• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Data-driven fusion and fission solutions in the Hirota–Satsuma–Ito equation via the physics-informed neural networks method

    2023-12-06 01:42:26JianlongSunKaijieXingandHongliAn
    Communications in Theoretical Physics 2023年11期

    Jianlong Sun,Kaijie Xing and Hongli An

    College of Sciences,Nanjing Agricultural University,Nanjing,210095,China

    Abstract Fusion and fission are two important phenomena that have been experimentally observed in many real physical models.In this paper,we investigate the two phenomena in the (2+1)-dimensional Hirota–Satsuma–Ito equation via the physics-informed neural networks (PINN)method.By choosing suitable physically constrained initial boundary conditions,the data-driven fusion and fission solutions are obtained for the first time.Dynamical behaviors and error analysis of these solutions are investigated via illustratively numerical figures,which show that good results are achieved.It is pointed out that the PINN method adopted here can be effectively used to construct the data-driven fusion and fission solutions for other nonlinear integrable equations.Based on the powerful predictive capability of the PINN method and wide applications of fusion and fission in many physical areas,it is hoped that the data-driven solutions obtained here will be helpful for experts to predict or explain related physical phenomena.

    Keywords: Hirota–Satsuma–Ito equation,physics-informed neural networks method,fusion and fission solutions

    1.Introduction

    With the explosive development of science and technology,deep learning with neural network methods has been widely applied in areas such as cognitive science,computer vision,image recognition,recommendation systems and natural language processing [1–5].Many traditional deep learning algorithms are designed to only solve specific learning tasks[3,6].The huge cost of data acquisition makes the use of traditional deep learning algorithms challenging when applied to complex physics and engineering analysis.In 2019,a new deep learning framework based on physical constraints,namely the physics-informed neural network (PINN),was proposed by Raissi et al [7].The PINN is able to provide accurate solutions even if only a small amount of data is available.Importantly,since some physical constraints are usually explicitly involved,the PINN method can provide a better physical explanation of the predicted solution.Therefore,many scholars have devoted themselves to investigating the PINN method and its variants.For example,by using the PINN method,Chen's group constructed data-driven soliton solutions for three nonlinear evolution equations [8–10].Subsequently,they derived data-driven breather waves and rogue waves for the nonlinear Schr?dinger (NLS) and Chen–Lee–Liu equations [11,12].Yan's group obtained data-driven rogue waves for the defocusing NLS equation with a potential[13].Dai's group constructed data-driven femtosecond optical soliton excitations for the higher-order NLS equation [14].Li's group obtained data-driven rogue waves for the NLS equation by using a mix-training PINN method [15].Several other interesting works have also been done in [16–20].

    Figure 1.The data-driven fusion solution of the HSI equation at t=0.(a) Density plot.(b) Comparisons of the data-driven fusion solution with the exact one at different y-values.

    Solitons,an important type of solution for nonlinear integrable equations,have been widely used in fluid,plasma,optics,condensed matter physics and so on [21].Therefore,many scholars have investigated the soliton solutions of nonlinear systems and a number of interesting results have been achieved.For example,Fan's group discussed the soliton resolution and large-time behavior of solutions to the Cauchy problem for the Novikov equation [22].Yan's group analyzed soliton formation and its dynamic behaviors in quintic nonlinear media [23].Chen's group obtained higher-order soliton solutions to the inhomogeneous variable-coefficient Hirota equation [24].Tian's group derived the soliton solutions of the general n-component and focused on NLS equations [25,26].An's group acquired rich soliton solutions of the Sawada–Kotera equation via the variable separation approach [27].Usually,the interactions between soliton solutions are elastic as their velocity,amplitude and wave shapes remain unchanged during the interaction process.However,for some nonlinear integrable equations,inelastic interactions may occur when the velocities and wave vectors of the solitons satisfy certain conditions.For example,at a certain time,one soliton divides into two or more solitons.In contrast,two or more solitons may fuse into one.The above two phenomena are called soliton fission and soliton fusion in the terminology of soliton theory.Interestingly,is has been found that fusion and fission phenomena exist in many physical areas,such as fluid,plasma,nuclear physics,evenclumping DNA,organic membranes and macromolecule materials,as well as Sr–Ba–Ni oxidation crystals and waveguides [28–31].Therefore,it would be of great interest to look for fusion and fission solutions in nonlinear integrable equations.

    After surveying the existing literature,we found that no work has been done on data-driven fusion and fission solutions of nonlinear integrable equations.In particular,no such work has yet been done using the PINN method.Therefore,in this paper,we plan to investigate data-driven fusion and fission solutions in the (2+1)-dimensional Hirota–Satsuma–Ito (HSI) equation by the PINN method,which is described by:

    This equation was introduced by Hirota and Satsuma to model unidirectional shallow water waves [32].Due to its importance and wide applications,the HSI equation has been studied extensively and various exact solutions have been constructed,such as complexiton solutions [33],semi-rational solutions [34],rational localized waves and their absorb–emit interactions [35],multi-wave,breather-wave and hybrid solutions [36],resonant multi-soliton solutions [37],and symmetric invariant solutions [38].Unlike the above work,our aim is to construct data-driven fusion and fission solutions for the HSI equation using the PINN method.

    The outline of this paper is organized as follows.In section 2,we briefly give the PINN deep learning method for the HSI equation (1.1).In section 3,by choosing suitable physically constrained initial boundary conditions,abundant data-driven fusion and fission solutions of the HSI equation are obtained via the PINN method.Numerical simulations show that such solutions take the shape of the capital letter Y in spatial structures.The error analysis reveals that our obtained data-driven fusion and fission solutions can rapidly approximate the exact ones derived by Tian and his coauthors[39].Therefore,we conclude that the PINN method is a very effective algorithm for constructing the data-driven fusion and fission solutions for nonlinear equations.Finally,a short conclusion is provided.

    2.The PINN method

    The general form of a (2+1)-dimensional coupled system with three components can be written as

    where u,v and w are real-valued functions with variables x,y and t,and Nu,Nvand Nware the functions associated with the real-valued solutions and the derivatives of each order with respect to x and y,respectively.According to the principles of the PINN method,we define the physicsinformed neural networks fu,fvand fwas

    where Nu,Nvand Nware the physical models given in (2.1)and u(x,y,t;ω,b),v(x,y,t;ω,b) and w(x,y,t;ω,b) are latent functions of deep neural networks with the weight parameter ω and bias parameter b,which can be used to approximate the exact solution u(x,y,t),v(x,y,t) and w(x,y,t) of the objective equations.Then,by using multi-hidden-layer deep neural networks,the network parameters of the latent functions u,v and w and networks fu,fvand fwcan be constantly trained.

    In the following,in order to obtain the optimum training results,we adopt the limited-memory Broyden–Fletcher–Goldfarb–Shanno optimization algorithm [40] to minimize the whole mean squared error,namely,the loss function

    Note that,without loss of generality,this paper selects the hyperbolic function tanh as the activation function (if there are no special instructions).All codes are based on Python 3.6 and tensorflow 1.10,and numerical experiments are run on an HP Pavilion Laptop 14-bf1xx computer with a 1.60 GHz Intel Core i5-8250U processor and 8 GB memory.

    3.Data-driven fusion and fission solutions of the HSI equation

    The initial boundary value problem with a Dirichlet condition for the (2+1)-dimensional HSI equation takes the following form:

    With the aid of the Hirota bilinear method [41–43],the N-soliton solution of the HSI equation (1.1) can obtained via

    As shown in [39,44],when requiring the parameters eAijgiven in (3.4)

    which is equivalent to

    then expression (3.2) represents the fusion (or fission)solution consisting of M-fusion (or fission) and L-fusion (or fission) solitons.

    In the following,we shall adopt the PINN method given in the above section to construct the data-driven fusion and fission solutions for the HSI equation with Dirichlet condition (3.1).

    3.1.Data-driven pure fusion (fission) solution with N=2

    Here we consider the case of N=2.When setting L in (3.5) to be zero and selecting the parameters as

    we can obtain a pure exact fusion solution,which is described by

    Let the spatial region Ω=[-15,15]×[-15,15] and time region [t0,t1]=[-5,5].By substituting u0(x,y,t)=u1(x,y,t),v0(x,y,t)=v1(x,y,t) and w0(x,y,t)=w1(x,y,t) into (3.1),the initial boundary value problem can be solved.To acquire the training data,the finite difference method is employed,in which the spatial and time regions are divided into 65 × 65 and 33 points,respectively.Then,we randomly pick Nu=Nv=Nw=100 points from the original initial boundary data and Nf=10000 collocation points to generate a small training data set by using the Latin hypercube sampling (LHS)method [45].According to the obtained training data,by using a nine-layer feedforward neural network with 20 neurons in each hidden layer,the data-driven pure fusion and fission solutions are successfully learned by regulating the network parameters and minimizing the loss function.

    Below,we present numerical simulations that validate the effectiveness and accuracy of the obtained solution.The dynamic behaviors of the data-driven pure fusion solution by the PINN method are depicted in figure 1 and behaviors of the data-driven pure fission solution are exhibited in figure 2.From these figures,one can easily see that with x increasing,the phenomenon of fusion occurs in figure 1(a) and the phenomenon of fission happens in figure 2(a),which takes the shape of the capital letter Y.In addition,observations of figure 1(b) and figure 2(b) show that the errors between the predicted solutions and exact ones are quite small.In fact,for the fusion solution,the L2relative error between the learning solution and the exact one is 8.569428 × 10-3,which takes 280.1288 s learning time.For the fission solution,the L2relative error is 1.708373 × 10-2,which speeds up the 402.3156 s learning time.Therefore,we can conclude that its prediction performance is rather good.In other words,the PINN method is an effective algorithm for constructing the data-driven pure fusion and fission solutions for the HSI equation (3.1).

    3.2.Data-driven X-type soliton solution and two interaction solutions with N=3

    Here we consider the case of N=3.On setting the parameters as

    and inserting them into (3.3),then we can obtain an exact Xtype soliton solution,which takes a form of

    Figure 2.The data-driven fission solution of the HSI equation at t=0.(a) Density plot.(b) Comparisons of the data-driven fission solution with the exact one at different y-values.

    with

    In the above,ηi(i=1,2,3) is described by (3.4).

    Taking the spatial region Ω=[-15,15]×[-15,15] and time region T=[-10,10].On inserting them into the expression of (3.10),the initial boundary conditions of the HSI equation (3.1) can be obtained.After that,we discretize the spatial region [-15,15]×[-15,15] into 65 × 65 points and the time region [-10,10] into 33 points with the aid of MATLAB.Then,the initial boundary value data set,namely the training data set,can be generated by randomly selecting Nu=Nv=Nw=500 points from the original data set and choosing Nf=15000 collocation points by using the sampling method given in section 3.1.Inputting the training data set into a nine-layer feedforward neural network with 40 neurons in each hidden layer,we successfully get a data-driven solution of the HSI equation (3.1),which has a L2relative error of 3.170034 × 10-2after 2356 times iteration in 2184 s.

    The dynamic behaviors of the data-driven solution of the HSI equation by using the PINN method are depicted in figures 3(a) and (b).From these two figures,one can easily see that with x increasing,the learning solution fuses first and then splits rapidly.Since this kind of solution takes the shape of capital letter X,we can call it the data-driven X-type soliton solution.Figure 3(c) exhibits the dynamic behaviors of the exact X-type solution.A comparison of the predicted solution with the exact one is shown in figure 3(d).From the comparison,one can easily find that a very good prediction performance is achieved in the data-driven X-type solution.

    Figure 3.The data-driven X-type soliton solution of the HSI equation at t=0.(a) Density plot.(b) 3D diagram of the predicted solution.(c)3D diagram of the exact solution.(d) Comparisons of the predicted solution with the exact at different y-values.

    Now,we shall show that when N=3,except the datadriven X-type soliton solution given in the above,another two kinds of data-driven interaction solution can be generated once appropriate parameters are chosen.To show this,we set the parameters as

    According to (3.3),(3.4) and (3.5),the exact interaction consisting of fusion and a single soliton is obtained,which is expressed by

    By implementing the same data acquisition and training procedures as that for the X-type data-driven solution,we can get the data-driven interaction solution between fusion and a single soliton,which has a L2relative error of 2.226418 × 10-2after 3297 times iteration in 2861 s.In addition,we can obtain the data-driven interaction solution between fusion and a single soliton with L2=2.263019 ×10-2after 2880times iteration in 1299 s.

    Figure 4 shows the dynamic behaviors of the data-driven solution mixed by fusion and a single soliton via the PINN method as well as the comparison of the predicted solution with the exact one.Figure 5 displays the dynamic behaviors of the data-driven solution consisting of fission and a single soliton as well as the comparison of the learning solution and the exact one.From the comparison of figure 4(b) and figure 5(b),we can find that the learning effect is quite good.Therefore,we conclude that the PINN method is very effective to construct data-driven solutions of fusion and fission types.

    Figure 4.The data-driven interaction solution between fusion and a single soliton of the HSI equation at t=0.(a) Density plot.(b)Comparisons of the predicted solution with the exact at different y-values.

    3.3.Two different types of data-driven interaction solution with N=4

    It is known that when two different solitons move towards each other,interactions usually occur,which is an important and interesting phenomenon worthy of investigation.In the following,we shall study whether such interactions can occur between two different data-driven fusion solutions and between data-driven fusion and a soliton molecule.For this purpose,we take N=4 and require the parameters to be chosen as

    Inserting these parameters into (3.3) and (3.4) yields that

    with ηiand Aijgiven in (3.4).Accordingly,we obtain an exact interaction solution consisting of two different fusions:

    Using the same data discretization method in the above,we get the initial boundary value data set with the spatial region [-20,20]×[-20,20] dividing into 65 × 65 points and time region [-10,10] into 33 points.Then,with the aid of LHS,we obtain a training data set by randomly sampling Nu=Nv=Nw=1000 in the original data set and selecting Nf=20000 collocation points.Inputting the training data set into a nine-layer neural network with 40 neurons per layer,we successfully generate a data-driven interaction solution combined with two different fusion solitons,in which the L2error is 6.369453 × 10-2compared with the exact solution.The whole learning process takes about 2419 s and iterates 1977 times.

    Figure 6 displays the two-dimensional cross-sectional view of the data-driven interaction solution composed of two fusions,three-dimensional profiles and the corresponding error between the predicted solution and exact one.From figure 6(a),one can clearly see the ‘fusing’ features and the‘interacting’ features in the predicted solutions.In addition,we can also find from figure 6(c) that excellent learning performance has been achieved.

    Figure 6.The data-driven interaction solution between two fusions of the HSI equation at t=0. (a) Density plot. (b) 3D diagram of the predicted solution. (c) 3D diagram of the exact solution.(d) Comparisons of the predicted solution with the exact at different y-values.

    Figure 7.The data-driven interaction solution between fusion and a soliton molecule of the HSI equation at t=0.(a) Density plot.(b) 3D diagram of the predicted solution.(c) 3D diagram of the exact solution.(d) Comparisons of the predicted solution with the exact at different y-values.

    In the following,we shall derive the data-driven interactions between fusion and a soliton molecule in the HSI equation.Thus,we require that one pair of solitons satisfies the velocity resonant principle [46] and the other pair of solitons satisfies the condition described by (3.5),namely:

    On setting the parameters as

    then a special exact interaction mixed by fusion and a soliton molecule is generated,which is governed by

    where

    with ηiand Aij(i,j=1,2,3,4) described by (3.4).It is noted that the form of expression (3.20) is quite different to (3.16)for the interaction solution mixed by two fusions.

    By performing the same data acquisition and training procedures as used in this subsection,we can successfully obtain the data-driven interaction solution between fusion and a soliton molecule,whose dynamic behaviors are displayed in figures 7(a) and (b).From these two figures,one can easily see that there indeed exists two solitons in the learned solution,which are bounded to form the soliton molecule,while the other solitons fuse to one,just as what happens in the exact solution depicted in figure 7(c).Their comparisons are given in figure 7(d).In fact,the L2relative error for the learned solution is 5.363313 × 10-2,which means a good performance is achieved.Therefore,we conclude that the PINN method is an excellent method to predict the hybrid solution composed of fusion and a soliton molecule for the HSI equation.

    4.Conclusion

    Fusion and fission are two very important physical phenomena,which have been observed in many fields,such as fluid physics,plasma physics,biophysics,nuclear physics,organic membranes and life science.In this paper,we investigate the fusion and fission phenomena in the (2+1)-dimensional HSI equation.By introducing suitable initial boundary values conditions and physical constraints,we successfully obtain the data-driven pure fusion and fission solutions by the PINN deep learning approach.Numerical simulations show that the data-driven fusion and fission solutions take the shape of the capital letter Y in the spatial structures.In addition,we also derive some data-driven interaction solutions,including the interactions between fusion and a single soliton,between two different fusion waves,and between fusion and a soliton molecule.Numerical error analysis reveals that the data-driven fusion and fission solutions as well as the interaction solutions can rapidly converge to the exact ones given by Tian and his coauthors.Therefore we demonstrate that the PINN deep learning method is a very effective algorithm to solve fusion and fission solutions of nonlinear integrable equations,especially for the HSI equation.Due to the excellent predictive performance of the PINN method,we hope that the datadriven fusion and fission solution derived here can elucidate qualitative features of the HSI model and the physical situation itself.In addition,based on the wide applications of fusion and fission in many physical areas,it is hoped that the data-driven solutions obtained here can be helpful for experts to explain or predict some related physical phenomena.

    Acknowledgments

    The authors would like to express their sincere thanks to the reviewers for their kind comments and valuable suggestions.This work is supported by the National Natural Science Foundation of China under grant Nos.12371250 and 12205154,Jiangsu Provincial Natural Science Foundation under grant Nos.BK20221508 and BK20210380 and Jiangsu Qinglan High-level Talent Project and High-level Personnel Project under grant No.JSSCBS20210277.

    十八禁网站免费在线| 美女中出高潮动态图| 午夜福利视频精品| a级毛片在线看网站| 少妇粗大呻吟视频| 久久国产精品人妻蜜桃| 欧美激情高清一区二区三区| 涩涩av久久男人的天堂| 午夜成年电影在线免费观看| 精品少妇黑人巨大在线播放| 亚洲专区国产一区二区| 欧美黄色淫秽网站| 人妻一区二区av| 99热全是精品| 国产精品免费大片| 亚洲九九香蕉| 国产成人系列免费观看| 一区二区三区乱码不卡18| 汤姆久久久久久久影院中文字幕| 日韩视频在线欧美| 热99国产精品久久久久久7| 首页视频小说图片口味搜索| 久久久国产精品麻豆| 国产精品国产三级国产专区5o| 日韩中文字幕视频在线看片| 久久精品人人爽人人爽视色| 嫩草影视91久久| 精品少妇内射三级| 如日韩欧美国产精品一区二区三区| 久久久欧美国产精品| 在线观看www视频免费| 成人影院久久| 亚洲国产欧美一区二区综合| 国产欧美日韩一区二区三 | 国产欧美日韩一区二区精品| 日韩欧美国产一区二区入口| 亚洲国产精品一区三区| 国产精品偷伦视频观看了| 久久99一区二区三区| 一本色道久久久久久精品综合| 欧美国产精品一级二级三级| 日本黄色日本黄色录像| 丝袜美足系列| 黑人猛操日本美女一级片| 操出白浆在线播放| 久久九九热精品免费| 51午夜福利影视在线观看| 欧美激情 高清一区二区三区| 久久久国产欧美日韩av| 美女视频免费永久观看网站| a 毛片基地| 搡老熟女国产l中国老女人| 久久午夜综合久久蜜桃| 国产一区二区在线观看av| 天天添夜夜摸| 十八禁高潮呻吟视频| 精品第一国产精品| 精品久久蜜臀av无| 热99re8久久精品国产| 美女大奶头黄色视频| 啦啦啦 在线观看视频| 日韩电影二区| 97在线人人人人妻| 黄色视频在线播放观看不卡| 丰满少妇做爰视频| 久久久久久久久免费视频了| 久久久久精品国产欧美久久久 | 各种免费的搞黄视频| 视频在线观看一区二区三区| 久久久国产精品麻豆| 80岁老熟妇乱子伦牲交| 亚洲 国产 在线| 午夜91福利影院| 十八禁人妻一区二区| 90打野战视频偷拍视频| 91成人精品电影| 欧美精品亚洲一区二区| 丰满少妇做爰视频| 50天的宝宝边吃奶边哭怎么回事| 一本色道久久久久久精品综合| 免费观看a级毛片全部| 天天操日日干夜夜撸| 岛国毛片在线播放| 黄片小视频在线播放| 午夜福利乱码中文字幕| 国产在线一区二区三区精| 国产亚洲一区二区精品| 五月天丁香电影| 大片免费播放器 马上看| 国产日韩一区二区三区精品不卡| 99久久精品国产亚洲精品| 制服诱惑二区| 大香蕉久久成人网| 18在线观看网站| 国产免费福利视频在线观看| 国产一卡二卡三卡精品| 美女视频免费永久观看网站| 亚洲自偷自拍图片 自拍| 制服人妻中文乱码| 在线观看免费午夜福利视频| 国产精品.久久久| 天天躁夜夜躁狠狠躁躁| 老司机深夜福利视频在线观看 | 亚洲熟女毛片儿| 亚洲五月婷婷丁香| 日韩欧美一区视频在线观看| 亚洲欧美精品综合一区二区三区| 十分钟在线观看高清视频www| 狠狠精品人妻久久久久久综合| 王馨瑶露胸无遮挡在线观看| 多毛熟女@视频| 最新在线观看一区二区三区| 久久国产精品大桥未久av| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲国产成人一精品久久久| 另类精品久久| 久久国产精品影院| 日韩 亚洲 欧美在线| 欧美 亚洲 国产 日韩一| 夜夜骑夜夜射夜夜干| 午夜福利影视在线免费观看| 免费在线观看视频国产中文字幕亚洲 | 黄片大片在线免费观看| 热99re8久久精品国产| e午夜精品久久久久久久| 两性夫妻黄色片| 久久九九热精品免费| 午夜福利在线观看吧| 欧美精品人与动牲交sv欧美| 久久中文字幕一级| 国产亚洲精品久久久久5区| 亚洲欧美精品自产自拍| 丝袜美腿诱惑在线| 老司机影院毛片| 亚洲av日韩精品久久久久久密| 十八禁网站网址无遮挡| 国产精品国产av在线观看| 青春草视频在线免费观看| 久久精品aⅴ一区二区三区四区| 啦啦啦免费观看视频1| 男女无遮挡免费网站观看| 午夜福利视频在线观看免费| 黑人巨大精品欧美一区二区蜜桃| 新久久久久国产一级毛片| 人人妻,人人澡人人爽秒播| 国产欧美日韩一区二区三区在线| 中文字幕制服av| 亚洲全国av大片| 久久久国产欧美日韩av| 日韩精品免费视频一区二区三区| 青春草视频在线免费观看| 欧美变态另类bdsm刘玥| 久久亚洲国产成人精品v| 亚洲成人国产一区在线观看| 午夜福利一区二区在线看| 两个人免费观看高清视频| 热99久久久久精品小说推荐| av视频免费观看在线观看| 久久精品熟女亚洲av麻豆精品| 久久久精品免费免费高清| 午夜福利乱码中文字幕| 亚洲第一青青草原| 国产一卡二卡三卡精品| 久久av网站| 久久综合国产亚洲精品| 久久久国产一区二区| 国产精品欧美亚洲77777| 亚洲avbb在线观看| 脱女人内裤的视频| 亚洲精品av麻豆狂野| 精品一区在线观看国产| 高清在线国产一区| 一本色道久久久久久精品综合| 日本vs欧美在线观看视频| 视频在线观看一区二区三区| 高清黄色对白视频在线免费看| 亚洲av日韩在线播放| 精品国产一区二区三区久久久樱花| 国产成人精品在线电影| 另类亚洲欧美激情| av在线老鸭窝| 美女午夜性视频免费| 国产一区有黄有色的免费视频| 欧美av亚洲av综合av国产av| 免费在线观看影片大全网站| 国产精品国产三级国产专区5o| 9热在线视频观看99| 久久久久网色| 99国产精品99久久久久| 国产成人a∨麻豆精品| 美女福利国产在线| 女人爽到高潮嗷嗷叫在线视频| 丝袜美足系列| 人妻人人澡人人爽人人| 9热在线视频观看99| 久久精品亚洲熟妇少妇任你| av国产精品久久久久影院| 高潮久久久久久久久久久不卡| 国产99久久九九免费精品| 国精品久久久久久国模美| 热re99久久国产66热| 精品久久久精品久久久| 亚洲国产精品成人久久小说| 亚洲一区中文字幕在线| a级毛片黄视频| 在线 av 中文字幕| 欧美 日韩 精品 国产| 极品少妇高潮喷水抽搐| 午夜福利一区二区在线看| 国产一区二区激情短视频 | 国产男人的电影天堂91| 亚洲精品国产一区二区精华液| √禁漫天堂资源中文www| 国产精品一区二区免费欧美 | 国产精品香港三级国产av潘金莲| 亚洲精品一二三| 成年人免费黄色播放视频| 精品国产乱码久久久久久男人| av网站免费在线观看视频| 亚洲av国产av综合av卡| 亚洲天堂av无毛| 国产极品粉嫩免费观看在线| 黑人猛操日本美女一级片| 午夜91福利影院| 麻豆乱淫一区二区| 自线自在国产av| 久久亚洲精品不卡| 亚洲av电影在线进入| 男女之事视频高清在线观看| a级毛片在线看网站| 成人黄色视频免费在线看| 一区在线观看完整版| 国产欧美日韩综合在线一区二区| 亚洲av男天堂| 亚洲国产中文字幕在线视频| 法律面前人人平等表现在哪些方面 | 欧美精品av麻豆av| 久久热在线av| 亚洲专区字幕在线| 午夜两性在线视频| av线在线观看网站| 国产xxxxx性猛交| 久久久久精品人妻al黑| 精品国产乱码久久久久久男人| 这个男人来自地球电影免费观看| 女警被强在线播放| 伦理电影免费视频| 一区二区三区乱码不卡18| 手机成人av网站| 大片免费播放器 马上看| 亚洲色图综合在线观看| 精品高清国产在线一区| 免费在线观看视频国产中文字幕亚洲 | 国产在视频线精品| 国产视频一区二区在线看| av线在线观看网站| 悠悠久久av| 国产精品.久久久| 老司机影院毛片| 国产精品麻豆人妻色哟哟久久| 久久午夜综合久久蜜桃| 女人高潮潮喷娇喘18禁视频| 亚洲国产毛片av蜜桃av| 黄片小视频在线播放| 亚洲九九香蕉| 如日韩欧美国产精品一区二区三区| 国产成人av教育| 国产精品欧美亚洲77777| 黄色毛片三级朝国网站| 色婷婷久久久亚洲欧美| 国产亚洲一区二区精品| 伊人久久大香线蕉亚洲五| 97在线人人人人妻| 人妻 亚洲 视频| 中文字幕人妻丝袜一区二区| 俄罗斯特黄特色一大片| 大型av网站在线播放| 中文字幕人妻熟女乱码| 国产精品欧美亚洲77777| 久久精品国产综合久久久| 国产无遮挡羞羞视频在线观看| 国产主播在线观看一区二区| 一个人免费在线观看的高清视频 | 法律面前人人平等表现在哪些方面 | 侵犯人妻中文字幕一二三四区| 91成人精品电影| 美女高潮到喷水免费观看| 国产黄频视频在线观看| 高清在线国产一区| 欧美日韩av久久| 丝袜喷水一区| 久久女婷五月综合色啪小说| 国产黄频视频在线观看| 欧美日韩亚洲国产一区二区在线观看 | 美女主播在线视频| 高清在线国产一区| 久久综合国产亚洲精品| 欧美精品av麻豆av| 国产精品熟女久久久久浪| 亚洲精品国产区一区二| 水蜜桃什么品种好| 黄色 视频免费看| 天堂俺去俺来也www色官网| 久久久久久人人人人人| 两性午夜刺激爽爽歪歪视频在线观看 | 99国产精品99久久久久| 无限看片的www在线观看| 午夜两性在线视频| 久久久欧美国产精品| 久久精品国产亚洲av高清一级| 成人手机av| 黑人猛操日本美女一级片| 欧美激情久久久久久爽电影 | 成人免费观看视频高清| 视频在线观看一区二区三区| www.熟女人妻精品国产| 亚洲精品第二区| 在线观看人妻少妇| 国产欧美日韩一区二区三 | 伊人亚洲综合成人网| 最黄视频免费看| 欧美少妇被猛烈插入视频| av电影中文网址| 不卡一级毛片| 久久精品熟女亚洲av麻豆精品| 国产三级黄色录像| 欧美亚洲 丝袜 人妻 在线| 可以免费在线观看a视频的电影网站| 久久热在线av| 秋霞在线观看毛片| 巨乳人妻的诱惑在线观看| 色94色欧美一区二区| 亚洲黑人精品在线| 最新在线观看一区二区三区| 国精品久久久久久国模美| 一区二区三区激情视频| 人妻 亚洲 视频| 亚洲av日韩在线播放| 极品人妻少妇av视频| av国产精品久久久久影院| 亚洲精品中文字幕在线视频| 精品一品国产午夜福利视频| 欧美精品一区二区大全| 18禁裸乳无遮挡动漫免费视频| 国产成人免费无遮挡视频| 天天躁夜夜躁狠狠躁躁| 人妻一区二区av| 男人操女人黄网站| 黑人欧美特级aaaaaa片| 欧美精品亚洲一区二区| 精品人妻在线不人妻| 久久精品成人免费网站| av一本久久久久| 亚洲欧美精品综合一区二区三区| 国产又色又爽无遮挡免| 亚洲激情五月婷婷啪啪| 丰满人妻熟妇乱又伦精品不卡| a 毛片基地| 久久亚洲精品不卡| 亚洲国产欧美一区二区综合| 中文精品一卡2卡3卡4更新| 老司机在亚洲福利影院| 80岁老熟妇乱子伦牲交| 男女边摸边吃奶| 男女国产视频网站| 青春草视频在线免费观看| 久久人妻熟女aⅴ| 十分钟在线观看高清视频www| 亚洲欧美一区二区三区久久| 丝袜喷水一区| 亚洲黑人精品在线| 国产精品免费大片| 国产精品一二三区在线看| 亚洲国产精品999| 国产国语露脸激情在线看| av电影中文网址| 国产主播在线观看一区二区| 亚洲一区二区三区欧美精品| 亚洲欧洲精品一区二区精品久久久| 精品少妇一区二区三区视频日本电影| 1024香蕉在线观看| 国产成人一区二区三区免费视频网站| 国产免费一区二区三区四区乱码| 动漫黄色视频在线观看| 一区二区日韩欧美中文字幕| 母亲3免费完整高清在线观看| 亚洲精品国产一区二区精华液| a 毛片基地| 亚洲,欧美精品.| 免费高清在线观看视频在线观看| 正在播放国产对白刺激| 日韩一区二区三区影片| 久久精品aⅴ一区二区三区四区| 亚洲七黄色美女视频| 国产成人免费观看mmmm| 亚洲欧美清纯卡通| av在线老鸭窝| 精品国产乱码久久久久久男人| 日韩一卡2卡3卡4卡2021年| 精品久久久精品久久久| 午夜影院在线不卡| 国产免费福利视频在线观看| 欧美黄色淫秽网站| 岛国在线观看网站| 国产真人三级小视频在线观看| 欧美激情高清一区二区三区| 欧美黄色淫秽网站| 两性午夜刺激爽爽歪歪视频在线观看 | 人人妻人人爽人人添夜夜欢视频| 香蕉国产在线看| 午夜日韩欧美国产| avwww免费| 日本av免费视频播放| 精品少妇内射三级| 精品视频人人做人人爽| 制服诱惑二区| av电影中文网址| 日本欧美视频一区| 母亲3免费完整高清在线观看| 夫妻午夜视频| 国产一级毛片在线| 国产欧美日韩精品亚洲av| 亚洲国产av新网站| 手机成人av网站| 久久久久精品人妻al黑| 成人国语在线视频| 国产日韩欧美视频二区| 女人久久www免费人成看片| 亚洲第一欧美日韩一区二区三区 | 精品欧美一区二区三区在线| 侵犯人妻中文字幕一二三四区| 亚洲国产日韩一区二区| 日本一区二区免费在线视频| 岛国在线观看网站| 91精品三级在线观看| 国产成人欧美在线观看 | 久久99一区二区三区| 久久午夜综合久久蜜桃| 日韩制服丝袜自拍偷拍| 久久久久久久久久久久大奶| 精品国产国语对白av| 18禁国产床啪视频网站| 欧美精品一区二区免费开放| 欧美乱码精品一区二区三区| 久久久欧美国产精品| 免费观看a级毛片全部| 午夜福利影视在线免费观看| 国产欧美日韩一区二区三 | 国产精品 欧美亚洲| 亚洲国产欧美日韩在线播放| 欧美xxⅹ黑人| 淫妇啪啪啪对白视频 | 天天添夜夜摸| 国产人伦9x9x在线观看| 亚洲伊人色综图| 亚洲精品日韩在线中文字幕| 91精品伊人久久大香线蕉| 99国产精品99久久久久| 久久久久国产精品人妻一区二区| 国产精品九九99| 日本猛色少妇xxxxx猛交久久| 三上悠亚av全集在线观看| 人成视频在线观看免费观看| 国产1区2区3区精品| 国产精品香港三级国产av潘金莲| 久久香蕉激情| 在线 av 中文字幕| www.av在线官网国产| 色综合欧美亚洲国产小说| 在线观看www视频免费| 亚洲欧美精品自产自拍| 免费在线观看日本一区| 国产亚洲av片在线观看秒播厂| 亚洲精品日韩在线中文字幕| 久久精品国产综合久久久| 久久亚洲国产成人精品v| 欧美一级毛片孕妇| 午夜视频精品福利| 国产伦人伦偷精品视频| 男女高潮啪啪啪动态图| 一级黄色大片毛片| 国产一区二区激情短视频 | 12—13女人毛片做爰片一| 少妇裸体淫交视频免费看高清 | 成人av一区二区三区在线看 | 国产成人精品久久二区二区免费| avwww免费| 久久这里只有精品19| 少妇 在线观看| 五月开心婷婷网| 国产精品免费大片| 99久久人妻综合| 欧美日韩成人在线一区二区| 一本综合久久免费| 亚洲,欧美精品.| 18禁裸乳无遮挡动漫免费视频| 下体分泌物呈黄色| 亚洲人成77777在线视频| 久久热在线av| 午夜福利视频在线观看免费| 在线观看免费日韩欧美大片| 热99国产精品久久久久久7| 国产精品九九99| 男女国产视频网站| 国产日韩欧美亚洲二区| 中文欧美无线码| 不卡av一区二区三区| 欧美日本中文国产一区发布| www.熟女人妻精品国产| 国产在线观看jvid| 人人妻人人澡人人看| 动漫黄色视频在线观看| 亚洲欧美精品自产自拍| 久久久久久亚洲精品国产蜜桃av| 亚洲 欧美一区二区三区| 国产精品国产三级国产专区5o| 国产成人系列免费观看| 美女高潮到喷水免费观看| 久久九九热精品免费| 国产精品一区二区在线不卡| 欧美激情久久久久久爽电影 | 9色porny在线观看| 欧美精品高潮呻吟av久久| 日韩制服骚丝袜av| 韩国高清视频一区二区三区| www.av在线官网国产| 婷婷丁香在线五月| 国产日韩欧美亚洲二区| 国产熟女午夜一区二区三区| 午夜激情av网站| 欧美黄色片欧美黄色片| 午夜老司机福利片| 黄色 视频免费看| 亚洲性夜色夜夜综合| 欧美另类亚洲清纯唯美| 午夜影院在线不卡| 国产区一区二久久| 黑人巨大精品欧美一区二区蜜桃| 波多野结衣一区麻豆| 亚洲专区国产一区二区| 国产成人精品久久二区二区91| 搡老熟女国产l中国老女人| 成人免费观看视频高清| 久久99热这里只频精品6学生| 1024香蕉在线观看| 午夜成年电影在线免费观看| 日韩视频在线欧美| 一本色道久久久久久精品综合| 好男人电影高清在线观看| 精品国产乱码久久久久久小说| 欧美日韩黄片免| 国产黄频视频在线观看| av免费在线观看网站| 天堂中文最新版在线下载| 黑人操中国人逼视频| videosex国产| 丁香六月欧美| 国产在线免费精品| 久久久久久久精品精品| 亚洲视频免费观看视频| 男女高潮啪啪啪动态图| 无遮挡黄片免费观看| 一本色道久久久久久精品综合| 亚洲伊人色综图| 热99re8久久精品国产| 男人舔女人的私密视频| 麻豆国产av国片精品| 狠狠精品人妻久久久久久综合| 国产一区二区在线观看av| 日本91视频免费播放| 黄色片一级片一级黄色片| 在线观看www视频免费| 久久九九热精品免费| 激情视频va一区二区三区| 永久免费av网站大全| 人妻人人澡人人爽人人| 亚洲av电影在线进入| 黄色毛片三级朝国网站| 美女高潮到喷水免费观看| 免费一级毛片在线播放高清视频 | 欧美中文综合在线视频| 免费少妇av软件| 老司机午夜福利在线观看视频 | 国产av国产精品国产| 亚洲男人天堂网一区| 久久综合国产亚洲精品| 欧美老熟妇乱子伦牲交| 午夜久久久在线观看| 午夜福利乱码中文字幕| 一级片'在线观看视频| 美女中出高潮动态图| 国产亚洲午夜精品一区二区久久| 精品人妻一区二区三区麻豆| av片东京热男人的天堂| 日本五十路高清| 在线av久久热| 国产xxxxx性猛交| 自拍欧美九色日韩亚洲蝌蚪91| 天天躁狠狠躁夜夜躁狠狠躁| 成年女人毛片免费观看观看9 | 美女脱内裤让男人舔精品视频| 91精品国产国语对白视频| 国产三级黄色录像| 国产av国产精品国产| 亚洲精品粉嫩美女一区| 91精品伊人久久大香线蕉| videosex国产| 一本久久精品| 在线看a的网站| 国产精品一区二区精品视频观看| 亚洲激情五月婷婷啪啪| 黄网站色视频无遮挡免费观看| 两性夫妻黄色片| 少妇粗大呻吟视频| 亚洲国产av新网站|