• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hybrid-driven Gaussian process online learning for highly maneuvering multi-target tracking*

    2023-12-11 02:41:02QiangGUOLongTENGTianxiangYINYunfeiGUOXinliangWUWenmingSONG

    Qiang GUO, Long TENG?,, Tianxiang YIN, Yunfei GUO, Xinliang WU, Wenming SONG

    1College of Information and Communication Engineering,Harbin Engineering University, Harbin 150001, China

    2China National Aeronautical Radio Electronics Research Institute, Shanghai 200233, China

    3College of Automation, Hangzhou Dianzi University, Hangzhou 310018, China

    ?E-mail: guoqiang@hrbeu.edu.cn; tenglong@hrbeu.edu.cn; tianxiangyin@hdu.edu.cn; gyf@hdu.edu.cn

    Abstract: The performance of existing maneuvering target tracking methods for highly maneuvering targets in cluttered environments is unsatisfactory.This paper proposes a hybrid-driven approach for tracking multiple highly maneuvering targets, leveraging the advantages of both data-driven and model-based algorithms.The time-varying constant velocity model is integrated into the Gaussian process (GP) of online learning to improve the performance of GP prediction.This integration is further combined with a generalized probabilistic data association algorithm to realize multi-target tracking.Through the simulations, it has been demonstrated that the hybrid-driven approach exhibits significant performance improvements in comparison with widely used algorithms such as the interactive multi-model method and the data-driven GP motion tracker.

    Key words: Target tracking; Gaussian process; Data-driven; Online learning; Model-driven; Probabilistic data association https://doi.org/10.1631/FITEE.2300348 CLC number: TN953

    1 Introduction

    Target tracking refers to the estimation of the motion state of the interest target, considering factors such as noisy measurements, false alarm clutter, and imperfect measurements (Da et al., 2021;Zhu et al., 2021).It is widely used in various fields,such as aircraft target tracking (Zhou et al., 2020;Zheng and Cai, 2021) and underwater target tracking(Zhang D et al.,2018).Depending on the nature of the tracked targets, target tracking algorithms can be categorized into point target tracking, extended target tracking, and group target tracking(Guo et al.,2019,2020a;Wang et al.,2021).The primary focus of this paper is to address the challenge of maneuvering posed by point target tracking.It uses kinematic information to estimate the target’s state,which includes parameters such as position,velocity,and acceleration(Li et al.,2019b;Li and Hlawatsch,2021).

    The central concept of maneuvering target tracking focuses on enhancing the degree of correspondence between the tracking model and the real motion model of the target(Li et al.,2019a).Maneuvering target tracking algorithms are classified into two categories,which are the model-driven and datadriven approaches.Model-driven algorithms rely on the prior motion models of the target.The statespace model is modeled as a Markov process by using prior model information,thereby describing the relationship between the target state vectors at adjacent time slots(Guo et al.,2015;Li et al.,2017).Typical model-driven methods include the interactive multimodel (IMM) method (Wu et al., 2021), where the tracking results of different models are appropriately weighted,and the variable structure IMM(VSIMM),the core of which is the model set selection algorithm.In terms of computational complexity and performance, IMM has been demonstrated as the most cost-efficient approach.

    Nevertheless,as the maneuverability of the target continues to advance and maneuvering patterns become more complex, the target trajectory may consist of many models, and the associated maneuvering parameters such as acceleration and angular velocity tend to be larger.Model-driven methods face several application limitations: (1) Poor tracking ability and environmental adaptability.If the target’s maneuvering patterns lie beyond the scope of the prior model set,it can result in model mismatch,leading to decrease in the tracking performance of the model-driven algorithm or even causing the filter to diverge.(2) State estimation delay.Because the target motion model is unknown, as well as owing to model switching, model-driven methods need to gather sufficient measurements to precisely estimate the target state.(3)High computational complexity.In the case of highly maneuvering targets,the uncertainty in their maneuvers is significant, and their trajectories may encompass an infinite number of motion models.For model-driven approaches,it becomes impractical to construct an excessively large model set to account for all possible maneuvers.

    In response to the constraints of the modeldriven approaches, researchers have incorporated neural networks, which possess robust learning capabilities, into the maneuvering target tracking methodology.Zhang XR et al.(2019) and Deng et al.(2020) used long short-term memory (LSTM)neural networks to discern target maneuver parameters, such as the maneuver model, acceleration,and angular velocity.Liu JX et al.(2020)employed neural networks to directly predict the position estimation error of the target, enhancing the overall state estimate.Tian et al.(2022) proposed the multimodel Gaussian mixture probability hypothesis density (MM-GM-PHD) filter based on LSTM.Moreover, in Xiong et al.(2022), an end-to-end method was used to estimate the target state.The central concept is to learn the essential steps of the Bayesian filter, including the state transition matrix, process noise covariance matrix, and measurement noise covariance matrix.Nonetheless, in implementing the aforementioned neural network based maneuvering target tracking methods, we are still faced with certain obstacles,and these are(1)poor interpretability and (2) the fact that for small sample learning, significant challenges continue to be encountered.

    In addition to neural networks,data-driven maneuvering target tracking methods encompass Gaussian process (GP), which consists of a series of random variables that follow a Gaussian distribution and fits data to an unknown function using different distributions obtained(Rasmussen and Williams,2006).Huber (2014) proposed a method based on recursive GPs, enabling the online learning of GP hyperparameters with low computational burden.Aftab and Mihaylova (2021) presented a Gaussian process motion tracker (GPMT) algorithm.This algorithm has the capability to learn an arbitrary motion model online during each tracking period.Subsequently, the target state is estimated using the learned model and measurements.GPMT can flexibly switch between numerous or even unlimited motion models.A maneuvering target tracking method based on GPPF was proposed in Sun et al.(2020), wherein the researchers integrated the particle filter (PF) into GP target tracking.GP was extended to distributed multiple sensors in Liu XC et al.(2022).Guo et al.(2022) proposed a novel approach by combining IMM and GP for track segment association of maneuvering targets, and this approach demonstrated a superior performance in comparison with both the model-driven and datadriven methods.The essence of GP lies in learning unknown models through the covariance kernel function.Therefore, Aftab and Mihaylova (2020) conducted an analysis on the influence of different kernels and training data on the performance of target tracking.Furthermore, GP has found applications in maneuvering ship tracking(Guo et al., 2020b).

    However, in the context of a more intricate maneuvering target within a cluttered background,where the target encompasses an infinite spectrum of motion models and its maneuvering parameters are more extensive and exhibit rapid fluctuations, GPMT might, due to the influence of clutter,encounter substantial state prediction errors,potentially leading to target loss.In this paper we present a novel online learning approach for enhancing the tracking precision of intricate maneuvering targets amidst cluttered environments.The method uses a hybrid-driven GP as the fundamental framework.Building upon this foundation and in conjunction with the generalized probabilistic data association(GPDA) algorithm, robust tracking of highly maneuvering multiple targets is achieved.

    2 Background

    The standard GPs are presented in this section.The core of a GP that can learn any unknown function is comprised of the mean and covariance(kernel)functions.In most applications, the mean remains constant or zero (Huber, 2014).Thus, the design of the covariance emerges as a crucial aspect within GP.Readers can refer to Huber (2014) for further information regarding various mean and covariance functions.The functionf(·)of interest,which is unknown and subject to additive noise, is represented as follows:

    wherexrepresents the measurement vector,tis the input vector,andτrefers to the Gaussian white noise characterized by a mean of zero and a variance ofσ2n.Considering the prior data (ti,xi),tirepresents the input andxirepresents the corresponding output,i=1,2,···,n.f(·)can be modeled with GP as

    whereIrepresents the identity matrix, andk(t,t*)is the kernel function between the input vector of test data and the input vector of training data, which is expressed as

    Here,the number of test data samples is denoted byl, andk(tn,t*l) is the kernel function between thenthinput of training data and thelthinput of test data.tandt*represent the input vectors forfandf*, respectively.Similarly, we can obtaink(t,t),k(t*,t), andk(t*,t*).According to Eq.(3), the prediction distribution (Huber, 2014) of the test is obtained as

    Here,m(f*) and cov(f*) represent the predicted mean and covariance,respectively.

    3 Hybrid-driven highly maneuvering multi-target tracking

    In this section we provide a comprehensive explanation of the proposed approach.The fundamental idea is to integrate the time-varying constant velocity (CV) model into GPMT, thereby enhancing predictive abilities to effectively track extremely maneuverable targets amidst cluttered surroundings.Expanding on this foundation, the methodology integrates GPDA to enable simultaneous tracking of multiple highly maneuvering targets.The method proposed here uses a limited set of previous measurements for target state estimation and operates under the assumption of orthogonal coordinate axes.

    First, GP is employed to model the nonlinear function of thexcoordinate,and the procedure is repeated for theycoordinate.For more specifics,readers can refer to Section 3.1.Next, the training set is formed by choosing the precedingd-dimensional measurement.The hyperparameters are learned through a maximum likelihood estimator based on the training set, as explained in Section 3.2.Once again, the time-varying CV model is employed for state prediction, as indicated in Section 3.3.Subsequently, the GPDA algorithm is employed to accomplish the correlation matching between measurements and targets, as explained in Section 3.4 in greater detail.Ultimately, GP is applied for both state and training set updates; further elaboration can be found in Section 3.5.The state update process resembles the state update in the Kalman filter,wherein the target’s state estimate is determined by using both the measurement and the state prediction.The training set update entails using GP to optimize the distribution of the prior training set,thus preventing underfitting.

    3.1 GP modeling

    According to Eqs.(1)and(2),the unknown nonlinear functionfand the corresponding observation function (Huber, 2014)can be defined as

    During the target tracking process,once the interconnection between adjacent data samples is comprehended,target state estimation can be performed based on this interrelation.The kernel function in GP can capture the relationship between different input points.Hence,the kernel function is employed to comprehend the link among the training data,enabling the modeling of the target’s motion pattern.This learning process is conducted at each time step,allowing it to acquire any unknown function from the training data in real time.In the context of target tracking, the unknown function encompasses all potential maneuvering modes of the target.

    3.2 Hyperparameter optimization

    3.3 Prediction

    During the prediction process,we use the timevarying CV model instead of GP forecasting.The time-varying CV model involves the estimate of the velocity based on the last two variables (xt-1andxt-2) of the training setXtbefore a prediction is made.The velocity estimateVxt-1for thexcoordinate can be expressed as

    3.4 Generalized probabilistic data association algorithm

    In this subsection, we perform correlation matching between the measurement and the target at timetbased on the prediction vector ?St.The proposed method introduces the concept of deterministic association measurement of the GPDA algorithm(Pan et al., 2005;Guo et al., 2016).Under this concept, the belief is that both the measurement and target can be reused, and that a generalized joint event is constructed.The association probability is obtained according to the Bayesian rule, to determine the association measurement.

    First, a tracking gate is created with the predicted vector ?Stas its center, and the permissible measurements are determined based on this gate.This can be formulated as

    whereZt(i) represents theithmeasurement at timet,Rdenotes the measurement noise covariance,Btdenotes the residual covariance,Nrepresents the number of measurements,Hdenotes the observation matrix, andγis the hypothesis testing threshold ofχ2.If inequality(15)holds true,it indicates that the measurements within the gate collectively contribute to the target.

    Then, the association probability matrixGis computed based on the predicted state ?St, the predicted covariance ?Pt,the residual covarianceBt,and the associated valid measurements(Pan et al.,2005):

    wheregijis the probability density between measurementiand targetj,i= 0,1,...,m,j= 0,1,...,J,andmandJare the numbers of measurements and targets respectively.The calculation ofGis divided into three parts: (1) The first row,g0j=(nV)-1(1-PDPG), represents the probability density between measurement 0 and targetj(j/= 0),wherePDis the detection probability,PGis the gate probability,Vis the volume of the gate, andnis the coefficient.(2) The first column,gi0=λ, represents the probability density between target 0 and measurementi(i/= 0), whereλis the clutter density,target 0 means no target of interest,which may be a new target or a false target, and measurement 0 means no measurement (that is, the target is not detected).(3)The probability density between measurementiand targetj(i/=0,j/=0)is

    Finally, the correlation probabilityβijof measurementiand targetjis calculated based on the normalizedεijandξij,to obtain the associated measurementof targetj, where

    Here,cis the normalization coefficient,ρis the weight factor,his the target index, andris the measurement index.

    3.5 Update

    This subsection consists of two parts: the target state update and the training set update.The state update is similar to the Kalman filter update, and the state and covariance of thexcoordinate are updated based on thex-componentxtof the associated measurementZt.The update equations are

    where ?Ktis the gain matrix.

    The method proposed above, which combines elements of both the model-driven and data-driven approaches, is called the hybrid-driven GPMT and is summarized in Algorithm 1.

    Algorithm 1 Hybrid-driven GPMT Input: Xt, Tt, θ Output: ?μft, ?Cft , μft, Cft , Ct 1: Hyperparameter θ is learned via Eq.(11)2: Compute the predicted state ?St via Eq.(13) and the predicted covariance ?Pt via Eq.(14)3: Compute the associated measurement Zt according to inequality (15) and Eqs.(16)–(20)4: Compute mean ?μft and covariance ?Cft of the estimated state via Eqs.(21) and (22), respectively 5: Compute cross-covariance Ct via Eq.(23)6: Compute mean μf t and covariance Cft of the training set by Eqs.(26) and (27), respectively

    4 Performance validation

    In this section, the advantages of the proposed method have been verified under the prevalence of challenging scenarios.Section 4.1 provides an introduction to these scenarios and the configuration of parameters.The comparison methods and their parameter settings are given in Section 4.2, while the simulation results are discussed in Section 4.3.

    4.1 Testing scenarios and parameter settings

    In a two-dimensional space, the target surveillance region has a size ofV= πr2, withr= 50 km,and the motion state of the target denoted asX=[x,y,Vx,Vy]Tincludes the position and velocity components.There are four targets with randomly initialized positions.The maximum acceleration for target maneuvering is 8×9.8 m/s2.The range of the angular velocityωof the maneuver is [-18°,18°].The acceleration and angular velocity for each target maneuver are randomly set.The duration of each maneuver is randomly determined within [8,10] s.The target velocity is within [100,680] m/s.The initial target velocity is randomly assigned within[100,300]m/s.The detection probability is given asPD= 0.98.Clutter returns can be generated using a Poisson process withK(z) =λV c(z), where the clutter density isλ= 0.5× 10-7m-2.The clutter is assumed to have a uniform spatial distribution throughout the surveillance region,as represented byc(z).Given the unknown target motion model, the state equation can be formulated as

    The state equation consists of different models represented by the first to the fourth rows, corresponding to the CV,constant acceleration(CA),coordinated turn (CT), and nonlinear models, respectively.a=[ax,ay]Tis the acceleration vector,whereaxandayrepresent the acceleration components of thex- andy-coordinate axes respectively.ωis the angular velocity.F1,F2, andF3are expressed in terms of

    The state transition function of the nonlinear model is denoted byf.Xt-1andXtrepresent the target states.The control matrixDand process noise matrixUare given by

    Here,ξx=ξy=300 m.

    The simulation time is 100 s.The sampling periodTdata= 1 s.The performance of the tracking method is evaluated through 500 Monte Carlo simulations.The root mean square error(RMSE) is

    whereNMCis the number of Monte Carlo simulations, andqikand ?qikare the true and estimated values,respectively.

    4.2 Compared methods

    For IMM, as there is no prior knowledge about the target motion,a standard combination of models(CV, CA, and CT) is chosen,which encompasses 31 models(1 CV model,24 CA models,and 6 CT models).For the CV and CA models, the acceleration vectorasatisfies

    4.3 Results

    Fig.1 presents the tracking results obtained from the proposed method, demonstrating its ability to achieve satisfactory tracking performance for highly maneuvering targets in cluttered environments.RMSE values of the proposed method,GPMT, and IMM are depicted in Fig.2.The mean RMSE is shown in Table 1.It can be seen that the proposed method exhibits a clear advantage in position estimation compared to the GPMT and IMM methods.Both IMM and GPMT have a poor tracking performance.The reason is that the monitored targets are being highly maneuverable in a cluttered environment.Their maneuvering attributes encompass wider parameter ranges and display rapid changes.The tracking effectiveness of IMM is constrained by the collection of predefined models.The precision of tracking diminishes when the predefined model set fails to encompass the complete motion pattern of the target.IMM is unable to encompass all the maneuvering modes of highly maneuvering targets using a predefined set of models.

    Furthermore, another crucial factor contributing to reduced tracking accuracy of IMM and GPMT is the presence of background clutter.Due to clutter,prediction errors are magnified, subsequently affecting data association and the state update process.With the passage of time, errors will progressively accumulate.To sum up, the poor tracking performance of both IMM and GPMT can be primarily attributed to the presence of clutter and the inherent constraints of the algorithms.The proposed method integrates the time-varying CV model into GPMT to improve the prediction error and attain satisfactory tracking performance.

    However, there is no significant difference between the three methods in velocity estimation, and this is attributable to the fact that velocity measurement is derived from the difference in position measurements.However,for highly maneuvering targets,this method of obtaining velocity measurements may not yield accurate results.Notably, the proposed method estimates the elements in the state vector(x,y,Vx,Vy)independently.

    Fig.1 True target tracks and position estimates

    Table 1 Mean root mean square error

    Table 2 Processing time

    The code is executed on a Windows 10 computer with an i7-9750H 2.6 GHz CPU.The Matlab version is 2020b.Table 2 displays the processing time involved in the execution of each iteration under each of the methods, that is, IMM, GPMT, and the proposed method,for a total of 500 Monte Carlo simulations.The processing time of the proposed method falls between those of the IMM and GPMT methods.

    5 Conclusions

    This paper presents a novel approach for highly maneuvering multi-target tracking, combining the strengths of data-driven GP learning and the stability of the time-varying CV model prediction.The proposed hybrid-driven method outperforms existing techniques such as IMM and GPMT under challenging scenarios involving highly maneuvering targets in cluttered environments.

    Fig.2 Root mean square error of the estimated states for targets 1 (a), 2 (b), 3 (c), and 4 (d)

    Contributors

    Qiang GUO and Long TENG designed the research and addressed the problems.Long TENG processed the data and drafted the paper.Yunfei GUO and Tianxiang YIN helped with the technical information.Xinliang WU and Wenming SONG helped organize the paper and supervised the study.Long TENG revised and finalized the paper.

    Compliance with ethics guidelines

    Qiang GUO,Long TENG,Tianxiang YIN,Yunfei GUO,Xinliang WU, and Wenming SONG declare that they have no conflict of interest.

    Data availability

    The data that support the findings of this study are available from the corresponding author upon reasonable request.

    99热国产这里只有精品6| 极品少妇高潮喷水抽搐| 国产精品女同一区二区软件| 欧美日韩成人在线一区二区| 不卡视频在线观看欧美| 美女视频免费永久观看网站| a级毛片黄视频| 国产精品亚洲av一区麻豆 | 建设人人有责人人尽责人人享有的| 日本av手机在线免费观看| 一区二区av电影网| 你懂的网址亚洲精品在线观看| 国产成人午夜福利电影在线观看| 黑人巨大精品欧美一区二区蜜桃| 国产精品嫩草影院av在线观看| 啦啦啦中文免费视频观看日本| 国产精品秋霞免费鲁丝片| 永久免费av网站大全| 国产精品二区激情视频| 男人添女人高潮全过程视频| 精品99又大又爽又粗少妇毛片| 色播在线永久视频| 国产一区二区 视频在线| 久久久国产一区二区| 欧美日韩一级在线毛片| 最新的欧美精品一区二区| 午夜福利在线免费观看网站| videos熟女内射| 久久久久精品性色| av一本久久久久| 青草久久国产| 国产高清不卡午夜福利| 久久久久精品人妻al黑| 欧美变态另类bdsm刘玥| 成年av动漫网址| 久久精品久久久久久久性| 人妻少妇偷人精品九色| 大码成人一级视频| 欧美日韩成人在线一区二区| 亚洲中文av在线| 欧美精品高潮呻吟av久久| 亚洲精品成人av观看孕妇| 国产精品三级大全| 精品久久蜜臀av无| 日本午夜av视频| 一区在线观看完整版| 91国产中文字幕| 免费人妻精品一区二区三区视频| 免费观看在线日韩| 老司机影院毛片| 亚洲国产日韩一区二区| 伊人久久大香线蕉亚洲五| 一区二区三区激情视频| a 毛片基地| 伦理电影免费视频| 国产亚洲午夜精品一区二区久久| 国产男人的电影天堂91| 桃花免费在线播放| 日本wwww免费看| 少妇被粗大猛烈的视频| 国产熟女午夜一区二区三区| 精品一区二区免费观看| 色吧在线观看| 午夜激情久久久久久久| 男女边吃奶边做爰视频| 69精品国产乱码久久久| 边亲边吃奶的免费视频| 免费大片黄手机在线观看| 欧美在线黄色| 熟妇人妻不卡中文字幕| 国产一区二区激情短视频 | 欧美国产精品一级二级三级| 日韩三级伦理在线观看| 国产精品亚洲av一区麻豆 | 麻豆av在线久日| 久久久亚洲精品成人影院| 最近最新中文字幕大全免费视频 | 亚洲精品国产色婷婷电影| 色哟哟·www| 一区在线观看完整版| 久久av网站| a级片在线免费高清观看视频| 亚洲成av片中文字幕在线观看 | 在线天堂中文资源库| 国产在线免费精品| 大香蕉久久网| 黄频高清免费视频| 一级毛片黄色毛片免费观看视频| 丝瓜视频免费看黄片| 国产精品国产三级国产专区5o| 麻豆乱淫一区二区| 成年人午夜在线观看视频| 精品久久久精品久久久| 国产1区2区3区精品| 啦啦啦视频在线资源免费观看| 国产av国产精品国产| 人人澡人人妻人| 国产精品免费大片| 99香蕉大伊视频| 国产精品一区二区在线观看99| 九九爱精品视频在线观看| 成年人午夜在线观看视频| 在现免费观看毛片| 色播在线永久视频| 各种免费的搞黄视频| 国产成人精品久久二区二区91 | 亚洲精品,欧美精品| 日本黄色日本黄色录像| 成年女人在线观看亚洲视频| 国产淫语在线视频| 精品亚洲乱码少妇综合久久| 亚洲精品成人av观看孕妇| 亚洲国产最新在线播放| 精品一区在线观看国产| 色哟哟·www| 十分钟在线观看高清视频www| 日韩制服骚丝袜av| 亚洲欧美成人综合另类久久久| 国产极品天堂在线| 国产精品国产三级专区第一集| 中文字幕另类日韩欧美亚洲嫩草| 亚洲精品美女久久av网站| 亚洲精品美女久久久久99蜜臀 | 亚洲综合色惰| 亚洲伊人久久精品综合| 亚洲国产av新网站| 亚洲国产欧美在线一区| 激情五月婷婷亚洲| 免费久久久久久久精品成人欧美视频| 久久久精品94久久精品| 国产精品女同一区二区软件| 日韩av免费高清视频| 看非洲黑人一级黄片| 国产极品天堂在线| 美女脱内裤让男人舔精品视频| 精品少妇黑人巨大在线播放| 免费在线观看完整版高清| 尾随美女入室| 久久久久久久久久人人人人人人| 国产高清不卡午夜福利| 国产成人精品久久二区二区91 | 亚洲精品久久成人aⅴ小说| 成年女人在线观看亚洲视频| 一区福利在线观看| 久久精品国产亚洲av天美| 韩国av在线不卡| av女优亚洲男人天堂| 午夜老司机福利剧场| 一区二区日韩欧美中文字幕| 欧美成人精品欧美一级黄| 在线观看一区二区三区激情| 蜜桃在线观看..| 老汉色av国产亚洲站长工具| 久久久国产精品麻豆| 亚洲一码二码三码区别大吗| 国产黄频视频在线观看| 99香蕉大伊视频| 一级毛片 在线播放| 高清av免费在线| 丰满迷人的少妇在线观看| 成人18禁高潮啪啪吃奶动态图| 啦啦啦中文免费视频观看日本| 日韩欧美精品免费久久| 老司机亚洲免费影院| 久久精品夜色国产| 999久久久国产精品视频| videos熟女内射| 尾随美女入室| 人成视频在线观看免费观看| 亚洲美女黄色视频免费看| 国产精品av久久久久免费| 亚洲激情五月婷婷啪啪| 国产成人精品婷婷| 午夜福利影视在线免费观看| 国产成人欧美| av视频免费观看在线观看| 久久久欧美国产精品| 日韩一区二区视频免费看| 日韩欧美一区视频在线观看| 久久久久精品人妻al黑| 久久久久国产网址| 国产成人精品福利久久| 黄色配什么色好看| 人人妻人人澡人人爽人人夜夜| 久久国产精品大桥未久av| 久久久久久久久久久免费av| 老司机影院毛片| 久久99一区二区三区| 久久久久久久久久久久大奶| 一边亲一边摸免费视频| 一本色道久久久久久精品综合| 国产97色在线日韩免费| 久久久久视频综合| 在线观看国产h片| 青青草视频在线视频观看| 啦啦啦视频在线资源免费观看| 丝袜美足系列| 五月天丁香电影| 亚洲精品成人av观看孕妇| 精品一品国产午夜福利视频| 国产探花极品一区二区| 最近最新中文字幕大全免费视频 | 搡老乐熟女国产| 校园人妻丝袜中文字幕| 久久午夜福利片| 亚洲欧美一区二区三区国产| 蜜桃国产av成人99| 国产乱人偷精品视频| 不卡视频在线观看欧美| 久久99一区二区三区| 麻豆av在线久日| 色吧在线观看| 国产精品三级大全| 国产精品女同一区二区软件| 国精品久久久久久国模美| 99九九在线精品视频| 亚洲欧美中文字幕日韩二区| 亚洲精品中文字幕在线视频| 日本黄色日本黄色录像| 麻豆av在线久日| 视频区图区小说| 综合色丁香网| 欧美日韩av久久| 99久久人妻综合| 亚洲精华国产精华液的使用体验| 美女脱内裤让男人舔精品视频| 免费播放大片免费观看视频在线观看| 综合色丁香网| 777久久人妻少妇嫩草av网站| 麻豆精品久久久久久蜜桃| 9热在线视频观看99| 丝袜脚勾引网站| 自线自在国产av| 亚洲精品美女久久久久99蜜臀 | videossex国产| 麻豆乱淫一区二区| 91成人精品电影| 欧美日本中文国产一区发布| 男的添女的下面高潮视频| 欧美国产精品一级二级三级| 9热在线视频观看99| 丝袜喷水一区| 亚洲精品美女久久av网站| 只有这里有精品99| 自拍欧美九色日韩亚洲蝌蚪91| av一本久久久久| 国产日韩欧美视频二区| 巨乳人妻的诱惑在线观看| 国产精品.久久久| 超色免费av| xxx大片免费视频| 王馨瑶露胸无遮挡在线观看| 香蕉精品网在线| 热99久久久久精品小说推荐| 天堂中文最新版在线下载| 国产国语露脸激情在线看| 爱豆传媒免费全集在线观看| 卡戴珊不雅视频在线播放| 欧美日韩精品网址| av在线app专区| 亚洲精品美女久久久久99蜜臀 | 久久韩国三级中文字幕| 国产精品蜜桃在线观看| 高清视频免费观看一区二区| 亚洲激情五月婷婷啪啪| 国产男人的电影天堂91| 久久国内精品自在自线图片| 乱人伦中国视频| 国产一区二区三区综合在线观看| 超色免费av| 久久午夜综合久久蜜桃| 丝袜脚勾引网站| 极品少妇高潮喷水抽搐| 成年人免费黄色播放视频| 午夜日本视频在线| 夜夜骑夜夜射夜夜干| 天天躁夜夜躁狠狠躁躁| 国产伦理片在线播放av一区| 欧美精品一区二区大全| 美女主播在线视频| 国产亚洲欧美精品永久| 观看美女的网站| 亚洲一区中文字幕在线| 自线自在国产av| 成人午夜精彩视频在线观看| 亚洲精品美女久久av网站| 国产精品偷伦视频观看了| 欧美日韩亚洲国产一区二区在线观看 | 丝袜在线中文字幕| 久久久国产欧美日韩av| 亚洲成av片中文字幕在线观看 | 国产成人精品婷婷| 一本大道久久a久久精品| 亚洲图色成人| 久久久精品免费免费高清| 国产在线免费精品| 一级片免费观看大全| 亚洲av成人精品一二三区| 国产综合精华液| 国产成人aa在线观看| 18禁观看日本| 国产一区二区激情短视频 | 精品酒店卫生间| 男女边摸边吃奶| 国产成人精品一,二区| 美女中出高潮动态图| 人体艺术视频欧美日本| 少妇人妻久久综合中文| 啦啦啦在线免费观看视频4| 国产亚洲一区二区精品| 国产av一区二区精品久久| 男女边摸边吃奶| 欧美国产精品一级二级三级| 亚洲精品第二区| 80岁老熟妇乱子伦牲交| 1024视频免费在线观看| 欧美中文综合在线视频| a级毛片黄视频| 一个人免费看片子| 久久久久久久久久人人人人人人| 亚洲伊人久久精品综合| 性色avwww在线观看| 久久精品国产a三级三级三级| 大香蕉久久网| 亚洲综合色惰| 一本大道久久a久久精品| 国产精品久久久av美女十八| 色94色欧美一区二区| 免费人妻精品一区二区三区视频| 最近最新中文字幕免费大全7| 国产精品一区二区在线不卡| 欧美人与性动交α欧美软件| 欧美日韩亚洲高清精品| 80岁老熟妇乱子伦牲交| 成人毛片a级毛片在线播放| 久久久精品94久久精品| 日韩中文字幕欧美一区二区 | 可以免费在线观看a视频的电影网站 | 69精品国产乱码久久久| 黑人猛操日本美女一级片| av国产久精品久网站免费入址| 亚洲精品第二区| av视频免费观看在线观看| 婷婷色综合大香蕉| 亚洲精品av麻豆狂野| 老女人水多毛片| 亚洲精品美女久久久久99蜜臀 | 午夜91福利影院| av在线老鸭窝| 美女高潮到喷水免费观看| 久久这里只有精品19| 一二三四中文在线观看免费高清| 精品亚洲乱码少妇综合久久| 国产精品 国内视频| 熟女少妇亚洲综合色aaa.| 韩国高清视频一区二区三区| 国产一区二区激情短视频 | 亚洲伊人久久精品综合| 一本大道久久a久久精品| 欧美在线黄色| 亚洲精品视频女| 亚洲精品av麻豆狂野| 97在线人人人人妻| 亚洲欧美精品自产自拍| 免费av中文字幕在线| 丰满饥渴人妻一区二区三| 亚洲国产日韩一区二区| 精品一区二区免费观看| av电影中文网址| 国产免费又黄又爽又色| 亚洲精品自拍成人| 色视频在线一区二区三区| 国产深夜福利视频在线观看| 久久人妻熟女aⅴ| 亚洲av福利一区| 建设人人有责人人尽责人人享有的| 久久精品国产亚洲av涩爱| 国产一区二区在线观看av| 色婷婷久久久亚洲欧美| 亚洲,欧美,日韩| 一级毛片 在线播放| 性少妇av在线| 卡戴珊不雅视频在线播放| 老熟女久久久| 免费观看在线日韩| 丰满乱子伦码专区| 中文字幕亚洲精品专区| 精品国产露脸久久av麻豆| 亚洲av福利一区| 国产精品一二三区在线看| 国产白丝娇喘喷水9色精品| av网站在线播放免费| 一级a爱视频在线免费观看| a级片在线免费高清观看视频| 天天躁夜夜躁狠狠久久av| 色哟哟·www| 国产精品久久久久久久久免| 中文字幕人妻丝袜制服| 黑人猛操日本美女一级片| 丝袜在线中文字幕| 人体艺术视频欧美日本| √禁漫天堂资源中文www| 999精品在线视频| 老司机影院毛片| 免费久久久久久久精品成人欧美视频| 一区二区三区激情视频| 国产免费现黄频在线看| 亚洲国产欧美在线一区| 青春草国产在线视频| 亚洲人成77777在线视频| 欧美精品国产亚洲| 热re99久久精品国产66热6| 人人妻人人澡人人爽人人夜夜| 欧美日韩亚洲国产一区二区在线观看 | 亚洲成色77777| av片东京热男人的天堂| 久久久久网色| 少妇的逼水好多| 成人黄色视频免费在线看| 99久久综合免费| 精品一区二区三卡| 91aial.com中文字幕在线观看| 啦啦啦视频在线资源免费观看| 国产精品麻豆人妻色哟哟久久| 天堂中文最新版在线下载| 精品第一国产精品| 精品99又大又爽又粗少妇毛片| 国产av码专区亚洲av| 欧美精品国产亚洲| 亚洲精品第二区| 捣出白浆h1v1| 亚洲精品国产一区二区精华液| 亚洲精品国产av蜜桃| 亚洲成人av在线免费| 午夜激情久久久久久久| 韩国av在线不卡| 美女脱内裤让男人舔精品视频| 国产高清国产精品国产三级| 亚洲国产精品国产精品| 母亲3免费完整高清在线观看 | av女优亚洲男人天堂| 亚洲国产精品999| 18禁裸乳无遮挡动漫免费视频| 国产乱来视频区| 国产成人精品在线电影| 亚洲国产欧美在线一区| 久久久精品区二区三区| 欧美日韩一区二区视频在线观看视频在线| 91久久精品国产一区二区三区| 亚洲国产精品国产精品| 久久久亚洲精品成人影院| 久久 成人 亚洲| 在线观看免费视频网站a站| 久久精品国产亚洲av涩爱| 老司机影院毛片| 亚洲av福利一区| 少妇熟女欧美另类| 在线天堂中文资源库| 精品午夜福利在线看| 性色av一级| 免费女性裸体啪啪无遮挡网站| 久久综合国产亚洲精品| 久久久a久久爽久久v久久| 国产极品天堂在线| 9191精品国产免费久久| 另类亚洲欧美激情| 少妇的丰满在线观看| 日韩制服丝袜自拍偷拍| 日本av免费视频播放| 狂野欧美激情性bbbbbb| 色网站视频免费| 黑人猛操日本美女一级片| 亚洲精品中文字幕在线视频| 久久久久久久久久人人人人人人| 久久久久国产一级毛片高清牌| 亚洲精品第二区| 国产精品.久久久| 国产男人的电影天堂91| 国产亚洲一区二区精品| 久久久久久久久久人人人人人人| 男女国产视频网站| 国产日韩欧美在线精品| 波多野结衣一区麻豆| 久久久久精品性色| 久久女婷五月综合色啪小说| 久久青草综合色| 亚洲久久久国产精品| 丰满迷人的少妇在线观看| 午夜福利一区二区在线看| 日韩中文字幕视频在线看片| 中文字幕亚洲精品专区| 免费人妻精品一区二区三区视频| 婷婷色综合www| 大香蕉久久网| 青春草亚洲视频在线观看| 午夜影院在线不卡| 少妇人妻 视频| 免费看av在线观看网站| 日韩av不卡免费在线播放| 精品久久久精品久久久| 久久鲁丝午夜福利片| 亚洲精品国产色婷婷电影| 欧美av亚洲av综合av国产av | 99精国产麻豆久久婷婷| xxxhd国产人妻xxx| 一区二区日韩欧美中文字幕| 桃花免费在线播放| 精品99又大又爽又粗少妇毛片| 亚洲精品久久久久久婷婷小说| 中文乱码字字幕精品一区二区三区| 国产一区二区三区综合在线观看| 97在线视频观看| 少妇精品久久久久久久| 久久精品久久久久久噜噜老黄| 美女国产高潮福利片在线看| 国产av码专区亚洲av| 在线天堂最新版资源| 国产日韩一区二区三区精品不卡| 国产av一区二区精品久久| 熟女少妇亚洲综合色aaa.| 久久人人97超碰香蕉20202| 欧美亚洲 丝袜 人妻 在线| 欧美国产精品va在线观看不卡| 美女高潮到喷水免费观看| 国产精品一区二区在线不卡| 在线观看一区二区三区激情| 最新中文字幕久久久久| 最近2019中文字幕mv第一页| 精品国产乱码久久久久久男人| 精品少妇久久久久久888优播| 亚洲精品久久成人aⅴ小说| 极品人妻少妇av视频| 美女视频免费永久观看网站| 日韩人妻精品一区2区三区| 中文字幕精品免费在线观看视频| 国产成人精品在线电影| 最近中文字幕高清免费大全6| 欧美老熟妇乱子伦牲交| 国产激情久久老熟女| 欧美av亚洲av综合av国产av | 亚洲人成电影观看| 热99国产精品久久久久久7| 久久精品国产亚洲av涩爱| 亚洲av福利一区| 亚洲伊人色综图| 香蕉国产在线看| 国产精品免费视频内射| 欧美xxⅹ黑人| 热99国产精品久久久久久7| 日本-黄色视频高清免费观看| 久久精品国产综合久久久| 久久久久国产网址| 午夜免费鲁丝| 欧美+日韩+精品| 国产日韩一区二区三区精品不卡| 久久久精品免费免费高清| 久久久精品94久久精品| 在线观看人妻少妇| 美女国产视频在线观看| av线在线观看网站| 国产国语露脸激情在线看| 久久久久久人妻| 久久精品国产自在天天线| 欧美亚洲日本最大视频资源| 欧美日韩精品成人综合77777| 国产精品一二三区在线看| 午夜日本视频在线| 最近的中文字幕免费完整| 亚洲欧美一区二区三区黑人 | 美女中出高潮动态图| av网站在线播放免费| 国产免费又黄又爽又色| xxx大片免费视频| 免费少妇av软件| 精品午夜福利在线看| 欧美精品高潮呻吟av久久| 日韩中文字幕视频在线看片| 国产精品麻豆人妻色哟哟久久| 一本—道久久a久久精品蜜桃钙片| 国产亚洲精品第一综合不卡| 99热国产这里只有精品6| 欧美日韩亚洲高清精品| 亚洲熟女精品中文字幕| 另类精品久久| 国产精品无大码| 麻豆精品久久久久久蜜桃| 婷婷色麻豆天堂久久| 97精品久久久久久久久久精品| 亚洲精品视频女| 亚洲三区欧美一区| 只有这里有精品99| 日韩一区二区三区影片| 国产精品偷伦视频观看了| 在线观看www视频免费| 91aial.com中文字幕在线观看| 久久久久久免费高清国产稀缺| 欧美日韩成人在线一区二区| 天堂俺去俺来也www色官网| 成人手机av| 免费看av在线观看网站| 免费高清在线观看视频在线观看| 久久精品夜色国产| 亚洲av中文av极速乱| 青春草国产在线视频| 国产精品偷伦视频观看了| 韩国高清视频一区二区三区| 香蕉国产在线看| 香蕉精品网在线| 最新中文字幕久久久久| 涩涩av久久男人的天堂| 日韩中文字幕视频在线看片| 美女午夜性视频免费| 久久久精品94久久精品| 18禁国产床啪视频网站| 人人澡人人妻人|