• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Insight into the magnetic behavior and magnetocaloric effect of a borophene monolayer

    2023-12-06 01:43:06YingAnWeiWangBowenXiaoSiyuHuangandZhenyaoXu
    Communications in Theoretical Physics 2023年11期

    Ying An ,Wei Wang,* ,Bo-wen Xiao ,Si-yu Huang and Zhen-yao Xu

    1 School of Science,Shenyang University of Technology,Shenyang 110870,China

    2 School of Electrical Engineering,Shenyang University of Technology,Shenyang,110870,China

    Abstract The successful discovery of borophene has opened a new door for the development of 2D materials.Due to its excellent chemical,electronic and thermal properties,borophene has shown considerable potential in supercapacitors,hydrogen storage and batteries.In this paper,the thermodynamic characteristics and magnetocaloric effect of borophene are specifically studied using the Monte Carlo method.We find that there is an opposite impact between the spin quantum number and the crystal field on the magnetization,magnetic susceptibility,specific heat and magnetic entropy of the system.Moreover,increasing the spin quantum number or decreasing the absolute value of the crystal field can improve the relative cooling power,the coercivity (hc),and the remanence (MR) and the area of the loop.

    Keywords: borophene monolayer,Ising model,magnetic behavior,magnetocaloric effect,Monte Carlo method

    1.Introduction

    In recent years,a number of 2D materials have been successfully discovered in succession,such as stanene [1],silicene [2,3] and transition metal dichalcogenides [4,5].To date,due to its high anisotropy,and the unique and adjustable physical and chemical properties of borophene,it has attracted extensive attention of researchers [6–9].In 2014,Piazza et al discovered for the first time through experimentation that it is possible to create single atomic layer boron sheets with hexagonal vacancies [10].The results of this experiment indicated that B36can be regarded as the minimum unit for the construction of the structure of 2D monolayer α-phase borophene,and thus presented the concept of borophene.In an ultra-high vacuum,borophene was successfully synthesized by Mannix et al on a silver surface [11].In addition,Feng et al discovered boron sheets on a single-crystal Ag (111) surface using scanning tunneling microscopy and explored the β12and χ3phases [12].

    Recent advances in the theoretical studies of borophene have further pushed its development.Peng et al used firstprinciples density functional theory (DFT) to explore the electronic structure,thermodynamics and optical characteristics of the materials,confirming its excellent electrical conductivity [13].Utilizing the same method,Valadbeigi et al calculated the energy,enthalpy and Gibbs free energy of the adsorption process [14].Lopez-Bezanilla et al found that borophene can be transformed from a metal to a semiconductor using the DFT method [15].In [16],the influence of geometric orientation and edge effects on the magnetic behavior of borophene nanoribbons was calculated using the DFT method.It is noteworthy that Zou et al used relevant effective field theory (EFT) for the first time to investigate the magnetic properties of borophene structure[17].Other characteristics have also been discovered in theory,such as hyperelasticity and flexibility,and stressinduced anisotropic transformation [18–20].As a result,it has great potential to be used in a variety of applications,including sensing and bio-sensing devices [21,22],optoelectronics [23] and supercapacitors [24].

    In studying the magnetic properties of borophene,the Ising model [25,26] and Monte Carlo (MC) simulations have also been extensively applied.For example,the magnetization and magnetic susceptibility behavior of a diluted core–shell borophene structure were simulated using the Monte Carlo method [27].Gao et al calculated the dynamic magnetic peculiarity of a mixed spin core–shell borophene nanoribbon structure using the same method [28].In addition,the magnetic properties of a single-spin borophene structure[29] and an ApB1-pbinary alloy borophene structure [30]were investigated by applying the same method.More importantly,Maaouni et al discussed the thermal magnetization behavior of a core–shell structure (5/2,3/2) under reduced exchange coupling interactions through Monte Carlo simulation [31].

    A change in sample temperature following an adiabatic change in the applied magnetic field is known as the magnetocaloric effect (MCE),which is an inherent feature of magnetic systems [32].MCE has been extensively used in room and cryogenic temperature refrigeration applications[33,34].In recent years,many experimental studies have found that the originally non-magnetic graphene can be made magnetic by doping magnetic transition metal atoms or through their replacement [35,36].In the periodic table of elements,boron and carbon are close neighbors in that they have similar chemical properties.Therefore,borophene might also have magnetism in this way,which has been successfully discussed in theory [37].It is shown that the magnetic moment is largest when Mn atoms are embedded.The significant effects of spin quantum numbers on the magnetic and MCE characteristics of different physical systems have been revealed through recent theoretical studies.Zhang et al,using EFT [38],linear spin wave approximation and the retarded Green’s function method [39] explored the effect of the spin quantum number on the phase transition temperature of graphene-like quantum dots and the magnon energy gap of a ferro-anti-ferromagnetic multisublattice system.Similarly,utilizing the Green’s function method,Mi et al carefully calculated and analyzed the role of spin quantum number on sublattice magnetization,Nel temperature,internal energy,and free energy of frustrated spin-S J1-J2Heisenberg antiferromagnet on bcc lattice [40].In [41],the effect of spin quantum numbers (S=1/2,1,3/2,2,5/2 and 3) on magnetization,magnetic susceptibility and specific heat of Ising fullerene-like nanostructures was explored.Ak?nc? et al investigated the magnetocaloric properties of the spin-S Ising model on a honeycomb lattice with some spin values of S=1,3/2,2,5/2,3,7/2 using EFT [42].They found that larger spin quantum numbers can improve the cooling capacity and MCE of the system.These research results have motivated us to clarify how changes in spin quantum numbers affect the magnetism,thermodynamics and MCE of borophene monolayers.Hence,in this study,using the Monte Carlo method we explore the influence of crystal field,external magnetic field and spin quantum number on the magnetic characteristics and magnetocaloric effect of borophene structure.

    2.Model and method

    A single-spin Ising model of borophene monolayer containing a number of B36unit cells is shown in figure 1.We give the Hamiltonian of the system as follows:

    The system was simulated using the Metropolisalgorithm Monte Carlo method [43].The periodic boundary condition was established along the 2D plane.In order to show how to choose the Monte Carlo steps (MCS) to ensure this simulation,figure 2 presents the variation of the magnetization (M) with MCS for fixed S=2,D=-0.2,h=0.5 and T=1.01.From this figure,it can be seen that the M becomes more stable after using the MCS approach,3 × 105,which indicates that the system is in equilibrium.Therefore,we abandoned the first 3 × 105MCS and retained the last 2 × 105steps to calculate the magnetic,thermodynamic quantities and MCE characteristics of the borophene monolayer.In addition,by analyzing the finite-size effect,the total number of spins in the system was also ascertained.N is defined as the number of all sublattices,namely the size of the system.The magnetic susceptibility χ of the system with spin-3/2 as a function of different sizes N is summarized in figure 3.The results indicate that the temperatures corresponding to the peak of the χ curves are invariable for N ≥1668.Thereby,the total number of spins,N=1668,was chosen to save computation time.

    The formula below can be used to calculate the total magnetization of the system per site:

    Thus,the magnetic susceptibility χ of the system per site is calculated by the formula:

    where,β=and T and kBrepresent the absolute temperature and the Boltzmann constant,respectively.Moreover,〈...〉 is the average of the thermodynamic quantities.

    The specific heat of the system per site can be obtained with the following formula:

    The magnetic entropy (S) and the magnetic entropy change (-ΔSm) are calculated using the following equations:

    In the formula,U represents the internal energy of the system per site as follows:

    The relative cooling power (RCP) can be represented by the following equation:

    where,T1and T2are low and high temperatures,respectively,which correspond to the two extremes of half of the maximum of ΔSm.

    3.Simulation results and discussion

    3.1.Magnetization,magnetic susceptibility,specific heat and magnetic entropy

    Figure 4 illustrates how D and various spin quantum numbers affect the M of the system.Here,the five magnetization saturation values can be observed in the M curves.As can be seen from the formula (2),the saturation value of the M is similarly sensitive to the spin quantum number.More specifically,a larger spin value corresponds to a greater saturation value.All the M curves go down and fall to zero as T goes up,suggesting that the system becomes disordered.Moreover,the decreasing slope of the M curve increases with the increase in negative direction of D when the spin value is constant.Similar behavior was also revealed in magnetic nanostructures [44,45].In accordance with of the principle of minimum energy,the spins tend to be more inclined to flip in the low spin state for the larger ∣D∣ .

    Figure 5 depicts variations of the χ under different spin quantum numbers and D with fixed h=0.1.From this figure,we can clearly observe that the temperature associated with the peak of the curve,namely TC,gradually rises with the spin quantum number increasing at the same D.This is consistent with the findings presented in [41].This means that larger spin quantum numbers are more conducive to the stability of the system.However,TCdecreases as ∣D∣ increases since D would damage the stability of the system,which is the opposite of the effect of spin quantum numbers.

    In figure 6,it is demonstrated how D and spin quantum numbers affect the C of the borophene monolayer with fixed h=0.1.The results suggest that all the curves exhibit the same variation tendency,which is that they all rise initially to the peak and then start to decline.In addition,the influence of the spin quantum number and D on the C of the whole system is contradictory,where the peak of the C curve may move to the right under the influence of a greater spin quantum number.

    Figure 7 presents the magnetic entropy S of the borophene monolayer when h=0.1.These S curves display an increasing trend as T gradually increases and achieves transitions from the ordered to the disordered state at the inflection point.Notably,the S curves move towards the hightemperature zone with the spin value increasing with fixed D.The reason for the above phenomenon is that a larger spin value can improve the chaos of the system,improving TC.Finally,the critical temperature under the influence of different spin quantum numbers is displayed in figure 8.It is obvious that TCdecreases with increasing ∣D∣ or decreasing the spin quantum numbers.

    3.2.Magnetocaloric effect

    Figure 9(a) shows that the relationship between -ΔSmand T is induced by various D and spin quantum numbers.When D is the same,the -ΔSmcurves shift towards the higher temperature area as the spin quantum number increases.This demonstrates that,in terms of entropy change,the stability of the system can be significantly enhanced by increasing the spin quantum number.The theoretical results are qualitatively consistent with the study of the spin-S (S ≥1) Ising model[46].However,as ∣D∣ increases,the -ΔSmcurve changes towards the low-temperature region.Either the increase in the spin quantum number or ∣D∣ decreases the maximum value of the -ΔSmcurve.Figure 9(b) exhibits the influence of D on-.It can be seen that the negative increase of D hinders the -ΔSm.The spin would flip for a stronger crystal field,so the system becomes disordered more easily,and thus undergoes phase transition more easily at low temperatures.Moreover,-decreases with increasing spin quantum number when D is constant.For example,for D=-0.1,-decreases from 0.023 to 0.010 when the spin quantum number changes from 1 to 3.The reason for the incline in the peak is that the larger spin quantum number can improve the stability of the system,as shown in figure 5.

    Next,the impacts of spin quantum numbers and Δh on the -ΔSmare presented in figure 10(a).By increasing the spin quantum number from 1 to 3,the peak value of the-ΔSmcurve becomes smaller and shifts to the right.In contrast,for a fixed spin quantum number,the maximum of the -ΔSmcurve becomes larger with Δh increasing.For instance,taking S=1,the maximum value of the -ΔSmcurve increases from 0.105 to 0.377 as Δh enhances.The spins can be forced to be organized in parallel by a strong applied magnetic field.To be more precise,the magnetic entropy change might decrease when Δh increases since h is beneficial to the order of the whole system.Similar behavior has been observed in both theoretical and experimental studies of some other structures,such as perovskite ferromagnetic thin films [47],bilayer ferromagnets [48],layered perovskites [49] and nano-graphene bilayers [50].Furthermore,figure 10(b) illustrates the variation of-under various spin quantum numbers and Δh.It can be seen from the figure that each curve tends upwards as increases for the same spin value,that is,becomes larger.However,the effect of spin quantum number on-is opposite to that on Δh.Similar simulation results were also observed in the structures of both AnB60-nfullerene-like structure [51] and Ho3Pd2compound [52].In addition,by comparison with figure 9,it is found that Δh has a stronger effect on -ΔSm.

    In figure 11,the impacts of Δh and T on the -ΔSmare plotted.Obviously,in the sub-figures,the -ΔSmgradually increases during the increasing process of Δh.This agrees with the findings in figure 10(a).By comparing the five subfigures,the temperature that corresponds to the maximum value of -ΔSmis observed to be moving slowly towards the high-temperature area.For example,taking S=2,the corresponding temperature range is 3.504-8.263.Nevertheless,the corresponding temperature interval changes to 5.162-16.052 when the spin quantum number increases to 3.This indicates that the heat absorption capacity of the system is continuously increasing.One can determine the optimal working temperature range for magnetic refrigeration from the magnetic entropy change.In addition,the maximum magnetic entropy change happens near the critical temperature,which should belong to the continuous second-order phase transition from order to disorder.

    Figure 12 shows the variation of the -ΔSmunder the effects of Δh and T for various D with fixed S=2.As can be seen from the figure,-ΔSmalso increases with the increase in Δh.Similarly,the corresponding temperature range shifts to the right as∣D∣ increases from 0.1 to 1.6.However,it is found that the change in D has less obvious influence on -ΔSmthan the spin quantum number when comparing figure 11.

    Figure 1.Illustrations of the single-spin (S=1,3/2,2,5/2 and 3) borophene monolayer on the left and the B36 minimum unit enlarged on the right.J is the exchange coupling interaction between the nearest sublattices.

    Figure 2.Total magnetization versus MCS for S=2,D=-0.2,h=0.5 and T=1.01.

    Figure 3.Effects of different sizes on magnetic susceptibility and critical temperature of the system for fixed parameters S=3/2,D=-0.1 and h=0.

    Figure 4.Thermal variation of the magnetization for different spin quantum numbers (S=1,3/2,2,5/2 and 3) and D,and the fixed parameter is h=0.1.

    Figure 5.Temperature dependences of χ for various S and D with h=0.1.

    Figure 6.Temperature dependences of C for various S and D with h=0.1.

    Figure 7.Temperature dependences of the magnetic entropy for various spin quantum numbers (S=1,3/2,2,5/2 and 3) and D with h=0.1.

    Figure 8.Variation of the critical temperature for different spin quantum numbers (S=1,3/2,2,5/2 and 3) and D,and the fixed parameter is h=0.1.

    Figure 9.-ΔSm as a function of T for various spin quantum numbers (S=1,3/2,2,5/2 and 3) and D with fixed h=0.1.(b) D dependence of -for various spin quantum numbers (S=1,3/2,2,5/2 and 3) with fxied h=0.1.

    Figure 10.-ΔSm as a function of T for various spin quantum numbers (S=1,3/2,2,5/2 and 3) and h with fixed D=-1.1.(b) h dependence of -for various spin quantum numbers (S=1,3/2,2,5/2 and 3) with fxied D.

    Figure 11.Variation of the -ΔSm under the effects of spin quantum numbers (S=1,3/2,2,5/2 and 3) and T for D=-1.1.

    Figure 12.Variation of the -ΔSm under effects of D and T for S=2.

    Figure 13.Influence of h on the RCP (a) for various D with S=2;(b) for various spin quantum numbers (S=1,3/2,2,5/2 and 3)with D=-1.1.

    The RCP is an important parameter to measure the MCE.In figure 13,we show the dependence of RCP on D and spin quantum numbers.It can be seen from figure 13 that when both D and S are unchanged,the RCP increases with the increase in Δh.This phenomenon has also been reported in the results of a graphdiyne bilayer with Ruderman–Kittel–Kasuya–Yoshida interaction [53].In figure 13(a),when the value of Δh is fixed,such as Δh=5,the RCP decreases from 2.285 to 1.994 with increasing∣D∣ .In contrast,the influence of spin quantum number on RCP is opposite to that of D.The main reason is that the larger the spin quantum number,the more stable the system is,and the corresponding temperature region increases,which is established in figure 11.Consequently,it is concluded that the growth in spin quantum number leads to the increase in RCP,similar to the results in a spin-S (S=1,3/2,5/2,3 and 7/2) Ising model using mean field approximation [46].

    3.3.Hysteresis loop

    Figure 14 illustrates the change in hysteresis loops of the system for different spin quantum numbers when D=-1.1 and T=1.5.The results show that the borophene monolayer exhibits a single loop regardless of the spin value.Furthermore,the area of the loop expands with the increase in the spin quantum number.More specifically,the coercivity(hc) and the remanence (MR) of the whole system both increase slowly during the process of increasing the spin quantum number.According to the Hamiltonian,it can be seen that with the larger the spin quantum number,the lower the energy and the more stable the system,the hcrequired for demagnetization may increase.

    Figure 15 illustrates the influence of diverse values of D on the hysteresis loop of the borophene monolayer for S=2 and T=1.5.Similar to in figure 14,all the curves also exhibit single-loop hysteresis behavior when the spin value is unchanged.The variation trend of the hcand MRis the same as that in figure 14.However,it is found that the influence of spin quantum number on the hysteresis behavior of the system is stronger than that of crystal field D.

    Figure 15.Hysteresis loops with different D when S=2 and T=1.5.

    Finally,the calculation results of the hysteresis loops as a function of various T are presented in figure 16.It can be clearly seen that the single loop continues to increase with T increasing and disappears at T=5.1,turning into a smooth curve.This indicates that the system becomes the disordered superparamagnetic phase.There have also been some theoretical investigations of borophene nanoribbons with core–shell structure [28],Ising-type polyhedral chain [54] and lowdimensional magnetic nanostructures [55–60],as well as experimental observations of bilayer graphene nanoribbons[61] that have revealed similar temperature dependence on the hysteresis behavior.

    4.Conclusion

    In summary,the magnetic,thermodynamic characteristics and MCE of a single-spin (S=1,3/2,2,5/2 and 3) Ising borophene monolayer were simulated using the Monte Carlo method.The simulation results show that the spin quantum number and crystal field D have opposite effects on the M,χ,C and S of the borophene monolayer.In addition,we discovered that the stability of the system benefits from an increase in spin quantum number.For MCE,the -ΔSmwould increase as a result of either the increase in Δh or a drop in ∣D∣ and spin quantum number.More importantly,increasing the spin quantum number may promote the increase in RCP.Finally,we anticipate that the obtained results will provide a reasonable guide for further study of MCE in borophene monolayers.

    男人操女人黄网站| av不卡在线播放| 一区二区三区乱码不卡18| 欧美乱码精品一区二区三区| 老熟女久久久| 99re6热这里在线精品视频| 捣出白浆h1v1| 国产精品香港三级国产av潘金莲 | 亚洲精品美女久久av网站| 免费高清在线观看日韩| 满18在线观看网站| 免费久久久久久久精品成人欧美视频| 精品少妇久久久久久888优播| 日韩一区二区三区影片| 欧美av亚洲av综合av国产av| 精品视频人人做人人爽| 国产熟女欧美一区二区| 亚洲熟女精品中文字幕| 校园人妻丝袜中文字幕| 超碰成人久久| 天天躁夜夜躁狠狠躁躁| 国产成人精品在线电影| 成人手机av| 国产97色在线日韩免费| 在现免费观看毛片| 飞空精品影院首页| 亚洲国产看品久久| 亚洲欧美一区二区三区黑人| 国产精品一国产av| 少妇的丰满在线观看| 91老司机精品| 2021少妇久久久久久久久久久| 曰老女人黄片| 涩涩av久久男人的天堂| 九草在线视频观看| 欧美人与性动交α欧美精品济南到| 久久久精品94久久精品| 亚洲中文字幕日韩| 国产在线视频一区二区| 欧美精品人与动牲交sv欧美| 一区二区av电影网| 高潮久久久久久久久久久不卡| 亚洲自偷自拍图片 自拍| 校园人妻丝袜中文字幕| 天天躁夜夜躁狠狠躁躁| 国产精品二区激情视频| 国产亚洲精品久久久久5区| 女人精品久久久久毛片| 少妇猛男粗大的猛烈进出视频| 亚洲情色 制服丝袜| 九色亚洲精品在线播放| 亚洲欧美一区二区三区国产| 激情视频va一区二区三区| 免费少妇av软件| 亚洲国产欧美在线一区| 亚洲av片天天在线观看| 波多野结衣av一区二区av| 亚洲第一青青草原| 90打野战视频偷拍视频| 新久久久久国产一级毛片| 国产野战对白在线观看| 女人高潮潮喷娇喘18禁视频| 男人舔女人的私密视频| 飞空精品影院首页| 亚洲国产欧美日韩在线播放| 亚洲成人免费av在线播放| 亚洲图色成人| 久久精品国产a三级三级三级| 亚洲专区中文字幕在线| 久久久久久久国产电影| 丝瓜视频免费看黄片| 国产主播在线观看一区二区 | 久久精品熟女亚洲av麻豆精品| 久久久国产欧美日韩av| 女人高潮潮喷娇喘18禁视频| 一二三四在线观看免费中文在| 婷婷成人精品国产| 丰满饥渴人妻一区二区三| 午夜两性在线视频| 亚洲精品第二区| 欧美日韩黄片免| 精品亚洲成国产av| 男女边摸边吃奶| 亚洲伊人久久精品综合| 亚洲,一卡二卡三卡| 午夜视频精品福利| 99国产精品免费福利视频| 亚洲精品久久久久久婷婷小说| 777米奇影视久久| 亚洲精品av麻豆狂野| 亚洲av综合色区一区| 午夜免费观看性视频| 色94色欧美一区二区| 亚洲av电影在线进入| 女警被强在线播放| 亚洲,一卡二卡三卡| 热99国产精品久久久久久7| 日韩视频在线欧美| 亚洲av电影在线进入| 十八禁人妻一区二区| 亚洲情色 制服丝袜| 亚洲午夜精品一区,二区,三区| 欧美黑人精品巨大| 在线观看免费日韩欧美大片| 国产成人a∨麻豆精品| 欧美成人午夜精品| 国产一区有黄有色的免费视频| 天堂中文最新版在线下载| 日韩伦理黄色片| 久久久国产一区二区| 超碰成人久久| av欧美777| 国产成人影院久久av| 亚洲成国产人片在线观看| 久久精品久久精品一区二区三区| 亚洲图色成人| 99国产综合亚洲精品| 一区在线观看完整版| 高清不卡的av网站| 黄网站色视频无遮挡免费观看| 国产亚洲精品第一综合不卡| 欧美xxⅹ黑人| 国产精品人妻久久久影院| 亚洲精品久久午夜乱码| 男人舔女人的私密视频| 90打野战视频偷拍视频| 汤姆久久久久久久影院中文字幕| 午夜福利视频精品| 欧美日韩亚洲高清精品| 少妇裸体淫交视频免费看高清 | 好男人视频免费观看在线| 蜜桃国产av成人99| 国产av精品麻豆| 别揉我奶头~嗯~啊~动态视频 | 亚洲成人手机| 18禁观看日本| 成人免费观看视频高清| 中文精品一卡2卡3卡4更新| 9191精品国产免费久久| 99re6热这里在线精品视频| 成人亚洲欧美一区二区av| 精品熟女少妇八av免费久了| 一区二区三区四区激情视频| 成年av动漫网址| 热99久久久久精品小说推荐| 色精品久久人妻99蜜桃| 色精品久久人妻99蜜桃| 大片免费播放器 马上看| 欧美亚洲日本最大视频资源| 国产又爽黄色视频| 一级片免费观看大全| 各种免费的搞黄视频| 777久久人妻少妇嫩草av网站| 亚洲久久久国产精品| 亚洲欧洲国产日韩| 午夜91福利影院| 欧美97在线视频| 国产亚洲精品久久久久5区| 大片电影免费在线观看免费| 国产精品一区二区精品视频观看| 午夜福利,免费看| 国产精品一区二区精品视频观看| 国产精品国产av在线观看| 老鸭窝网址在线观看| 黑人欧美特级aaaaaa片| 另类精品久久| 看免费成人av毛片| 一本色道久久久久久精品综合| 热re99久久国产66热| 亚洲精品日本国产第一区| 亚洲精品一二三| 天天躁夜夜躁狠狠久久av| 国产一区二区在线观看av| 久久青草综合色| 亚洲精品在线美女| 精品一区二区三卡| 久9热在线精品视频| 久久国产精品人妻蜜桃| 久久人人97超碰香蕉20202| 国产亚洲av片在线观看秒播厂| 国产主播在线观看一区二区 | 国产精品成人在线| av福利片在线| 老司机影院毛片| 国产爽快片一区二区三区| 自线自在国产av| 在线观看一区二区三区激情| 国产av一区二区精品久久| 欧美97在线视频| 亚洲第一青青草原| 亚洲av日韩精品久久久久久密 | 久久中文字幕一级| 国产精品偷伦视频观看了| 久久ye,这里只有精品| 国产精品99久久99久久久不卡| 在线观看免费视频网站a站| 最新的欧美精品一区二区| 国产精品一区二区在线不卡| 国产爽快片一区二区三区| 男的添女的下面高潮视频| 亚洲综合色网址| 在线 av 中文字幕| 黄色一级大片看看| 亚洲av男天堂| 人人妻人人添人人爽欧美一区卜| 欧美黑人精品巨大| 后天国语完整版免费观看| 一级毛片女人18水好多 | 亚洲av男天堂| a 毛片基地| 搡老岳熟女国产| 国产精品成人在线| 99久久99久久久精品蜜桃| 一区二区日韩欧美中文字幕| 天天躁夜夜躁狠狠久久av| 国产视频首页在线观看| 丁香六月天网| 母亲3免费完整高清在线观看| 欧美日韩一级在线毛片| 成年人午夜在线观看视频| 国产主播在线观看一区二区 | 啦啦啦啦在线视频资源| 男女免费视频国产| 一级毛片电影观看| 在现免费观看毛片| 波野结衣二区三区在线| 婷婷丁香在线五月| 亚洲 国产 在线| 欧美日韩综合久久久久久| 亚洲欧美成人综合另类久久久| 9热在线视频观看99| 国产主播在线观看一区二区 | 婷婷色av中文字幕| 国产精品国产av在线观看| 香蕉国产在线看| 人人妻人人添人人爽欧美一区卜| 久久天堂一区二区三区四区| 女警被强在线播放| 水蜜桃什么品种好| 国产欧美亚洲国产| 十分钟在线观看高清视频www| 一区二区三区激情视频| 亚洲av电影在线进入| 亚洲情色 制服丝袜| 久久久久久久大尺度免费视频| 黄片小视频在线播放| 欧美黄色淫秽网站| 亚洲专区国产一区二区| 免费观看av网站的网址| 一级毛片电影观看| 狠狠精品人妻久久久久久综合| 成年美女黄网站色视频大全免费| 国产精品 欧美亚洲| 老熟女久久久| a级毛片在线看网站| 午夜福利影视在线免费观看| 久热这里只有精品99| 男女边摸边吃奶| 亚洲欧美清纯卡通| 午夜免费男女啪啪视频观看| av网站在线播放免费| 亚洲五月色婷婷综合| 少妇被粗大的猛进出69影院| 各种免费的搞黄视频| 水蜜桃什么品种好| 香蕉丝袜av| 欧美国产精品一级二级三级| 免费少妇av软件| 国产精品国产三级专区第一集| 久久午夜综合久久蜜桃| av欧美777| 两性夫妻黄色片| 色婷婷久久久亚洲欧美| 19禁男女啪啪无遮挡网站| 亚洲av成人精品一二三区| 欧美成人午夜精品| 天天添夜夜摸| 午夜福利视频精品| 考比视频在线观看| 大码成人一级视频| 亚洲国产欧美日韩在线播放| 成人手机av| 欧美乱码精品一区二区三区| 一区二区日韩欧美中文字幕| 国产精品免费大片| 91字幕亚洲| 免费人妻精品一区二区三区视频| 精品卡一卡二卡四卡免费| 婷婷色av中文字幕| 亚洲国产欧美一区二区综合| 男男h啪啪无遮挡| 精品少妇黑人巨大在线播放| 一本色道久久久久久精品综合| 天天躁夜夜躁狠狠躁躁| 久久久久久久久久久久大奶| 女性被躁到高潮视频| 在线精品无人区一区二区三| 大码成人一级视频| 极品少妇高潮喷水抽搐| 久久久久国产精品人妻一区二区| 老鸭窝网址在线观看| 欧美 亚洲 国产 日韩一| 一区二区日韩欧美中文字幕| 亚洲国产中文字幕在线视频| 欧美成人精品欧美一级黄| 国产黄色免费在线视频| 王馨瑶露胸无遮挡在线观看| 一二三四社区在线视频社区8| 操美女的视频在线观看| 久久久久国产精品人妻一区二区| 在线看a的网站| 国产精品一区二区在线不卡| 国产主播在线观看一区二区 | 国产爽快片一区二区三区| 免费观看人在逋| 91精品伊人久久大香线蕉| 搡老岳熟女国产| 日韩制服骚丝袜av| 亚洲中文字幕日韩| 咕卡用的链子| 免费高清在线观看日韩| 老司机影院毛片| 国产熟女午夜一区二区三区| 久久久精品94久久精品| 飞空精品影院首页| 国产一区二区三区综合在线观看| 色精品久久人妻99蜜桃| xxx大片免费视频| 一区二区三区激情视频| 国产av一区二区精品久久| 美女脱内裤让男人舔精品视频| 亚洲国产欧美在线一区| 国语对白做爰xxxⅹ性视频网站| 亚洲精品一区蜜桃| 免费女性裸体啪啪无遮挡网站| 国产精品一区二区免费欧美 | 国产精品久久久久久精品电影小说| 国产有黄有色有爽视频| 国产精品一区二区免费欧美 | 日韩精品免费视频一区二区三区| 免费人妻精品一区二区三区视频| 午夜福利视频精品| 五月开心婷婷网| 亚洲精品国产一区二区精华液| 国产免费又黄又爽又色| 别揉我奶头~嗯~啊~动态视频 | 每晚都被弄得嗷嗷叫到高潮| 天天操日日干夜夜撸| 亚洲精品国产av成人精品| 亚洲国产精品999| 国产麻豆69| 亚洲精品国产av蜜桃| 亚洲激情五月婷婷啪啪| 亚洲精品第二区| 色网站视频免费| 亚洲成人手机| 欧美人与善性xxx| 亚洲国产精品一区三区| 美女午夜性视频免费| 老鸭窝网址在线观看| 好男人视频免费观看在线| 日韩欧美一区视频在线观看| 一边亲一边摸免费视频| 蜜桃国产av成人99| 免费在线观看黄色视频的| 欧美日韩精品网址| 久久精品成人免费网站| 一本综合久久免费| 国产有黄有色有爽视频| 精品高清国产在线一区| 叶爱在线成人免费视频播放| av在线播放精品| 国产欧美亚洲国产| 久久午夜综合久久蜜桃| 黄片小视频在线播放| 亚洲精品乱久久久久久| 少妇精品久久久久久久| 久久这里只有精品19| 亚洲 国产 在线| 嫁个100分男人电影在线观看 | 久久久精品免费免费高清| 日韩一本色道免费dvd| 久久久久国产精品人妻一区二区| 成在线人永久免费视频| 国产亚洲午夜精品一区二区久久| 精品亚洲成a人片在线观看| 性少妇av在线| 欧美亚洲日本最大视频资源| av福利片在线| 天堂俺去俺来也www色官网| 欧美亚洲 丝袜 人妻 在线| 美国免费a级毛片| 亚洲av日韩精品久久久久久密 | 午夜激情av网站| 久久久久久久久久久久大奶| 咕卡用的链子| 精品免费久久久久久久清纯 | 999久久久国产精品视频| 1024视频免费在线观看| 精品一区二区三区av网在线观看 | 久久久精品国产亚洲av高清涩受| 侵犯人妻中文字幕一二三四区| 亚洲,欧美,日韩| 久久久久国产一级毛片高清牌| 飞空精品影院首页| 女警被强在线播放| 欧美日韩黄片免| 免费女性裸体啪啪无遮挡网站| 老司机影院成人| 午夜福利免费观看在线| 夜夜骑夜夜射夜夜干| 99国产精品免费福利视频| 久久久久久久久免费视频了| 激情视频va一区二区三区| 亚洲国产欧美一区二区综合| 亚洲一区中文字幕在线| 黄色视频不卡| av电影中文网址| 99re6热这里在线精品视频| 亚洲,一卡二卡三卡| 久久天堂一区二区三区四区| 激情五月婷婷亚洲| 国产无遮挡羞羞视频在线观看| 日韩熟女老妇一区二区性免费视频| 欧美日韩亚洲国产一区二区在线观看 | 欧美日韩成人在线一区二区| 妹子高潮喷水视频| 99热国产这里只有精品6| 嫩草影视91久久| 七月丁香在线播放| 男女无遮挡免费网站观看| 亚洲精品国产色婷婷电影| 搡老岳熟女国产| 久久久精品94久久精品| 国产精品香港三级国产av潘金莲 | 脱女人内裤的视频| 成人免费观看视频高清| 脱女人内裤的视频| 久久女婷五月综合色啪小说| 精品高清国产在线一区| 亚洲九九香蕉| 9191精品国产免费久久| 天堂中文最新版在线下载| 无限看片的www在线观看| 91老司机精品| 国产淫语在线视频| 国产视频首页在线观看| 成人午夜精彩视频在线观看| 制服人妻中文乱码| 赤兔流量卡办理| 日本av手机在线免费观看| 亚洲国产精品国产精品| 亚洲国产中文字幕在线视频| 国产野战对白在线观看| 欧美少妇被猛烈插入视频| 波多野结衣av一区二区av| 夫妻午夜视频| 天天躁狠狠躁夜夜躁狠狠躁| 黑人猛操日本美女一级片| 新久久久久国产一级毛片| 国产精品免费大片| 国产一区有黄有色的免费视频| 一级毛片电影观看| 精品国产一区二区三区四区第35| 最新在线观看一区二区三区 | a级片在线免费高清观看视频| svipshipincom国产片| 久久久久久久国产电影| 99热国产这里只有精品6| 亚洲av在线观看美女高潮| 人人妻人人澡人人看| 又紧又爽又黄一区二区| 亚洲精品久久久久久婷婷小说| 中文字幕制服av| 亚洲色图 男人天堂 中文字幕| 每晚都被弄得嗷嗷叫到高潮| 欧美日韩一级在线毛片| 国产亚洲精品第一综合不卡| 欧美黄色淫秽网站| 午夜免费男女啪啪视频观看| 男女高潮啪啪啪动态图| 国产一区二区三区综合在线观看| 校园人妻丝袜中文字幕| 免费观看人在逋| 欧美乱码精品一区二区三区| 亚洲精品日韩在线中文字幕| 啦啦啦视频在线资源免费观看| 欧美xxⅹ黑人| 99久久综合免费| 国产精品久久久久久人妻精品电影 | 91精品三级在线观看| 国产亚洲欧美精品永久| 久久久久精品人妻al黑| 国产精品一区二区在线不卡| 夫妻性生交免费视频一级片| 欧美大码av| 美女高潮到喷水免费观看| 亚洲精品国产一区二区精华液| 丁香六月天网| 久久九九热精品免费| 嫩草影视91久久| 免费人妻精品一区二区三区视频| 建设人人有责人人尽责人人享有的| 国产福利在线免费观看视频| 亚洲成人免费电影在线观看 | 亚洲专区中文字幕在线| 亚洲一卡2卡3卡4卡5卡精品中文| 免费黄频网站在线观看国产| 777米奇影视久久| 亚洲久久久国产精品| 久久久久久久久免费视频了| 少妇裸体淫交视频免费看高清 | 国产极品粉嫩免费观看在线| 国产无遮挡羞羞视频在线观看| 最新在线观看一区二区三区 | 免费人妻精品一区二区三区视频| 一级黄片播放器| 极品人妻少妇av视频| av线在线观看网站| 夫妻午夜视频| 在线观看免费视频网站a站| 国产av国产精品国产| 一二三四社区在线视频社区8| 免费在线观看视频国产中文字幕亚洲 | 丝瓜视频免费看黄片| 亚洲国产中文字幕在线视频| 久久久精品免费免费高清| 真人做人爱边吃奶动态| 国产精品一区二区在线观看99| 曰老女人黄片| 色精品久久人妻99蜜桃| 久久精品国产a三级三级三级| 在线观看免费午夜福利视频| 青春草视频在线免费观看| 精品久久蜜臀av无| 亚洲久久久国产精品| 9色porny在线观看| 精品免费久久久久久久清纯 | 久久精品久久久久久久性| 亚洲国产日韩一区二区| 亚洲欧美中文字幕日韩二区| 精品久久久久久久毛片微露脸 | 啦啦啦在线免费观看视频4| 一区福利在线观看| 亚洲精品av麻豆狂野| av视频免费观看在线观看| 91麻豆av在线| 啦啦啦 在线观看视频| 日日夜夜操网爽| 人成视频在线观看免费观看| 一本综合久久免费| 亚洲色图 男人天堂 中文字幕| 亚洲精品第二区| 香蕉国产在线看| 国产在线观看jvid| 国产激情久久老熟女| 国产免费现黄频在线看| av国产久精品久网站免费入址| 色精品久久人妻99蜜桃| 一本大道久久a久久精品| 如日韩欧美国产精品一区二区三区| 一边摸一边抽搐一进一出视频| 人成视频在线观看免费观看| 久久久久久人人人人人| 操美女的视频在线观看| 男女床上黄色一级片免费看| 久久久久视频综合| 19禁男女啪啪无遮挡网站| 亚洲国产中文字幕在线视频| 夫妻性生交免费视频一级片| 欧美成人午夜精品| 欧美日韩一级在线毛片| h视频一区二区三区| 欧美少妇被猛烈插入视频| 最近中文字幕2019免费版| 人妻人人澡人人爽人人| 后天国语完整版免费观看| 韩国精品一区二区三区| 国产亚洲欧美精品永久| 人人妻人人澡人人爽人人夜夜| netflix在线观看网站| 久久九九热精品免费| 999精品在线视频| www.精华液| 亚洲人成网站在线观看播放| 99九九在线精品视频| 一区二区三区精品91| 亚洲伊人色综图| 黄色a级毛片大全视频| 人人妻人人爽人人添夜夜欢视频| 99国产精品一区二区三区| 久久久久久久久久久久大奶| 亚洲av综合色区一区| 777米奇影视久久| 80岁老熟妇乱子伦牲交| 国产在视频线精品| 亚洲av日韩在线播放| 日韩制服丝袜自拍偷拍| 久久这里只有精品19| 深夜精品福利| 成人亚洲精品一区在线观看| 国产一区二区 视频在线| 久久久久精品人妻al黑| 国产精品免费视频内射| 纵有疾风起免费观看全集完整版| 一区二区三区四区激情视频| 国产有黄有色有爽视频| 亚洲国产成人一精品久久久| 亚洲国产av影院在线观看| 久久亚洲国产成人精品v| 久久影院123| 久久精品国产亚洲av高清一级| 久久久久久久国产电影| 国产精品人妻久久久影院| 亚洲成色77777|