• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Smooth tracking control for conversion mode of a tilt-rotor aircraft with switching modeling*

    2023-12-11 02:41:10KebiLUOShuangSHICongPENG

    Kebi LUO, Shuang SHI, Cong PENG

    College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

    ?E-mail: shishuang@nuaa.edu.cn

    Abstract: This paper investigates the state-tracking control problem in conversion mode of a tilt-rotor aircraft with a switching modeling method and a smooth interpolation technique.Based on the nonlinear model of the conversion mode, a switched linear model is developed by using the Jacobian linearization method and designing the switching signal based on the mast angle.Furthermore, an H∞state-tracking control scheme is designed to deal with the conversion mode control issue.Moreover, instead of limiting the amplitude of control inputs, a smooth interpolation method is developed to create bumpless performance.Finally, the XV-15 tilt-rotor aircraft is chosen as a prototype to illustrate the effectiveness of this developed control method.

    Key words: Tilt-rotor aircraft; State-tracking control; Switched linear systems; Time-scheduled multiple Lyapunov function approach; Smooth interpolation https://doi.org/10.1631/FITEE.2300266 CLC number: TP18; V279

    1 Introduction

    A tilt-rotor aircraft can switch between helicopter mode and airplane mode by installing two rotating nacelles to the tips of wings,which has the advantages of both fixed-wing aircrafts and helicopters(Thompson, 1990).The mode in which a tilt-rotor aircraft transforms between these two modes is called conversion mode, and it includes the characteristics of full flight modes (Rysdyk RT and Calise, 1999).Modeling a tilt-rotor aircraft in conversion mode is arduous, because it is difficult to reconcile the accuracy of the mathematical model and the difficulty of control design.For instance, a simplified nonlinear mathematical model was built based on the Euler equations in Kleinhesselink (2007).However, this simplified model is inaccurate because of the rotor effects.Simplifying the model can make the control design easier, but the model might be inaccurate.Designing control laws based on a nonlinear model is also a challenge, due to complex changes in dynamic characteristics and other problems (Rysdyk R and Calise, 2005).Although the transition process lasts only for a couple of seconds, it is still the most complicated and significant part(Li Z and Xia,2018).Consequently,many scholars have focused on the modeling and control issues of conversion mode(Wang YE et al.,2016;Barra et al.,2019;Abà et al.,2020).

    The aerodynamic features change violently as the nacelles tilt.Thus, it is difficult to describe the transition process with a single mathematical model.It is also difficult to design control schemes directly for nonlinear models (Chen et al., 2017; Li YL et al., 2022; Tang et al., 2022; Zhao H et al.,2023).Modeling by the switched system and designing the switching control scheme can effectively resolve this problem.In Wang XH and Cai(2015),a switching control method was adopted in controller design based on a nonlinear model of conversion mode.A novel tilt-rotor was studied in Kong and Lu(2018),and a switching control law was designed by developing the back-stepping method.However,the tilting features were eliminated in designing the back-stepping controller.The methods above apply switching method to complete the switching controller design,but the nonlinear aerodynamic model is adopted for the modeling.A switched system generally consists of a number of subsystems and a switching law representing the switching order(Zhao XD et al., 2012; Ye et al., 2021; Hou et al., 2022;Roy et al., 2022).Modeling the tilting process by a switched linear model can obtain more tilting features, and the violent changes of aerodynamic parameters can be depicted more precisely.Moreover,the control design can be simplified based on the switched linear model.

    Due to the switching characteristic,abrupt controller bumps will appear when switching occurs at the switching instants, which may destroy the performance and even the stability of the system.To reduce controller bumps, a bumpless transfer method is necessary to make the control input smooth at switching instants, which can further improve the transient performance of the system.In Daafouz et al.(2012), an additional global condition was introduced to restrain the controller gain.However,finding a feasible solution to avoid this global limitation is difficult (Yang and Zhao, 2019).To release this constraint, a local condition was proposed instead,and this bumpless transfer method was widely used(Yang and Zhao,2019;Zhao Y and Zhao,2020;Zhao Y et al.,2020).This approach requires a reference input to limit the amplitude range of the actual control input.As a result,the disparity of the control signal between adjacent sides of a switching instant can be maintained at a small level.Unfortunately,there is still no effective way to obtain a proper reference input.

    An admissible solution to the previous problem is to develop a bumpless control architecture without reference control inputs.Recently, the timescheduled multiple Lyapunov function (MLF) approach was exploited for analysis and synthesis of switched systems, which can achieve better performance than traditional time-independent MLF methods(Allerhand and Shaked,2011;Xiang,2015;Yuan et al., 2018; Shi et al., 2021; Fei et al., 2023).However, the time-scheduled MLF is discontinuous at switching instants, which leads to controller bumps.In this paper, the time-scheduled method is further developed to construct an improved MLF.An additional subinterval is introduced after each switching (called a transition interval), and the linear interpolation method is adopted in transition intervals.By this manipulation, the revised MLF is continuous and non-increasing at the switching instants.Accordingly, the designed control scheme can decrease controller bumps without introducing an additional reference input.

    In this paper,the conversion mode of a tilt-rotor aircraft is built as a switched linear system.On this foundation, an improved time-scheduled MLF technique is proposed to develop a smoothH∞statetracking control scheme, which can accomplish a smooth transition between helicopter mode and airplane mode.The main improvements of this article are twofold:

    1.A switched linear model of a tilt-rotor aircraft in conversion mode is built.As a result, the nonlinear control problem of the conversion mode is transformed into the state-tracking control issue of the switched linear system.

    2.A time-scheduled method is developed to construct an improved MLF.On this basis,the linear interpolation method is adopted in transition intervals to resolve the bumpless transfer issue.Compared with the conventional bumpless transfer technique,the reference input is no longer essential.

    2 Switching modeling for the longitudinal dynamic model of a tilt-rotor aircraft

    The partonomy is used in the modeling process,and the model is simplified into a longitudinal dynamic model.Some assumptions are essential in the modeling process (Harendra et al., 1973).For instance,each component of a tilt-rotor aircraft is rigid body and the rotation speed of the rotor is regarded as fixed during the process.

    Take the XV-15 tilt-rotor aircraft as an example.Based on the Euler equations(Kleinhesselink,2007),the longitudinal dynamic model for conversion mode is

    whereu,w,q, andθdenote the forward speed, longitudinal speed, pitch rate, and pitch angle, respectively.mgis the mass of the aircraft,gis the gravitational acceleration, andIyis the pitch rotational inertia.Fxdenotes the resultant aerodynamic force of each part in thexdirection, whileFzdenotes the force in thezdirection.Myrepresents the resultant aerodynamic moment of each component in theydirection.These forces and moments are related to the collective pitchθb,the longitudinal periodic pitchθa,the elevator deflectionδe,and the mast angleβM.

    Maisel et al.(2000) presented the conversion corridor with respect to the mast angleβMand the air speedV, which can guarantee a safe tilting process.By selectingNoperating points in the conversion corridor, trimming the nonlinear model of conversion mode(1),and taking the Jacobian linearization,a cluster of linear models are obtained.Furthermore, introducing a switching signalσ(t), nonlinear model (1) can be transformed to a switched linear system:

    wherex(t)=[Δu,Δw,Δq,Δθ]Tis the state,u(t)=[Δθb,Δθa,Δδe]Tis the input, andω(t) is the external disturbance.σ(t) : [0,∞)→ RN?{1,2,···,N}is the switching signal.Ai,Bi, andHi(σ(t) =i,i ∈RN) are matrices with proper dimensions, and these matrix parameters are derived based on the trimming results.

    Definition 1 (Zhao XD et al.,2012) The switching lawσ(t) =i,i ∈RN, can be called modedependent dwell-time(MDDT) switching if

    whereτdi >0 is an existing scalar,Ni(tx,ty) andTi(tx,ty)represent the overall number that switches to theithmode and the total activated time of theithsubsystem (i ∈RN) in the interval [tx,ty), respectively.Then,τdiis called MDDT.

    Remark 1 The mast angleβMis closely related to the inclination angle of the nacelles.In conversion mode, the variation ofβMfrom 0°to 90°represents the flight mode of the tilt-rotor aircraft changing from helicopter mode to airplane mode.By linearizing nonlinear model (1) based on the range ofβM,the switched linear system (2) is obtained, and thus the runtime of each subsystem in Eq.(2)has a lower bound.This MDDT switching can further describe the tilting characteristics.

    3 Smooth H∞state-tracking control

    In this section, the interval partitioning and smooth interpolation methods are further extended to develop an improved MLF.On this basis, anH∞state-tracking control scheme is proposed for the switched linear system(2).

    The reference model can be scrupulously extracted from the tilting course based on the state characteristics and trimming results:

    wherexr(t)∈Rnxandr(t)∈Rnrrepresent the state and input of the reference system,respectively.This reference system generates desirable state trajectories to be tracked.To ensure favorable tracking performance,Arshould have the same matrix structure asAi,i ∈RN.

    Considering the switched system(2)with reference model (3), define the tracking error ase(t) =x(t)-xr(t).The control input is designed as

    whereΛei=Ai+BiKei(t),Λci=Ai+BiKci-Ar, andΛri=BiKri-Br,?σ(t) =i,i ∈RN.SelectKciandKrisuch thatΛci= 0 andΛri=0.Hence, the trajectory tracking issue becomes the stabilization issue of tracking error system(5).

    Definition 2 Considering the switched system(2) with reference model (3), if there exist switching signalσ(t) and controller(4)satisfying

    (1) whenω(t)≡0 and system (5) is globally uniformly exponentially stable (GUES),

    (2) whenω(t)/= 0 and under the zero initial condition,

    whereν >0,∈>0, and ?γ >0 are constants, then system (5) is said to achieve anH∞state-tracking performance.

    The control objective here is to co-design controller (4) and an MDDT switching law such that tracking error system (5) has anH∞tracking performance.

    Inspired by interpolation approaches in several works (Allerhand and Shaked, 2011; Xiang, 2015;Yuan et al., 2018), here we introduce a scalarτhand let [ts,ts+τh) denote the transition interval,wheretsdenotes thesthswitching instant.The interpolation process is developed during the interval to design time-scheduled controllers, which can prevent abrupt bumps appearing at switching instants.Additionally, let the interval [ts+τh,ts+1)be partitioned intoL+1 portions.Define a time sequence{ts0,ts1,···,tsL}, wherets0=ts+τh.Eventually, the interval [ts,ts+1) is divided into[ts,ts0)∪[ts0,ts1)∪···∪[ts(L-1),tsL)∪[tsL,ts+1).Let the length of each portion except[tsL,ts+1)beτliforσ(ts) =i,i ∈RNandl ∈Z[0,L].To realize this partitioning approach,τdi >τh+Lτliis obviously required fori ∈RN.Based on such a partitioning, a smoothH∞state-tracking control scheme is developed.

    Theorem 1 Consider the switched linear system(2) with reference model (3).Let?si ≥?ui >0,τli >0,τh>0 be given constants fori ∈RN,andγ >0,and suppose that there exist matricesTik >0 andUikfor (i,j)∈RN×RN,i/=j,k ∈Z[0,L],l ∈Z[0,L-1],

    with He{X}?X+XT.

    Then,for the MDDT switching signal satisfyingτdi >τh+Lτli,i ∈RN, the closed-loop system (5)has anH∞state-tracking performance no greater than

    wherePi(t) =T-1i(t) fort ∈[0,∞).It can be verified that the constructed Lyapunov function is continuous and differential fort ∈[0,∞).

    Fort ∈[ts,ts0), one can deduce that

    can be guaranteed by inequalities(8)and(9).Meanwhile, inequality (10) can guarantee inequality (17)fort ∈[tsL,ts+1).

    First, considerω(t)≡0.By integrating inequalities (16) and (17) fromtstots+1, one can obtain that

    where?i=?si-?uifori ∈ RN.Becauseτdi>τh, one can deduce thatV(e(t))≤ αexp(-?u(t-t0))V(e(t0)), where?u= mini∈RN(?ui) as mentioned.Furthermore, it is observed thatV(e(t)) converges to 0 ast →∞.Then one can deduce that the system is GUES.

    Next, considerω(t)/= 0.Integrating inequalities (16) and (17) fromtstots+1and lettingF(t)=eT(t)e(t)-γ2ωT(t)ω(t), it holds that

    whereThi(?,t)denotes the total length of transition intervals during [?,t) of theithsubsystem fori ∈RN.It holds thatThi(?,t)≤τhNi(?,t).

    Consider the zero initial condition.BecauseV(e(t))≥0, one can deduce that

    which demonstrates that tracking error system(5)achieves a non-weightedH∞performance as Eq.(11)according to Definition 2.

    The following corollary can be derived based on Theorem 1 without considering interval partitioning or smooth interpolation.In this situation, the controller gainKei(t) in control law (4) becomes a time-invariant matrixKei,i ∈RN.

    Corollary 1 Consider the switched linear system(2) with reference model (3).?i >0 andμi >1 are given constants fori ∈RN.Supposing that there exist matricesTi >0 andUifori ∈RN,(i,j)∈RN×RN,i/=j,

    for the MDDT switching law satisfyingτdi >ln(μi/?i),i ∈RN, system (5) is GUES with anH∞performance no greater than

    where ˉ?= maxi∈RN(?i) and ˉφ=maxi∈RN(ln(μi/τdi)-?i).In addition, the controller gains satisfyKeiTi=Ui,Ai+BiKci=Ar,andBiKri=Br, fori ∈RN.

    The proof is omitted here.

    4 An example based on the XV-15 tiltrotor aircraft

    In this section, the XV-15 tilt-rotor aircraft is taken as an illustrative example to verify the effectiveness of the developed control method in Theorem 1.

    Table 1 provides trimming results of each selected trimming point according to the conversion corridor,and the tilting process starts withβM=0°andV=101.21 ft/s(1 ft=0.3048 m).On this basis,the linearized Jacobian matrices of each trimming point can be obtained:

    Table 1 Trimming results of the selected operating points

    The whole tilting process is represented by the five subsystems provided above.

    The parameters of the reference system are given by

    and the reference input is selected asr(t) =22 sin(0.1146t).External disturbance input, additionally,is considered asω(t)=2 cos(0.53t)e-0.05t.

    Set?u1=?u2=?u3=?u4=?u5=?s1=?s2=?s3=?s4=?s5=0.1,τh=0.8, andτl1=τl2=τl3=τl4=τl5=0.5,and selectγ=1.1615 andL=1.

    Dealing with the conditions in Theorem 1, one can obtain

    Setγ= 1.0595,?1=?2=?3=?4=?5=0.1, andμ= 1.3, and deal with the conditions in Corollary 1.By similar manipulation,KciandKrishare the same values in Theorem 1, andKeifori ∈RNare

    The total runtime of tilting is 15 s, and the selected switching signal is displayed in Fig.1, which depends on the intervals between adjoining trimming points.The MDDT constraints of Theorem 1 and Corollary 1 are both satisfied.

    The comparison of Theorem 1 and Corollary 1 is displayed in one figure to highlight the difference.Figs.2-5 track performances of forward speedu,longitudinal speedw,pitch rateq,and pitch angleθ,respectively.Both control schemes of Theorem 1 and Corollary 1 are capable of accomplishing state tracking and control.However,the control scheme of Theorem 1 has better tracking control performance than the scheme of Corollary 1, particularly at switching instants.

    Fig.1 Switching signal σ(t)

    Fig.2 Forward speed u (1 ft=0.3048 m)

    Fig.3 Longitudinal speed w (1 ft=0.3048 m)

    Fig.4 Pitch rate q

    5 Conclusions

    Fig.5 Pitch angle θ

    In this paper, a switched linear modeling method is provided for the conversion mode of a tiltrotor aircraft.AnH∞state-tracking control law is designed that transforms the nonlinear control issue of conversion mode into a stabilization problem of the switched linear system.Moreover, the linear interpolation and interval partitioning methods are further developed to restrain the abrupt controller bumps at switching instants.Finally, the effectiveness and advantages of the proposed control scheme are validated by using the XV-15 aircraft as an example.It is worth mentioning that the linearization process leads to inevitable error between the switched linear model and the original nonlinear model,which has a certain impact on the performance of the system.To deal with this issue, a switched Takagi–Sugeno fuzzy modeling method can be further pursued to improve the accuracy of modeling in future studies.

    Contributors

    Shuang SHI designed the research.Kebi LUO processed the data and drafted the paper.Shuang SHI helped organize the paper.Cong PENG revised and finalized the paper.

    Compliance with ethics guidelines

    Kebi LUO, Shuang SHI, and Cong PENG declare that they have no conflict of interest.

    Data availability

    The data that support the findings of this study are available from the corresponding author upon reasonable request.

    av在线亚洲专区| 女人十人毛片免费观看3o分钟| 久久久久久国产a免费观看| 一级毛片久久久久久久久女| 欧美zozozo另类| 好男人在线观看高清免费视频| 国产精品久久久久久精品古装| 一区二区三区免费毛片| 色哟哟·www| 性色avwww在线观看| 性色av一级| 韩国高清视频一区二区三区| 青春草视频在线免费观看| av专区在线播放| 亚洲色图av天堂| 免费av观看视频| 亚洲欧美精品自产自拍| 欧美精品一区二区大全| 在线天堂最新版资源| 久久女婷五月综合色啪小说 | 国产色爽女视频免费观看| av在线老鸭窝| 国产在线男女| 少妇高潮的动态图| 全区人妻精品视频| 久久精品人妻少妇| 美女主播在线视频| 97超视频在线观看视频| 国产高清国产精品国产三级 | 日本一二三区视频观看| 亚洲精品成人av观看孕妇| 男女那种视频在线观看| 亚洲人成网站高清观看| 身体一侧抽搐| 色哟哟·www| 下体分泌物呈黄色| 国产精品人妻久久久久久| 日韩一本色道免费dvd| 国产黄a三级三级三级人| 成年人午夜在线观看视频| 亚洲人成网站高清观看| 男女边摸边吃奶| 国产一区二区亚洲精品在线观看| 成年人午夜在线观看视频| 一级爰片在线观看| 国产乱人视频| 欧美性感艳星| 免费黄网站久久成人精品| 免费大片黄手机在线观看| 97人妻精品一区二区三区麻豆| 一级毛片久久久久久久久女| 熟妇人妻不卡中文字幕| 一个人看的www免费观看视频| 久久久久精品久久久久真实原创| 丰满少妇做爰视频| 日本一本二区三区精品| 亚洲av欧美aⅴ国产| 国产男女内射视频| 国产精品一二三区在线看| 亚洲欧美成人精品一区二区| 免费看a级黄色片| 97在线视频观看| av女优亚洲男人天堂| 大又大粗又爽又黄少妇毛片口| 大话2 男鬼变身卡| 久久久精品欧美日韩精品| 99热6这里只有精品| 少妇的逼水好多| 男女边摸边吃奶| 亚洲最大成人av| 99热全是精品| 欧美+日韩+精品| 黄片无遮挡物在线观看| 亚洲国产最新在线播放| 亚洲三级黄色毛片| 欧美亚洲 丝袜 人妻 在线| 我要看日韩黄色一级片| 国产精品久久久久久久久免| 色网站视频免费| 菩萨蛮人人尽说江南好唐韦庄| 性色avwww在线观看| 亚洲人成网站高清观看| 国产高潮美女av| 国产黄a三级三级三级人| 最近2019中文字幕mv第一页| 免费看光身美女| 最新中文字幕久久久久| 大香蕉97超碰在线| 久久久精品免费免费高清| 天天躁夜夜躁狠狠久久av| 成人特级av手机在线观看| 久久人人爽人人片av| 国产精品人妻久久久久久| 国产亚洲5aaaaa淫片| 青青草视频在线视频观看| 国产v大片淫在线免费观看| 亚洲国产日韩一区二区| 成人国产av品久久久| 高清午夜精品一区二区三区| 国内揄拍国产精品人妻在线| 国产国拍精品亚洲av在线观看| 又粗又硬又长又爽又黄的视频| 国产精品爽爽va在线观看网站| 国产精品精品国产色婷婷| 久久国内精品自在自线图片| 干丝袜人妻中文字幕| 亚洲国产精品国产精品| 久久久久久久久久成人| 午夜福利在线观看免费完整高清在| 国产 一区精品| 国产精品三级大全| 一区二区三区免费毛片| 免费看av在线观看网站| 国产伦精品一区二区三区四那| 成人亚洲欧美一区二区av| 国产精品偷伦视频观看了| 亚洲内射少妇av| 丰满少妇做爰视频| 成人欧美大片| 自拍偷自拍亚洲精品老妇| 国产高清有码在线观看视频| 男女那种视频在线观看| 亚洲成人精品中文字幕电影| 亚洲,一卡二卡三卡| 亚洲图色成人| 午夜福利网站1000一区二区三区| 青青草视频在线视频观看| 成年av动漫网址| 全区人妻精品视频| 久久人人爽av亚洲精品天堂 | 一个人看视频在线观看www免费| 日韩中字成人| 亚洲欧美中文字幕日韩二区| 内射极品少妇av片p| 免费播放大片免费观看视频在线观看| 熟女人妻精品中文字幕| 亚洲色图av天堂| 黑人高潮一二区| 最近的中文字幕免费完整| 亚洲国产精品999| 精品国产乱码久久久久久小说| 97热精品久久久久久| 日韩视频在线欧美| 少妇被粗大猛烈的视频| 乱系列少妇在线播放| 亚洲性久久影院| 男女下面进入的视频免费午夜| 一区二区三区免费毛片| 亚洲精品一二三| 看非洲黑人一级黄片| 久久久久九九精品影院| 亚洲成人一二三区av| 国产成人免费观看mmmm| 777米奇影视久久| xxx大片免费视频| 欧美性猛交╳xxx乱大交人| 亚洲av免费高清在线观看| 干丝袜人妻中文字幕| 日韩电影二区| 在线天堂最新版资源| 亚洲国产av新网站| 欧美激情在线99| 国产精品久久久久久久久免| 伦精品一区二区三区| 日日啪夜夜撸| 亚洲最大成人av| 亚洲人与动物交配视频| 精品视频人人做人人爽| 国产午夜福利久久久久久| 精品一区二区免费观看| 亚洲色图综合在线观看| 美女高潮的动态| 国产精品人妻久久久久久| 国产精品国产三级专区第一集| 精品一区在线观看国产| 丝袜脚勾引网站| 联通29元200g的流量卡| 高清午夜精品一区二区三区| 亚洲国产精品专区欧美| 少妇人妻 视频| 欧美性猛交╳xxx乱大交人| 国产亚洲精品久久久com| 韩国av在线不卡| 国产一区有黄有色的免费视频| 亚洲,欧美,日韩| 国产午夜福利久久久久久| 3wmmmm亚洲av在线观看| 激情五月婷婷亚洲| 亚洲国产最新在线播放| 亚洲精品456在线播放app| 男人添女人高潮全过程视频| 亚洲av二区三区四区| 国产极品天堂在线| 一级a做视频免费观看| 毛片一级片免费看久久久久| 色婷婷久久久亚洲欧美| 各种免费的搞黄视频| 嫩草影院精品99| 99热全是精品| 尾随美女入室| 亚洲成人精品中文字幕电影| 亚洲精品久久午夜乱码| 在线亚洲精品国产二区图片欧美 | 欧美日韩一区二区视频在线观看视频在线 | 麻豆成人av视频| 免费看a级黄色片| 美女xxoo啪啪120秒动态图| 久久精品国产亚洲网站| 日韩在线高清观看一区二区三区| 汤姆久久久久久久影院中文字幕| 日韩强制内射视频| 韩国av在线不卡| 欧美人与善性xxx| 精品人妻视频免费看| 国产高清有码在线观看视频| 高清毛片免费看| 成年女人看的毛片在线观看| 亚洲欧洲日产国产| 99热6这里只有精品| 欧美高清成人免费视频www| av在线蜜桃| 精品一区二区免费观看| 亚洲精品乱码久久久久久按摩| 午夜激情久久久久久久| 最近手机中文字幕大全| 在线亚洲精品国产二区图片欧美 | 欧美日韩一区二区视频在线观看视频在线 | 久久人人爽人人片av| 国产欧美日韩一区二区三区在线 | 中国美白少妇内射xxxbb| av播播在线观看一区| 91在线精品国自产拍蜜月| 免费黄网站久久成人精品| 免费av不卡在线播放| 菩萨蛮人人尽说江南好唐韦庄| 亚洲va在线va天堂va国产| 国产一区有黄有色的免费视频| 我的老师免费观看完整版| 亚洲内射少妇av| 日韩一区二区三区影片| 高清视频免费观看一区二区| 成人黄色视频免费在线看| 毛片一级片免费看久久久久| 国产又色又爽无遮挡免| 亚洲av福利一区| 亚洲国产成人一精品久久久| 国产精品无大码| 精品一区二区三区视频在线| 免费观看av网站的网址| 一区二区三区免费毛片| 国产成人一区二区在线| 久久人人爽人人爽人人片va| 亚洲av在线观看美女高潮| 汤姆久久久久久久影院中文字幕| 毛片女人毛片| 国产男女超爽视频在线观看| 国精品久久久久久国模美| 小蜜桃在线观看免费完整版高清| 亚洲av福利一区| 亚洲精品乱码久久久v下载方式| 久久久午夜欧美精品| 2021少妇久久久久久久久久久| 黄色一级大片看看| 69人妻影院| 欧美变态另类bdsm刘玥| 亚洲国产精品专区欧美| 高清毛片免费看| 国产精品无大码| 国产精品99久久99久久久不卡 | 国产亚洲一区二区精品| 亚洲一区二区三区欧美精品 | 伦理电影大哥的女人| 深夜a级毛片| 纵有疾风起免费观看全集完整版| 99久久中文字幕三级久久日本| 亚洲婷婷狠狠爱综合网| 精品亚洲乱码少妇综合久久| 国产成人精品久久久久久| av一本久久久久| 香蕉精品网在线| 最近中文字幕2019免费版| 国国产精品蜜臀av免费| 国产久久久一区二区三区| 国产女主播在线喷水免费视频网站| 夫妻午夜视频| 国产精品伦人一区二区| 夫妻性生交免费视频一级片| 少妇的逼好多水| 欧美丝袜亚洲另类| 岛国毛片在线播放| 亚州av有码| a级毛色黄片| 久久女婷五月综合色啪小说 | 欧美激情在线99| 国产日韩欧美在线精品| 午夜福利网站1000一区二区三区| 亚洲最大成人手机在线| 最近中文字幕2019免费版| 69人妻影院| 尾随美女入室| 偷拍熟女少妇极品色| 午夜视频国产福利| 久久久精品94久久精品| a级一级毛片免费在线观看| 国产精品一及| 中文字幕人妻熟人妻熟丝袜美| 看非洲黑人一级黄片| 干丝袜人妻中文字幕| 神马国产精品三级电影在线观看| 少妇人妻精品综合一区二区| 22中文网久久字幕| 国产美女午夜福利| 日韩av不卡免费在线播放| 久久久色成人| 成人毛片60女人毛片免费| 男插女下体视频免费在线播放| 少妇高潮的动态图| 久久韩国三级中文字幕| h日本视频在线播放| 国产高清有码在线观看视频| 人妻制服诱惑在线中文字幕| 少妇裸体淫交视频免费看高清| kizo精华| 国产精品女同一区二区软件| 亚洲精华国产精华液的使用体验| 国产精品爽爽va在线观看网站| 秋霞伦理黄片| 成人特级av手机在线观看| 男人添女人高潮全过程视频| 国产成人福利小说| 欧美变态另类bdsm刘玥| 亚洲精品国产色婷婷电影| 欧美潮喷喷水| 成人一区二区视频在线观看| 亚洲自偷自拍三级| 联通29元200g的流量卡| 国产精品三级大全| 人人妻人人看人人澡| 一级a做视频免费观看| 青春草视频在线免费观看| 亚州av有码| 免费黄频网站在线观看国产| 亚洲自偷自拍三级| 大又大粗又爽又黄少妇毛片口| 亚洲精品色激情综合| 老师上课跳d突然被开到最大视频| 99久久精品热视频| 国产亚洲av片在线观看秒播厂| 成人国产麻豆网| 欧美成人精品欧美一级黄| 成人黄色视频免费在线看| 超碰97精品在线观看| 亚洲精品,欧美精品| 人妻系列 视频| 国内少妇人妻偷人精品xxx网站| 亚洲婷婷狠狠爱综合网| 在线播放无遮挡| 看非洲黑人一级黄片| 2021少妇久久久久久久久久久| 看黄色毛片网站| 看非洲黑人一级黄片| 日本欧美国产在线视频| 人妻 亚洲 视频| 亚洲精品乱码久久久久久按摩| 亚洲欧美日韩卡通动漫| 成年女人在线观看亚洲视频 | 少妇人妻精品综合一区二区| 中国美白少妇内射xxxbb| 精品一区二区免费观看| 97精品久久久久久久久久精品| 伦精品一区二区三区| 欧美精品国产亚洲| 又爽又黄无遮挡网站| 午夜福利在线观看免费完整高清在| 日韩成人av中文字幕在线观看| 男人添女人高潮全过程视频| eeuss影院久久| 亚洲成人久久爱视频| 三级男女做爰猛烈吃奶摸视频| 美女xxoo啪啪120秒动态图| 亚洲在线观看片| 最新中文字幕久久久久| 97精品久久久久久久久久精品| 最近中文字幕2019免费版| 久久人人爽av亚洲精品天堂 | 亚洲国产精品999| 欧美国产精品一级二级三级 | 一级毛片电影观看| 晚上一个人看的免费电影| 黄色配什么色好看| 男女边吃奶边做爰视频| 久久久a久久爽久久v久久| 国内揄拍国产精品人妻在线| 久久精品久久久久久久性| 国产精品一区二区性色av| 亚洲色图综合在线观看| 国产又色又爽无遮挡免| 久久久久精品久久久久真实原创| 少妇 在线观看| 亚洲成人av在线免费| 久久ye,这里只有精品| 成人一区二区视频在线观看| 日韩制服骚丝袜av| 亚洲精品456在线播放app| 寂寞人妻少妇视频99o| 91在线精品国自产拍蜜月| 国产欧美日韩精品一区二区| av免费在线看不卡| 男女下面进入的视频免费午夜| 亚洲国产色片| 熟女电影av网| 久久韩国三级中文字幕| 国产精品麻豆人妻色哟哟久久| 久久精品久久久久久噜噜老黄| 最近的中文字幕免费完整| 国产免费福利视频在线观看| 美女内射精品一级片tv| 看免费成人av毛片| 国产视频首页在线观看| 又爽又黄a免费视频| 精品人妻视频免费看| 99热6这里只有精品| 91午夜精品亚洲一区二区三区| 国产片特级美女逼逼视频| 免费大片黄手机在线观看| 久久久久久伊人网av| 中文字幕免费在线视频6| 亚洲精品久久久久久婷婷小说| 亚洲av免费高清在线观看| 成人亚洲欧美一区二区av| 六月丁香七月| 99久久九九国产精品国产免费| 国产高清有码在线观看视频| 亚洲在久久综合| 欧美国产精品一级二级三级 | 国产成人精品婷婷| 熟妇人妻不卡中文字幕| 中文字幕av成人在线电影| videossex国产| av在线老鸭窝| 久久久久久伊人网av| 成年av动漫网址| 亚洲精品成人久久久久久| 亚洲成人一二三区av| 国产精品无大码| 婷婷色av中文字幕| 黄片无遮挡物在线观看| 亚洲人与动物交配视频| 欧美精品人与动牲交sv欧美| 亚洲婷婷狠狠爱综合网| 国产高清三级在线| 七月丁香在线播放| 亚洲不卡免费看| 视频区图区小说| 亚洲av不卡在线观看| 国产午夜精品久久久久久一区二区三区| 国产免费一区二区三区四区乱码| 日本一本二区三区精品| 中文在线观看免费www的网站| 少妇高潮的动态图| 中国国产av一级| 久久久欧美国产精品| 少妇的逼好多水| 久久久a久久爽久久v久久| 日韩不卡一区二区三区视频在线| 亚洲精品中文字幕在线视频 | 日本av手机在线免费观看| 亚洲欧美成人精品一区二区| 成人特级av手机在线观看| 成人欧美大片| 国产av不卡久久| 丝袜喷水一区| 国产精品一及| 亚洲国产精品国产精品| 日韩不卡一区二区三区视频在线| 久久久久久久大尺度免费视频| 国产一区二区三区av在线| 成年免费大片在线观看| 国产精品秋霞免费鲁丝片| 中文字幕亚洲精品专区| 亚洲精品成人久久久久久| 欧美日韩亚洲高清精品| 亚洲真实伦在线观看| 97精品久久久久久久久久精品| 日本午夜av视频| 成人亚洲精品av一区二区| 国产一区二区在线观看日韩| 国产v大片淫在线免费观看| 黄片无遮挡物在线观看| 禁无遮挡网站| 欧美日韩一区二区视频在线观看视频在线 | 国产高清国产精品国产三级 | 国产精品一区二区三区四区免费观看| 天美传媒精品一区二区| 特级一级黄色大片| 嫩草影院精品99| 熟女av电影| av在线天堂中文字幕| 国产伦在线观看视频一区| 亚洲av一区综合| 欧美人与善性xxx| 精品少妇久久久久久888优播| 精品少妇黑人巨大在线播放| av在线天堂中文字幕| 伦精品一区二区三区| 观看美女的网站| 亚洲欧美日韩东京热| 亚洲国产精品成人综合色| av在线蜜桃| 美女视频免费永久观看网站| 亚洲一级一片aⅴ在线观看| 91精品一卡2卡3卡4卡| 亚洲高清免费不卡视频| 日韩一本色道免费dvd| 亚洲精品国产av蜜桃| 五月玫瑰六月丁香| 色5月婷婷丁香| 国产在视频线精品| 久久99蜜桃精品久久| 中文在线观看免费www的网站| 国产高清国产精品国产三级 | 日韩大片免费观看网站| 91狼人影院| 日本一二三区视频观看| 国产精品无大码| 国产一区有黄有色的免费视频| 国产精品女同一区二区软件| 肉色欧美久久久久久久蜜桃 | 亚洲av男天堂| 国产伦理片在线播放av一区| 日本一二三区视频观看| 少妇人妻一区二区三区视频| 国产免费又黄又爽又色| 国精品久久久久久国模美| 边亲边吃奶的免费视频| 免费黄网站久久成人精品| 夫妻午夜视频| 免费av不卡在线播放| 国产中年淑女户外野战色| 3wmmmm亚洲av在线观看| 日韩一区二区视频免费看| 一区二区三区四区激情视频| 亚洲av欧美aⅴ国产| 免费黄网站久久成人精品| 欧美国产精品一级二级三级 | 久久鲁丝午夜福利片| 男人爽女人下面视频在线观看| 婷婷色综合大香蕉| 久久这里有精品视频免费| 国产精品久久久久久av不卡| 亚洲精品日韩在线中文字幕| 亚洲天堂国产精品一区在线| 免费大片18禁| 我的老师免费观看完整版| 亚洲精品国产av蜜桃| 久久精品综合一区二区三区| 99精国产麻豆久久婷婷| 女人被狂操c到高潮| 大码成人一级视频| 国产精品一区二区三区四区免费观看| 亚洲人与动物交配视频| 日日撸夜夜添| 一个人看视频在线观看www免费| 成年人午夜在线观看视频| 男女下面进入的视频免费午夜| 波多野结衣巨乳人妻| 最后的刺客免费高清国语| 中文欧美无线码| 精品一区二区三卡| 国产精品久久久久久av不卡| 久久久午夜欧美精品| tube8黄色片| 视频中文字幕在线观看| 交换朋友夫妻互换小说| 国产在线一区二区三区精| 一级二级三级毛片免费看| 国内精品美女久久久久久| 亚洲人成网站在线播| 国产亚洲最大av| 熟女电影av网| 欧美日韩亚洲高清精品| 男女国产视频网站| 亚洲电影在线观看av| 18禁动态无遮挡网站| 精品久久国产蜜桃| 最近中文字幕2019免费版| 国产精品伦人一区二区| 久久久久久国产a免费观看| 国产老妇女一区| 男人狂女人下面高潮的视频| 一级a做视频免费观看| 亚洲成人av在线免费| 国产精品伦人一区二区| 久久久久久国产a免费观看| 99视频精品全部免费 在线| 女人被狂操c到高潮| 精品久久国产蜜桃| 国产av码专区亚洲av| 男人狂女人下面高潮的视频| 久久久久久国产a免费观看| 九九在线视频观看精品| 国产精品蜜桃在线观看| 一级a做视频免费观看| 国产熟女欧美一区二区| 嘟嘟电影网在线观看| 激情五月婷婷亚洲| 欧美xxⅹ黑人| 蜜桃久久精品国产亚洲av| 深爱激情五月婷婷| 男的添女的下面高潮视频| 涩涩av久久男人的天堂| 亚洲,一卡二卡三卡| 免费高清在线观看视频在线观看| 亚洲av不卡在线观看| 啦啦啦在线观看免费高清www|