtained using the SDNGP(a)and the HTP(b)to those reported by HITRAN 2020.

    The relationship between the thirty-one absorption lines’self-broadening coefficients and rotational quantum number(m) are shown in Fig.7.All the results present similarmdependences.This indicates that the self-broadening coefficients of a water molecule has a good relationship with its rotation frequency.

    Fig.7.Comparison of the self-broadening coefficients of H216O lines for different vibrational bands using the SDNGP,the HTP,and reported by the HITRAN database versus rotational quantum number(m).

    3.5.Line narrowing parameters analysis

    All the speed-dependent broadening coefficients(αW)fitted with the SDNGP and HTP for our work are given in Fig.8(a).The average values ofαWobtained with the SDNGP and HTP are 0.051 and 0.092, respectively.Additionally,the ratios of the Dicke narrowing coefficients to the selfbroadening coefficients in our work are shown in Fig.8(b).The average values ofνVC/γselffitted with the SDNGP and HTP are 0.078 and 0.253, respectively.It is interesting that the values ofαWandνVC/γselfusing the HTP are slightly larger than those using the SDNGP.The outcome indicates that both the Dicke narrowing coefficients and the speed dependent broadening coefficients contribute to the analysis of the spectral line-width.

    To check the influence of the Dicke narrowing effect and speed dependent effect on our line-shapes, the values ofαW/(νVC/γself) obtained with the SDNGP are shown in Fig.9(a).The result indicates that there is little difference in the narrowing degree of the spectral lines produced by these two effects.Hence, neither of the effects can be ignored and nor can the correlation between them.This result is consistent with the view of W′ojtewiczet al.[28]that it is difficult to decorrelate the speed dependence of collision broadening and Dicke narrowing.Fig.9(b)displays the resultsνVCandαWobtained by HTP as a function ofη.It can be seen from Fig.9(b)that there seems to be an inverse relationship between the value difference between the two effect-related parameters and the correlation coefficient.

    Fig.8.(a)The speed dependent broadening coefficients from SDNGP and HTP fitting.(b)The ratio of Dicke narrowing coefficients and selfbroadening coefficients obtained from SDNGP and HTP fitting.

    Fig.9.Spectral line narrowing effect parameters.(a) Comparison between αW and νVC/γself obtained by the SDNGP.(b) The relative parameters of the Dicke narrowing effect(square)and the speed dependent effect(triangle)obtained by the HTP.

    Although the SDNGP and HTP are used to analyze the spectral line parameters in this experiment,we consider what was mentioned in the literature:[16,29]“Whether the experimental conditions consider an important factor of parameterη,that is,HTP parameters need to be obtained under the high signal-to-noise ratio spectrum and high precision frequency standard”.In view of the relatively low signal-to-noise ratio(QF<1000) in our experiment, the spectral line parameters obtained with the SDNGP are more reasonable than those obtained with the HTP.

    4.Conclusion

    We recorded thirty-one absorption spectra of pure water vapor molecules around 1.1μm.The HTP and SDNGP lineshape models were used to retrieve the spectroscopic parameters from spectral fits.The comparison of the present results with HITRAN 2020 shows that the line intensities of this study for the HTP and SDNGP are smaller than those in HITRAN 2020, with mean differences of-3.53% and-3.85%.The line intensities obtained by fitting with the HTP and SDNGP are less than those in HITRAN 2016, and the differences between them are-2.40%and-2.61%.Additionally,the selfbroadening coefficients of our work are larger than those of HITRAN 2020 (or HITRAN 2016).The self-broadening coefficients from our HTP-and SDNGP-based work have average percent differences of 3.26% and 2.70% compared with HITRAN 2020(or HITRAN 2016),respectively.For the line intensities and self-broadening coefficients, preferable agreement is obtained between the present results and the two HITRAN datasets.Therefore, the line parameters obtained in this work are credible.Finally, we discussed the influence of the corresponding parameters of these two effects on the spectral line-width,which has never been reported in the HITRAN database.The spectral line parameters obtained with the SDNGP in this experiment are more reasonable.We believe that the data we obtained will be helpful to the spectral analysis of atmospheric water molecules.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos.41805014 and 62205005),the Key Program of the Natural Science Research Fund of the Education Department of Anhui Province (Grant Nos.KJ2021A0637 and KJ2021A0638), and the Key Program in the Youth Talent Support Plan in Universities of Anhui Province(Grant No.gxyqZD2020032).

    日本五十路高清| 九九在线视频观看精品| 99热这里只有是精品在线观看| 中国美女看黄片| 我要搜黄色片| 国产成人福利小说| 亚洲欧美日韩无卡精品| 国产av在哪里看| 国产免费一级a男人的天堂| 婷婷精品国产亚洲av| 国产精品一区二区在线观看99 | 美女脱内裤让男人舔精品视频 | 日韩中字成人| 午夜福利高清视频| 九九在线视频观看精品| 三级男女做爰猛烈吃奶摸视频| 18+在线观看网站| 精品少妇黑人巨大在线播放 | 丝袜喷水一区| 午夜爱爱视频在线播放| 九九久久精品国产亚洲av麻豆| 99国产精品一区二区蜜桃av| 日产精品乱码卡一卡2卡三| 99久久成人亚洲精品观看| 日韩高清综合在线| 亚洲经典国产精华液单| 欧美成人免费av一区二区三区| 嫩草影院精品99| 亚洲欧美日韩无卡精品| 亚洲一区二区三区色噜噜| 国产老妇女一区| 日韩,欧美,国产一区二区三区 | 观看美女的网站| 欧美日韩一区二区视频在线观看视频在线 | 国产精品三级大全| 午夜福利高清视频| 国产成人午夜福利电影在线观看| 欧美3d第一页| 国产精品久久久久久精品电影小说 | 亚洲欧美精品专区久久| 欧美高清成人免费视频www| 又爽又黄无遮挡网站| 99视频精品全部免费 在线| 久久99热6这里只有精品| 国产日本99.免费观看| 中文字幕精品亚洲无线码一区| 亚洲精品国产av成人精品| 黄色视频,在线免费观看| 深夜精品福利| 男女做爰动态图高潮gif福利片| 国产一区二区三区av在线 | 赤兔流量卡办理| 1024手机看黄色片| 嫩草影院精品99| 九九久久精品国产亚洲av麻豆| 日韩精品青青久久久久久| 久久久久久久久久久免费av| 黄色配什么色好看| 国产av麻豆久久久久久久| 亚洲图色成人| 国产v大片淫在线免费观看| 午夜激情欧美在线| 国产淫片久久久久久久久| 日本免费一区二区三区高清不卡| 九草在线视频观看| 淫秽高清视频在线观看| 久久久久久久久久久免费av| 久久久久免费精品人妻一区二区| 国产又黄又爽又无遮挡在线| 欧美另类亚洲清纯唯美| 亚洲av不卡在线观看| 桃色一区二区三区在线观看| 国产中年淑女户外野战色| 久久久久九九精品影院| 国产精品,欧美在线| 国产精品电影一区二区三区| 日韩成人av中文字幕在线观看| 日本与韩国留学比较| 国产老妇女一区| 久久久久久久久久成人| 日本熟妇午夜| 亚洲,欧美,日韩| 成人永久免费在线观看视频| 国产成人一区二区在线| 午夜免费男女啪啪视频观看| 中文字幕久久专区| 免费一级毛片在线播放高清视频| 男女那种视频在线观看| 男人和女人高潮做爰伦理| 成人特级av手机在线观看| 国产精品久久久久久精品电影| 国产三级在线视频| 久久久久久久久久久免费av| 亚洲色图av天堂| 美女脱内裤让男人舔精品视频 | 波多野结衣高清无吗| 国产精品综合久久久久久久免费| 国产三级中文精品| 一进一出抽搐gif免费好疼| 欧美一区二区精品小视频在线| 天天一区二区日本电影三级| 高清毛片免费看| 午夜激情福利司机影院| 日本免费a在线| 精品久久国产蜜桃| 久久精品影院6| 欧美性猛交黑人性爽| 最近视频中文字幕2019在线8| 日本免费a在线| 欧美在线一区亚洲| 综合色丁香网| a级毛片免费高清观看在线播放| 国产视频首页在线观看| 精品午夜福利在线看| 一区二区三区高清视频在线| 女同久久另类99精品国产91| 在线播放无遮挡| 午夜视频国产福利| 久久久久国产网址| 日本熟妇午夜| 国产精品久久久久久久电影| 色哟哟哟哟哟哟| 美女脱内裤让男人舔精品视频 | 日本与韩国留学比较| 国产真实伦视频高清在线观看| 国产蜜桃级精品一区二区三区| 九草在线视频观看| 国产在线男女| 99精品在免费线老司机午夜| av黄色大香蕉| 国产精品嫩草影院av在线观看| 99热网站在线观看| 97超视频在线观看视频| 99久久中文字幕三级久久日本| 又粗又硬又长又爽又黄的视频 | 精品欧美国产一区二区三| 国产精品久久久久久精品电影小说 | 免费av毛片视频| 小蜜桃在线观看免费完整版高清| 日韩一区二区视频免费看| 内地一区二区视频在线| 国产综合懂色| 91精品一卡2卡3卡4卡| 国产精品.久久久| 国产亚洲精品久久久久久毛片| 日本成人三级电影网站| 国产女主播在线喷水免费视频网站 | 国产精品乱码一区二三区的特点| 身体一侧抽搐| 亚洲精华国产精华液的使用体验 | 菩萨蛮人人尽说江南好唐韦庄 | 亚洲精品自拍成人| 村上凉子中文字幕在线| 亚洲综合色惰| 亚洲国产高清在线一区二区三| 亚洲乱码一区二区免费版| 午夜a级毛片| 国产亚洲91精品色在线| av福利片在线观看| a级毛片免费高清观看在线播放| 成年女人看的毛片在线观看| 永久网站在线| 美女脱内裤让男人舔精品视频 | 免费av毛片视频| 床上黄色一级片| av卡一久久| 欧美xxxx性猛交bbbb| 免费在线观看成人毛片| 亚洲不卡免费看| 青春草视频在线免费观看| 大香蕉久久网| 国产成人精品一,二区 | 边亲边吃奶的免费视频| 日本黄大片高清| 亚洲成人久久性| 22中文网久久字幕| 国产亚洲5aaaaa淫片| 美女黄网站色视频| 一级毛片电影观看 | 国产高清激情床上av| 国产一区二区激情短视频| 综合色av麻豆| videossex国产| 亚洲aⅴ乱码一区二区在线播放| 精品久久久久久久久av| 丰满的人妻完整版| 国产一区亚洲一区在线观看| 又粗又硬又长又爽又黄的视频 | 国产av不卡久久| 美女xxoo啪啪120秒动态图| 99久久精品国产国产毛片| 非洲黑人性xxxx精品又粗又长| 国产精品永久免费网站| 欧美一级a爱片免费观看看| 成人综合一区亚洲| 日韩欧美在线乱码| 日韩国内少妇激情av| 波多野结衣巨乳人妻| kizo精华| 白带黄色成豆腐渣| 熟女电影av网| 2022亚洲国产成人精品| 国产亚洲5aaaaa淫片| 亚洲18禁久久av| 少妇裸体淫交视频免费看高清| 久久久色成人| 成年av动漫网址| 日韩成人伦理影院| 午夜福利在线观看免费完整高清在 | 欧美区成人在线视频| 成人特级黄色片久久久久久久| 少妇高潮的动态图| 国产午夜福利久久久久久| 国产精品1区2区在线观看.| 欧美精品一区二区大全| 神马国产精品三级电影在线观看| 我的女老师完整版在线观看| 欧美zozozo另类| 国产真实乱freesex| 麻豆国产av国片精品| 最近2019中文字幕mv第一页| 国产在线精品亚洲第一网站| 亚洲国产精品合色在线| 欧美精品一区二区大全| 国产私拍福利视频在线观看| 亚洲欧美日韩卡通动漫| 久久人人爽人人片av| 丝袜美腿在线中文| 丰满乱子伦码专区| 一夜夜www| 给我免费播放毛片高清在线观看| 久久午夜亚洲精品久久| 99热全是精品| 老女人水多毛片| 三级经典国产精品| 久久国产乱子免费精品| 色哟哟·www| 午夜福利在线观看吧| 久久精品国产99精品国产亚洲性色| 亚洲欧美日韩高清在线视频| 在线观看66精品国产| 色噜噜av男人的天堂激情| 听说在线观看完整版免费高清| 99热只有精品国产| 国产黄a三级三级三级人| 搡老妇女老女人老熟妇| 一本一本综合久久| 91精品国产九色| 中文字幕久久专区| 伊人久久精品亚洲午夜| 国产三级中文精品| 精品久久久久久久久av| 最后的刺客免费高清国语| 又爽又黄无遮挡网站| 亚洲成av人片在线播放无| 成人毛片a级毛片在线播放| 精品人妻偷拍中文字幕| 少妇丰满av| 精品一区二区免费观看| 一个人观看的视频www高清免费观看| 亚洲av不卡在线观看| 欧美日韩综合久久久久久| 国内揄拍国产精品人妻在线| 91麻豆精品激情在线观看国产| 国产高清有码在线观看视频| 久久久精品大字幕| 精品人妻一区二区三区麻豆| 天天一区二区日本电影三级| 男女啪啪激烈高潮av片| 日韩制服骚丝袜av| 欧美zozozo另类| 欧美成人精品欧美一级黄| 91精品一卡2卡3卡4卡| 91久久精品电影网| 国产一区亚洲一区在线观看| 亚洲高清免费不卡视频| 91精品国产九色| 国产伦在线观看视频一区| 精品一区二区三区人妻视频| 久久精品国产亚洲av香蕉五月| 免费看美女性在线毛片视频| 午夜激情欧美在线| 青春草视频在线免费观看| 九草在线视频观看| av在线观看视频网站免费| 久久久久久久午夜电影| 亚洲精品久久国产高清桃花| 啦啦啦啦在线视频资源| 午夜精品一区二区三区免费看| 久久久久久久久久久免费av| 国产 一区精品| 日韩强制内射视频| 99久国产av精品国产电影| 又爽又黄a免费视频| 欧美日韩国产亚洲二区| 日本黄色视频三级网站网址| 一区福利在线观看| 日韩成人av中文字幕在线观看| 国产日本99.免费观看| 十八禁国产超污无遮挡网站| 三级经典国产精品| 1000部很黄的大片| 亚洲欧美精品专区久久| 男女边吃奶边做爰视频| 最近视频中文字幕2019在线8| 亚洲国产精品成人综合色| 精品人妻熟女av久视频| av黄色大香蕉| 亚洲欧美日韩高清在线视频| 啦啦啦观看免费观看视频高清| 久久久久免费精品人妻一区二区| 日韩成人伦理影院| 国产午夜福利久久久久久| 99热只有精品国产| 成人毛片a级毛片在线播放| 国产精品国产三级国产av玫瑰| 搡老妇女老女人老熟妇| 亚洲国产色片| 观看免费一级毛片| 网址你懂的国产日韩在线| 欧美日韩在线观看h| 深夜精品福利| 18禁在线无遮挡免费观看视频| 日本黄色片子视频| 看黄色毛片网站| 天堂中文最新版在线下载 | 亚洲欧美成人精品一区二区| 成年女人看的毛片在线观看| 国产伦精品一区二区三区视频9| 在线观看美女被高潮喷水网站| 成人二区视频| 欧美最新免费一区二区三区| 丰满的人妻完整版| 国产视频内射| 少妇熟女aⅴ在线视频| 九九久久精品国产亚洲av麻豆| 亚洲人与动物交配视频| 国产亚洲精品av在线| 久久精品人妻少妇| 色播亚洲综合网| 麻豆一二三区av精品| 欧美bdsm另类| 麻豆乱淫一区二区| 国产伦理片在线播放av一区 | 亚洲av第一区精品v没综合| 最近最新中文字幕大全电影3| 国产极品天堂在线| 亚洲精品久久国产高清桃花| 国产色婷婷99| 麻豆久久精品国产亚洲av| 精品午夜福利在线看| 国产美女午夜福利| 欧美激情国产日韩精品一区| 99久久精品热视频| 日韩 亚洲 欧美在线| 97超碰精品成人国产| 日本黄色视频三级网站网址| 国产av不卡久久| 日本欧美国产在线视频| 又黄又爽又刺激的免费视频.| 国产精品1区2区在线观看.| 亚洲av男天堂| 国产精品久久久久久av不卡| 高清毛片免费看| 国产黄片美女视频| 日韩精品有码人妻一区| 少妇猛男粗大的猛烈进出视频 | 国产精品日韩av在线免费观看| 简卡轻食公司| 国产激情偷乱视频一区二区| 天天躁夜夜躁狠狠久久av| 精品久久久久久久久av| 日本欧美国产在线视频| 精品久久久久久久久久久久久| 久久久久久久久久久免费av| avwww免费| 午夜福利在线观看吧| 欧美色欧美亚洲另类二区| 亚洲欧美成人精品一区二区| 三级国产精品欧美在线观看| 国产精品一区二区三区四区久久| 久久午夜亚洲精品久久| 亚洲在线观看片| 亚洲激情五月婷婷啪啪| 国产免费一级a男人的天堂| 99热网站在线观看| 欧美激情在线99| 中文字幕免费在线视频6| 人人妻人人澡人人爽人人夜夜 | 毛片一级片免费看久久久久| 亚洲不卡免费看| 一个人看的www免费观看视频| 国产精品一及| 日日干狠狠操夜夜爽| 亚洲人成网站在线播| 亚洲av二区三区四区| 国内揄拍国产精品人妻在线| 六月丁香七月| 精品久久久久久成人av| 两性午夜刺激爽爽歪歪视频在线观看| 国产三级在线视频| 91在线精品国自产拍蜜月| 亚洲图色成人| 国产老妇女一区| 美女国产视频在线观看| 最后的刺客免费高清国语| 国产在线精品亚洲第一网站| 精品熟女少妇av免费看| 亚洲18禁久久av| 熟女人妻精品中文字幕| 麻豆一二三区av精品| 国产亚洲5aaaaa淫片| 岛国在线免费视频观看| 亚洲第一电影网av| 亚洲中文字幕日韩| 亚洲欧洲日产国产| 久久精品久久久久久久性| 亚洲国产精品合色在线| 国产成人91sexporn| 春色校园在线视频观看| 啦啦啦韩国在线观看视频| 亚洲精品久久久久久婷婷小说 | eeuss影院久久| 18禁在线无遮挡免费观看视频| 成人美女网站在线观看视频| 2022亚洲国产成人精品| 色播亚洲综合网| 女人被狂操c到高潮| 九草在线视频观看| 草草在线视频免费看| 最后的刺客免费高清国语| 中文字幕久久专区| 日日啪夜夜撸| 日韩av在线大香蕉| 丝袜喷水一区| 日本黄大片高清| 乱人视频在线观看| 亚洲人成网站在线播| 欧美日韩综合久久久久久| 亚州av有码| 精品无人区乱码1区二区| 91狼人影院| 男女下面进入的视频免费午夜| 亚洲欧美清纯卡通| 可以在线观看毛片的网站| 男的添女的下面高潮视频| 亚洲内射少妇av| 亚洲精品456在线播放app| 在线a可以看的网站| 久久中文看片网| 麻豆国产av国片精品| 人人妻人人看人人澡| 国产一区二区在线观看日韩| 亚洲最大成人手机在线| 久久亚洲国产成人精品v| 成人国产麻豆网| 麻豆国产av国片精品| 欧美激情国产日韩精品一区| 午夜a级毛片| 国产亚洲精品久久久久久毛片| 男的添女的下面高潮视频| 亚洲综合色惰| 国产麻豆成人av免费视频| 啦啦啦韩国在线观看视频| 国产一区二区三区av在线 | 久久久久久久久久成人| 日日撸夜夜添| 一本久久中文字幕| 国产精品不卡视频一区二区| 男女做爰动态图高潮gif福利片| 午夜免费激情av| 国产精品不卡视频一区二区| 丰满的人妻完整版| 国产视频内射| 欧美日韩一区二区视频在线观看视频在线 | 亚洲欧美清纯卡通| 91精品一卡2卡3卡4卡| 我的女老师完整版在线观看| 中文字幕制服av| 日本五十路高清| 麻豆国产av国片精品| 大又大粗又爽又黄少妇毛片口| 人妻夜夜爽99麻豆av| 国产一区二区激情短视频| 成年免费大片在线观看| 内射极品少妇av片p| 亚洲综合色惰| 色尼玛亚洲综合影院| 国产精品无大码| 午夜激情欧美在线| 国产高潮美女av| 亚洲av熟女| 91狼人影院| 亚洲精品国产成人久久av| 中文字幕久久专区| 国产精品一区www在线观看| 啦啦啦韩国在线观看视频| 久久人人精品亚洲av| 欧美xxxx性猛交bbbb| 亚洲第一区二区三区不卡| 女人十人毛片免费观看3o分钟| 人人妻人人看人人澡| 少妇的逼好多水| 男女那种视频在线观看| 精品一区二区免费观看| 日本三级黄在线观看| 蜜臀久久99精品久久宅男| 99riav亚洲国产免费| 两性午夜刺激爽爽歪歪视频在线观看| 长腿黑丝高跟| 色尼玛亚洲综合影院| 村上凉子中文字幕在线| 久久久久网色| 国产高清不卡午夜福利| 国产国拍精品亚洲av在线观看| 麻豆乱淫一区二区| 亚洲国产精品合色在线| 高清日韩中文字幕在线| 国产淫片久久久久久久久| 国产成人一区二区在线| 久久久久久大精品| 一级毛片aaaaaa免费看小| 99热只有精品国产| 久久久久久久久久久丰满| 最新中文字幕久久久久| 91精品国产九色| 日本与韩国留学比较| 99热6这里只有精品| 国内少妇人妻偷人精品xxx网站| 午夜免费激情av| 麻豆乱淫一区二区| 日韩一本色道免费dvd| 亚洲欧美中文字幕日韩二区| 午夜福利在线观看免费完整高清在 | 中文精品一卡2卡3卡4更新| 亚洲精品乱码久久久v下载方式| 久久欧美精品欧美久久欧美| 久久久久网色| 在线天堂最新版资源| 卡戴珊不雅视频在线播放| 看黄色毛片网站| 99久久精品热视频| 秋霞在线观看毛片| 欧美区成人在线视频| 亚洲国产精品成人综合色| 赤兔流量卡办理| 一级毛片电影观看 | 国产日本99.免费观看| 亚洲av中文av极速乱| 乱系列少妇在线播放| 午夜福利高清视频| 午夜爱爱视频在线播放| 国产午夜福利久久久久久| 午夜老司机福利剧场| h日本视频在线播放| 18禁在线无遮挡免费观看视频| 久久久久久久久久久免费av| 天天躁日日操中文字幕| 国产毛片a区久久久久| 天美传媒精品一区二区| 亚洲国产日韩欧美精品在线观看| 麻豆国产97在线/欧美| 午夜精品一区二区三区免费看| 久久久久久伊人网av| 99久久人妻综合| 欧美日韩精品成人综合77777| 亚洲成人久久爱视频| 在线观看免费视频日本深夜| 一级毛片久久久久久久久女| 啦啦啦观看免费观看视频高清| 一区福利在线观看| 麻豆精品久久久久久蜜桃| 成人毛片60女人毛片免费| 久久久国产成人免费| 国内少妇人妻偷人精品xxx网站| 午夜爱爱视频在线播放| ponron亚洲| 中文字幕精品亚洲无线码一区| 波多野结衣高清无吗| 久久精品国产亚洲网站| 久久99蜜桃精品久久| 青春草国产在线视频 | 五月玫瑰六月丁香| 亚洲三级黄色毛片| 男女下面进入的视频免费午夜| 国产美女午夜福利| 99久久久亚洲精品蜜臀av| 一本一本综合久久| 日本-黄色视频高清免费观看| 男插女下体视频免费在线播放| 免费av观看视频| 美女国产视频在线观看| 高清毛片免费看| 精品人妻视频免费看| 亚洲欧美日韩高清专用| 在线观看免费视频日本深夜| 久久久色成人| 国内少妇人妻偷人精品xxx网站| 国产精品一二三区在线看| 在线观看一区二区三区| 男女那种视频在线观看| 久久久久久久午夜电影| 99热这里只有精品一区| 深夜a级毛片| 麻豆av噜噜一区二区三区| 日韩人妻高清精品专区| 国产亚洲精品久久久com| 三级男女做爰猛烈吃奶摸视频| 两个人视频免费观看高清| 国内精品一区二区在线观看| 91久久精品国产一区二区成人| 人人妻人人澡人人爽人人夜夜 | 啦啦啦观看免费观看视频高清| 国产国拍精品亚洲av在线观看| 小蜜桃在线观看免费完整版高清|