• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Flocking and clustering in mixtures of selfpropelled particles with or without active reorientation

    2023-12-06 01:43:04LuChenandTu
    Communications in Theoretical Physics 2023年11期

    Lu Chen and Z C Tu

    1 Department of Physics,Beijing Normal University,Beijing 100875,China

    2 Complex Systems Division,Beijing Computational Science Research Center,Beijing 100193,China

    Abstract We study phase behaviors of mixtures comprising active particles with and without active reorientation by varying mixing ratios.We observe that the order parameter characterizing flocking in the steady state exhibits a linear decrease with an increase in mixing ratio.While the order parameter characterizing clustering in the steady state presents a sharp leap as the mixing ratio increases.Particularly,we obtain phase diagrams of flocking under different mixing ratios and observe that the domain corresponding to flocking experiences a contraction with the increase of mixing ratio.Simultaneously,the coordinates of the critical point on the phase boundary between the flocking and the disordered phase decay exponentially with the mixing ratio.

    Keywords: active matter,flocking,clustering,binary system

    1.Introduction

    Active matter,comprising plenty of self-propelled agents that move in fluids or more complex environments [1–3],commonly exists in biological systems and exhibits a variety of exotic collective behaviors,such as traveling wave [4],synchronization [5,6],clustering [7–10],critical coexistence phase [11–13] and so on.Recent advances in the field of active matter have opened up a new realm of research and revealed intriguing phase behaviors in mixtures of active and passive particles [14–20].Dolai et al observed motilityinduced phase separation [14] in binary mixtures of small active and big passive particles with soft repulsive interactions.Wang et al introduced a small number of active particles into a system of passive particles,and then they found that the diffusion of passive particles is enhanced [15].Kolb and Klotsa demonstrated motility-induced phase separation upon varying the activity in binary mixtures of fast and slow self-propelled particles [16].Pearce and Giomi considered an active system consisting of leaders and followers,and investigated how flocks respond to leadership and make decisions [17].Many emergent behaviors of active matter can be well-reproduced by models with an explicit local alignment interaction [21],and an inelastic collision rule [22]between a particle’s orientation and propulsion.However,none of these models explicitly include collision avoidance which is a movement strategy commonly adopted by animals[23–25].In our previous work [26,27],we presented a model of self-propelled disks with active reorientation in analogy to collision avoidance in animal herds.We found the coupling of self-propulsion and active reorientation leads to rich phases including clustering and collective flocking without explicit alignment interaction.

    To the best of our knowledge,there is a lack of investigations on binary mixtures of self-propelled particles with or without active reorientation.In this work,we focus on this kind of binary mixture and study the phase behaviors(flocking and clustering) by varying mixing ratios of particles without active reorientation.We find that the order parameter characterizing flocking in the steady state of the system decreases linearly with the increase in mixing ratio.On the contrary,the order parameter characterizing clustering in the steady state sharply rises with the increase of mixing ratio and then reaches a relatively large level.We obtain phase diagrams in the steady state under different mixing ratios.We observe that the domain corresponding to flocking is contracted with the increase of mixing ratio and that the coordinates of the critical point in the phase boundary between the flocking and the disordered phase decay exponentially with respect to the mixing ratio.

    Figure 1.Collision avoidance of particles with active reorientation.

    The rest of this paper is organized as follows.In section 2,we briefly introduce our model and simulation method.In section 3,we discuss the evolution of order parameters under different mixing ratios.In section 4,we explore phase diagrams in the steady state under different mixing ratios.The last section is a brief summary.

    2.Model and method

    Our study focuses on an active collision avoidance model,which was developed in our previous work [27].This model comprehensively incorporates collision avoidance within interaction rules,which is a common strategy observed in motile animals moving in herds.As shown in figure 1,when two particles imminently collide,they can actively adjust their orientations to avoid collisions.That is,active reorientation only occurs at the moment of collisions.The model consists of self-propelled disks with a diameter d in a two-dimensional square box of length L.The total number of disks is N,and the position of disk i is denoted as ri.The self-propulsion direction of disk i is denoted byni≡(c osθi,sinθi),where θirepresents the angle between the self-propulsion direction of disk i and the x-axis.The motion of the disk i is governed by the following equations:

    The first equation describes the translational motion of disk i.Here,v0denotes the magnitude of self-propelled velocity and μ is the mobility.Fijis the force acting on disk i from disk j,which is expressed as Fij=k(d -rij)ε(rij-d)rij/rij,where rij≡ri-rjand rij≡|ri-rj|.?zis a normal vector of the plane pointing to the reader.ε(·) represents the Heaviside function.Parameter k represents the strength of the two-body interaction between disks.The first term in the right-hand side of equation (1) indicates that when the disk i does not overlap with other disks,it is self-propelled.The second equation describes the rotational motion of disk i.ηi(t) is Gaussian white noise with 〈ηi(t)〉=0 and 〈ηi(t)ηj(t′)〉 =σ2δi jδ(t-t′),where σ represents the strength of noise.αiδ(t) is the angular velocity,generated by active reorientation when two disks get close to each other.This term indicates that active reorientation only occurs at the moment of collisions.Here we consider a mixture with two types of self-propelled particles.One comprises normal particles with active reorientation,while the other consists of abnormal particles without active reorientation.If disk i is a normal particle,αiis assigned to a positive value α.If disk i is an abnormal particle,αiis zero,which means disk i can not actively reorient when it gets close to other disks.

    We investigate phase behaviors in this binary mixture.The proportion of abnormal particles in the mixture is named mixing ratio q.We randomly select abnormal particles for a given q in initial states and observe corresponding steady states.We find two distinctive phases in the steady state under different mixing ratios.One is flocking,where almost all particles move roughly in the same direction.The other is clustering,where a certain amount of particles aggregate together.In figure 2,we present snapshots of initial states and steady states under q=0.01 and q=0.1.

    When a small number of abnormal particles are initially introduced into the system (q is 0.01) withα=0.01,=0.01,starting from a random state [fgiure 2(a)],the system eventually evolves to a flocking state as shown in figure 2(b).Figure 2(c) presents the initial random state with q=0.1.The system finally evolves into a clustering state[(figure 2(d)] rather than a flocking state.For more detailed observations,we find that normal and abnormal particles are still mixed together without separation.And that their distribution appears relatively uniform.

    Figure 2.Snapshots of initial states and steady states of the system under different mixing ratios.Red represents normal particles.Blue represents abnormal particles.Black arrows indicate the direction of particle velocity.(a) initial state (disordered phase) with q=0.01.(b)steady state (flocking) with q=0.01.(c) initial state (disordered phase) with q=0.1.(d) steady state (clustering) with q=0.1.

    3.Evolution of order parameters under different mixing ratios

    In the previous section,we observed that different mixing ratios result in two different phases (flocking and clustering)in the steady state.In this section,we consider the evolution of two order parameters characterizing the flocking and clustering phases from a quantitative point of view.

    The flocking phase is described by an order parameter defnied byM=,where the average 〈〉is taken over all N particles.M ≈0 indicates a disordered phase,whereas M ≈1 indicates perfect flocking.Clustering is characterized by another parameter ρ which is specified as below.We measure the local density for each disk by calculating the Voronoi cell [28].By numerical simulation,we find that when local density is larger than a certain threshold[26],the disk is located in a certain dense cluster.Then ρ is defined by the fraction of particles located in the dense cluster[29].ρ ≈0 indicates no cluster phase,whereas ρ ≈1 perfect cluster phase.

    The evolutions of order parameters M and ρ with α=0.01,=0.01 are shown in figure 3,from which we find that the introduction of abnormal particles hinders flocking while enhancing the formation of clusters.The time evolution of M under different mixing ratios is shown in figure 3(a).When the system starts from a homogeneous state with an initial random distribution of orientation and position,as we can see,for q <1,M exhibits a clear growth with time,then tends to saturation value around 2,000,000 timesteps,and then eventually reaches a steady value.With q increasing,the degree of flocking decreases when the system reaches a steady state.The flocking is suppressed since the abnormal particles disrupt the alignment between the normal particles with active reorientation.Figure 3(b) shows the time evolution of ρ under different mixing ratios.When q is small,ρ develops a peak at the first stage and then goes through a sharp descent.This indicates that clusters are formed and then disintegrated.When q is large enough,ρ still remains a finite value finally.This implies that the clusters robustly exist rather than disappear.

    Figure 3.Time series of order parameters under different mixing ratios: (a) The evolution of M;(b) The evolution of ρ.

    Figure 4.Order parameters in steady states under different mixing ratios.Hollow points: Ms as a function of q;solid points: ρs as a function of q.

    Figure 5.Phase diagrams with different mixing ratios.Mixing ratio q=0.05,0.10,0.15,0.20,0.30 and 0.5,respectively.

    Figure 6.Contour lines with Ms=0.5 and critical points under q=0.05,0.10,0.15,0.20,0.30 and 0.5 in {α,?σ} space.

    Figure 7.The relationship between αc,and q.We show the error bar for αc since the values of αc cannot be accurately extracted from the phase diagram.

    Comparing figure 3(a) and figure 3(b),we observe that the timescale for the formation of flocking states exceeds that for the system reaching a metastable clustering state.The underlying cause for the above phenomenon is that clustering is a relatively rapid process that involves local particle rearrangements,while flocking is comparatively slow due to the negotiation of particle orientations throughout the entire system.

    In figure 3,we specifically present two extreme cases.When q=1 the system exhibits a disordered state (M ≈0)and highly clustering phase (ρ ≈0.8) in the steady state,which is consistent with the results in previous work [7].When q approaches 0,the steady state of the system is highly ordered (M ≈1) without clustering (ρ ≈0) which is consistent with previous work [27].

    4.Steady states under different mixing ratios

    In this section,we focus on steady states of the system.Order parameters in the steady state withα=0.01,=0.01under different mixing ratios (q=0.05,0.1,0.2,0.5,1.0) are presented in figure 4,where Msand ρsrepresent the values of M and ρ in the steady state,respectively.Hollow points in figure 4 imply a pretty good linear relationship between Msand q,which may be expressed as:

    Here, M0should depend on both α and ?σ.In figure 4,the fitted value of M0is 0.98.This linearity is qualitatively understood as follows: the presence of abnormal particles disrupts the alignment between the normal particles with active reorientation,leading to the suppression of flocking.Solid points in figure 4 show ρsversus different mixing ratios,which suggests a behavior of Heaviside-like function.A transition occurs at q=0.1,which indicates that 10% of abnormal particles will lead to a qualitative change in the system.

    Next,we investigate the phase diagram of flocking in the steady state with different mixing ratios.For given q,we calculate Mswith different sets of α and ?σ.The results are shown in figure 5.The phase boundaries between flocking and disordered phases are determined by the contour line corresponding to Ms=0.5 (dash lines shown in figure 5).According to previous studies [8],the steady state of active systems merely with self-propulsion is clustered and disordered.That means when α=0,no matter what the value of ?σis,M should be around 0,which implies that flocking can not appear in the steady state.However,introducing active reorientation allows the system to ultimately evolve to an ordered state (flocking) in the steady state [27].When two particles get close to each other,small active reorientation(α is small) promotes local velocity alignment,while large active reorientation (α is large) makes the orientations of particles adjust too much to align properly.Thus,small α facilitates the formation of flocking,but large α makes the system tend to be disordered.And as we know,it is obvious that large random noise will disrupt flocking and make the system disordered.Therefore,the phase diagram in figure 5 is the result of competition between α (related to scattering) and ?σ(related to self-diffusion).The necessary conditions for the formation of flocking are as follows: (i) α is nonvanishing but not too large;(ii) the noise is relatively small such that α plays a dominant role.Under the constraints of the above conditions,the region of flocking in the phase diagram presents an arched shape as shown in figure 5.When noise is absent,both too small and too large α can not make orientations of two particles align perfectly,so an optimal α exists in the system.Under this optimal α,the system reaches the most ordered state.As the strength of noise increases,the degree of order of the system will gradually decrease.When the strength of noise exceeds a certain threshold,the order is disrupted.This threshold and the optimal α determine the coordinates of the critical point in the phase diagram.

    From figure 5,we find that the domains of flocking shrink with the increase of q.We extract phase boundaries corresponding to different q from phase diagrams and specially mark the coordinates (αc,) of each critical point according to each phase boundary as shown in figure 6.We observe that bothand αcdecrease and move towards the origin with the increase of q.The shrink of the domains of flocking and the movement of the critical point can be intuitively understood as follows: the presence of abnormal particles disrupts the alignment between the normal particles with active reorientation,which is equivalent to reducing the contribution of α.Therefore,the more abnormal particles are introduced,the harder the formation of flocking.In figure 7,we specially demonstrate the relationship between αc,and q.By fitting the data,we find that both αcanddecay exponentially with respect to q,that is,αc=0.11e-5.2qand=0.10e-4.5q.

    5.Conclusion and discussion

    In this paper,we demonstrate the effect of mixing ratio on flocking and clustering.Unlike previous work which focuses on mixtures of passive particles and self-propelled particles[14,15,18],our study concentrates on a mixture of selfpropelled particles with or without active reorientation when two particles get close to each other.Our work reveals a clearly linear decrease in the degree of flocking in the steady state of the system as the mixing ratio increases.We have constructed phase diagrams for the steady state under various mixing ratios.Notably,the coordinate of the critical point on the phase boundary between flocking and disordered phases shows an exponential decay with respect to the mixing ratio.However,we cannot provide a theoretical explanation for these quantitative relations mentioned above at the present stage.We look forward to theoretical explanations and experimental investigations on these compelling findings in the future.

    Acknowledgments

    We wish to acknowledge helpful suggestions from X L Xu.We also thank computational support from the Beijing Computational Science Research Center.The research was supported by the National Natural Science Foundation of China (Grant No.11 975 050).

    性色avwww在线观看| 国产精品一区二区性色av| 91aial.com中文字幕在线观看| 日日撸夜夜添| 中国美女看黄片| 久久精品久久久久久久性| 午夜a级毛片| 午夜福利高清视频| 人人妻人人澡人人爽人人夜夜 | 99国产极品粉嫩在线观看| 99久久久亚洲精品蜜臀av| 国产高潮美女av| 两个人的视频大全免费| 中文字幕av成人在线电影| 国产精品福利在线免费观看| 免费观看a级毛片全部| 男人舔女人下体高潮全视频| 亚洲综合色惰| 亚洲欧洲日产国产| 日日干狠狠操夜夜爽| 亚洲精品久久国产高清桃花| 一本一本综合久久| 国产日本99.免费观看| 如何舔出高潮| 级片在线观看| 老熟妇乱子伦视频在线观看| www日本黄色视频网| 亚洲最大成人av| 在现免费观看毛片| 欧美丝袜亚洲另类| 麻豆成人午夜福利视频| 亚洲va在线va天堂va国产| 国产精华一区二区三区| 欧美色视频一区免费| 秋霞在线观看毛片| 欧美另类亚洲清纯唯美| 观看免费一级毛片| 国产欧美日韩精品一区二区| 日日摸夜夜添夜夜添av毛片| 亚洲av二区三区四区| 亚洲国产高清在线一区二区三| 此物有八面人人有两片| 日韩中字成人| 99久久中文字幕三级久久日本| 成人特级av手机在线观看| 日本爱情动作片www.在线观看| 久久九九热精品免费| 在线免费观看不下载黄p国产| 午夜福利在线观看吧| 亚洲av免费高清在线观看| 久久国内精品自在自线图片| 亚洲精品国产av成人精品| 高清毛片免费观看视频网站| 男人和女人高潮做爰伦理| 国产精品一区www在线观看| 免费在线观看成人毛片| 久久久国产成人精品二区| 国产高清三级在线| 看片在线看免费视频| 亚洲人与动物交配视频| 日本欧美国产在线视频| 国产精品美女特级片免费视频播放器| 亚洲一区高清亚洲精品| 九九爱精品视频在线观看| 久久久久久久亚洲中文字幕| 国产精品不卡视频一区二区| 小说图片视频综合网站| 婷婷亚洲欧美| 悠悠久久av| 欧美日韩精品成人综合77777| 淫秽高清视频在线观看| 99热6这里只有精品| 国内精品久久久久精免费| 两个人的视频大全免费| 成人漫画全彩无遮挡| 秋霞在线观看毛片| 大香蕉久久网| 少妇丰满av| 欧美日韩乱码在线| 国产av一区在线观看免费| 白带黄色成豆腐渣| 国产精品国产三级国产av玫瑰| 久久九九热精品免费| 99热这里只有是精品50| 日日啪夜夜撸| 狠狠狠狠99中文字幕| 特大巨黑吊av在线直播| 精品不卡国产一区二区三区| 波多野结衣高清作品| 久久九九热精品免费| 国内精品久久久久精免费| 国产免费一级a男人的天堂| 国产一区亚洲一区在线观看| 熟女人妻精品中文字幕| 看黄色毛片网站| 国产极品天堂在线| 国产一区二区三区在线臀色熟女| 久久久国产成人精品二区| 欧美+日韩+精品| 亚洲欧美日韩无卡精品| 亚洲欧美日韩卡通动漫| 天堂影院成人在线观看| 精品一区二区三区人妻视频| 美女xxoo啪啪120秒动态图| 桃色一区二区三区在线观看| 亚洲色图av天堂| www.色视频.com| 成人无遮挡网站| 国产色爽女视频免费观看| 亚洲电影在线观看av| 国产成年人精品一区二区| 亚洲欧美清纯卡通| 欧美高清成人免费视频www| 国产亚洲5aaaaa淫片| 免费观看人在逋| 如何舔出高潮| 精品一区二区三区人妻视频| 亚洲av一区综合| 亚洲精品456在线播放app| 亚洲最大成人中文| 国产精品免费一区二区三区在线| 一进一出抽搐动态| 亚洲国产精品合色在线| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 少妇的逼水好多| 亚洲真实伦在线观看| 超碰av人人做人人爽久久| 午夜福利成人在线免费观看| 免费观看在线日韩| 亚洲国产欧美人成| 成人亚洲精品av一区二区| 一个人看的www免费观看视频| 日韩精品有码人妻一区| 禁无遮挡网站| 亚洲成av人片在线播放无| 日韩欧美精品v在线| 丝袜美腿在线中文| 午夜福利在线观看吧| 午夜爱爱视频在线播放| 国产精品不卡视频一区二区| 搡女人真爽免费视频火全软件| 国产精品久久视频播放| 亚洲av中文字字幕乱码综合| 国产精品福利在线免费观看| 男插女下体视频免费在线播放| 精品久久久久久久久久免费视频| 又粗又爽又猛毛片免费看| 99九九线精品视频在线观看视频| 99久久人妻综合| 亚洲国产高清在线一区二区三| 久久久久久久午夜电影| 欧美色欧美亚洲另类二区| 少妇熟女aⅴ在线视频| 亚洲美女视频黄频| 精品欧美国产一区二区三| 国产亚洲精品av在线| 美女大奶头视频| 久久午夜福利片| 日韩视频在线欧美| 欧美bdsm另类| 熟女人妻精品中文字幕| 亚洲欧美日韩东京热| 国产伦精品一区二区三区视频9| 亚洲精品影视一区二区三区av| 亚洲人成网站高清观看| 久久99蜜桃精品久久| 亚洲av熟女| 色视频www国产| 伦精品一区二区三区| 男人舔女人下体高潮全视频| 午夜福利视频1000在线观看| 久久亚洲国产成人精品v| 日韩精品有码人妻一区| 免费在线观看成人毛片| h日本视频在线播放| 亚洲国产欧洲综合997久久,| 国产v大片淫在线免费观看| 精品不卡国产一区二区三区| 嫩草影院精品99| 亚洲av电影不卡..在线观看| 男的添女的下面高潮视频| 久久精品国产清高在天天线| 久久精品夜夜夜夜夜久久蜜豆| 婷婷六月久久综合丁香| 少妇丰满av| 日本免费a在线| 在线免费观看不下载黄p国产| 欧美一级a爱片免费观看看| 波野结衣二区三区在线| 日韩中字成人| 超碰av人人做人人爽久久| 久久久久久大精品| 成人午夜高清在线视频| 久久精品国产99精品国产亚洲性色| 成人午夜精彩视频在线观看| 全区人妻精品视频| 色综合站精品国产| 级片在线观看| 91aial.com中文字幕在线观看| 成人无遮挡网站| 天堂av国产一区二区熟女人妻| 久久热精品热| 狠狠狠狠99中文字幕| 中文在线观看免费www的网站| 国产免费一级a男人的天堂| 欧美性猛交╳xxx乱大交人| 晚上一个人看的免费电影| 在线天堂最新版资源| 色综合站精品国产| 久久人妻av系列| 只有这里有精品99| 午夜老司机福利剧场| 少妇的逼水好多| 亚洲欧洲国产日韩| 日韩一区二区三区影片| 国产黄片美女视频| 国产一区二区三区在线臀色熟女| 精品久久久久久久久久免费视频| 精品久久久久久久久亚洲| 男人和女人高潮做爰伦理| 日韩成人伦理影院| 97超视频在线观看视频| 国产视频内射| 国产一级毛片七仙女欲春2| 激情 狠狠 欧美| 蜜桃久久精品国产亚洲av| 我的老师免费观看完整版| 综合色丁香网| 99精品在免费线老司机午夜| 亚洲av男天堂| 免费看av在线观看网站| 久久热精品热| 午夜免费激情av| 亚洲欧美成人精品一区二区| 日韩欧美三级三区| 成熟少妇高潮喷水视频| 精品人妻偷拍中文字幕| 欧美xxxx黑人xx丫x性爽| 麻豆一二三区av精品| eeuss影院久久| 久久国内精品自在自线图片| 亚洲av二区三区四区| 亚洲内射少妇av| 如何舔出高潮| av在线观看视频网站免费| 国模一区二区三区四区视频| 国产免费男女视频| 久久久精品欧美日韩精品| 国产av一区在线观看免费| 日本五十路高清| 欧美成人a在线观看| 99久久人妻综合| 亚洲真实伦在线观看| 男人和女人高潮做爰伦理| 伦理电影大哥的女人| a级毛片免费高清观看在线播放| 尤物成人国产欧美一区二区三区| 成人三级黄色视频| 一进一出抽搐动态| 日本-黄色视频高清免费观看| 久久综合国产亚洲精品| 青春草视频在线免费观看| 色噜噜av男人的天堂激情| 麻豆国产av国片精品| 亚洲性久久影院| 国产男人的电影天堂91| 午夜福利成人在线免费观看| 中文欧美无线码| 国产成人影院久久av| 国产伦一二天堂av在线观看| 国产成年人精品一区二区| 成熟少妇高潮喷水视频| 91午夜精品亚洲一区二区三区| av卡一久久| 免费av观看视频| av又黄又爽大尺度在线免费看 | 亚洲第一电影网av| 精华霜和精华液先用哪个| 亚洲成人久久爱视频| 欧美日韩综合久久久久久| 噜噜噜噜噜久久久久久91| 国产综合懂色| 男女下面进入的视频免费午夜| 一级黄片播放器| 亚洲国产高清在线一区二区三| 岛国在线免费视频观看| 欧美+日韩+精品| 国产一区二区在线av高清观看| 直男gayav资源| 日韩欧美精品v在线| 99久久精品国产国产毛片| 看免费成人av毛片| av在线天堂中文字幕| 又黄又爽又刺激的免费视频.| 哪个播放器可以免费观看大片| 国产精品久久久久久精品电影小说 | 亚洲精品乱码久久久v下载方式| 日韩一本色道免费dvd| 午夜老司机福利剧场| 日韩,欧美,国产一区二区三区 | 精品人妻熟女av久视频| 久久精品91蜜桃| 18禁在线播放成人免费| 国产欧美日韩精品一区二区| 天堂√8在线中文| 99久久人妻综合| 亚洲自拍偷在线| 国产精品一区www在线观看| 波野结衣二区三区在线| 深爱激情五月婷婷| 老司机福利观看| 国产极品精品免费视频能看的| 一夜夜www| 国产激情偷乱视频一区二区| 亚洲18禁久久av| 国产精品久久电影中文字幕| 男人舔女人下体高潮全视频| 国产69精品久久久久777片| 欧美一区二区精品小视频在线| 亚洲精品国产av成人精品| 三级经典国产精品| av视频在线观看入口| 欧美高清成人免费视频www| 亚洲18禁久久av| 亚洲国产精品久久男人天堂| www日本黄色视频网| 少妇熟女欧美另类| 一区二区三区高清视频在线| 高清毛片免费观看视频网站| 插逼视频在线观看| 欧美成人一区二区免费高清观看| 欧美不卡视频在线免费观看| 嫩草影院新地址| 麻豆一二三区av精品| 国产精品一区二区三区四区久久| 丝袜喷水一区| 国产私拍福利视频在线观看| 国产又黄又爽又无遮挡在线| www.色视频.com| 欧美成人精品欧美一级黄| 亚洲激情五月婷婷啪啪| 亚洲成人久久爱视频| 国产精品一区二区性色av| 能在线免费看毛片的网站| 熟妇人妻久久中文字幕3abv| 舔av片在线| 波多野结衣高清作品| 内地一区二区视频在线| 在线观看一区二区三区| 女的被弄到高潮叫床怎么办| 免费看日本二区| 此物有八面人人有两片| 一级黄片播放器| 波多野结衣高清无吗| 日本一二三区视频观看| 高清午夜精品一区二区三区 | 我的老师免费观看完整版| 能在线免费看毛片的网站| 婷婷亚洲欧美| av卡一久久| 久久久久国产网址| 超碰av人人做人人爽久久| 午夜免费男女啪啪视频观看| 国产一区二区在线av高清观看| 中文字幕久久专区| 国产高清视频在线观看网站| 亚洲av成人精品一区久久| 99久久中文字幕三级久久日本| 免费在线观看成人毛片| 22中文网久久字幕| 精品一区二区三区视频在线| 天堂中文最新版在线下载 | 18+在线观看网站| 九色成人免费人妻av| 99热这里只有是精品50| 爱豆传媒免费全集在线观看| 国产在线精品亚洲第一网站| 国产精品,欧美在线| 国产久久久一区二区三区| 看非洲黑人一级黄片| 免费看av在线观看网站| 五月伊人婷婷丁香| 欧美成人精品欧美一级黄| 黄片无遮挡物在线观看| 欧美丝袜亚洲另类| 精华霜和精华液先用哪个| 中文字幕制服av| 国产真实伦视频高清在线观看| 国产成人a∨麻豆精品| 在线播放无遮挡| 亚洲精品国产成人久久av| 天堂av国产一区二区熟女人妻| 久久精品影院6| 欧美一级a爱片免费观看看| 在线免费观看的www视频| 久久久久久久久久久丰满| www.色视频.com| 亚洲精品乱码久久久v下载方式| 久久精品国产自在天天线| 蜜桃亚洲精品一区二区三区| 精品久久久久久久久亚洲| 国产精品伦人一区二区| 亚洲精品日韩av片在线观看| 欧美成人免费av一区二区三区| 3wmmmm亚洲av在线观看| 内地一区二区视频在线| 九九久久精品国产亚洲av麻豆| 内地一区二区视频在线| 日韩精品有码人妻一区| 亚洲国产精品国产精品| 久久中文看片网| 老女人水多毛片| 黑人高潮一二区| 免费人成在线观看视频色| 长腿黑丝高跟| 国产成人午夜福利电影在线观看| 免费看美女性在线毛片视频| 人妻制服诱惑在线中文字幕| 日日摸夜夜添夜夜爱| www.av在线官网国产| 日本爱情动作片www.在线观看| 老熟妇乱子伦视频在线观看| 一边摸一边抽搐一进一小说| 色哟哟哟哟哟哟| 亚洲欧美中文字幕日韩二区| 国产精品福利在线免费观看| 成熟少妇高潮喷水视频| 日韩欧美一区二区三区在线观看| 又黄又爽又刺激的免费视频.| 精品午夜福利在线看| 国产在线精品亚洲第一网站| 91久久精品国产一区二区三区| 国产亚洲精品av在线| 听说在线观看完整版免费高清| 精品少妇黑人巨大在线播放 | 亚洲精品乱码久久久v下载方式| 草草在线视频免费看| 亚洲成a人片在线一区二区| 国内少妇人妻偷人精品xxx网站| 秋霞在线观看毛片| 深夜a级毛片| 精品99又大又爽又粗少妇毛片| 久久精品国产亚洲av香蕉五月| 精品久久久久久成人av| 丰满人妻一区二区三区视频av| 男女那种视频在线观看| 少妇的逼好多水| 欧美潮喷喷水| 噜噜噜噜噜久久久久久91| av在线亚洲专区| 午夜亚洲福利在线播放| 人人妻人人澡人人爽人人夜夜 | 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 九草在线视频观看| 天美传媒精品一区二区| 白带黄色成豆腐渣| 亚洲va在线va天堂va国产| 国产极品精品免费视频能看的| 亚洲欧美日韩高清专用| 亚洲精品日韩在线中文字幕 | 在线免费观看的www视频| 午夜精品一区二区三区免费看| 国产av不卡久久| 麻豆一二三区av精品| 少妇裸体淫交视频免费看高清| 大香蕉久久网| 毛片女人毛片| 日韩人妻高清精品专区| 国产精品伦人一区二区| 久久中文看片网| 日韩一区二区视频免费看| 乱人视频在线观看| 看十八女毛片水多多多| 在现免费观看毛片| 亚洲自拍偷在线| 欧洲精品卡2卡3卡4卡5卡区| 五月玫瑰六月丁香| 在线国产一区二区在线| 亚洲欧美日韩卡通动漫| av.在线天堂| 亚洲欧美中文字幕日韩二区| 日韩欧美精品v在线| 亚洲图色成人| 国产成人福利小说| 久久久久国产网址| 亚洲四区av| 91午夜精品亚洲一区二区三区| 成人二区视频| 爱豆传媒免费全集在线观看| 97超碰精品成人国产| 99国产精品一区二区蜜桃av| 国产极品精品免费视频能看的| 日韩一区二区三区影片| 久久精品夜夜夜夜夜久久蜜豆| 国产在线精品亚洲第一网站| 嫩草影院精品99| 白带黄色成豆腐渣| 能在线免费观看的黄片| 婷婷色综合大香蕉| 亚洲人成网站高清观看| 淫秽高清视频在线观看| h日本视频在线播放| 久久国内精品自在自线图片| 国产三级中文精品| 女的被弄到高潮叫床怎么办| 久久中文看片网| 国产精品野战在线观看| 免费电影在线观看免费观看| 国产91av在线免费观看| 在线观看66精品国产| 久久精品国产亚洲av涩爱 | 久久久色成人| 日本-黄色视频高清免费观看| 亚洲婷婷狠狠爱综合网| 少妇高潮的动态图| 免费大片18禁| 国产午夜精品论理片| 一个人免费在线观看电影| 国产精品不卡视频一区二区| 爱豆传媒免费全集在线观看| 又黄又爽又刺激的免费视频.| 99热网站在线观看| 亚洲精品乱码久久久v下载方式| 亚洲国产精品sss在线观看| 欧美丝袜亚洲另类| 亚洲精品自拍成人| 欧美成人一区二区免费高清观看| 欧美色视频一区免费| 高清午夜精品一区二区三区 | 波多野结衣巨乳人妻| 久久精品综合一区二区三区| 久久草成人影院| 久久99热这里只有精品18| 久久精品国产亚洲av天美| 深夜a级毛片| 久久99热6这里只有精品| 一进一出抽搐gif免费好疼| 亚洲欧美清纯卡通| 精品不卡国产一区二区三区| 嫩草影院入口| 不卡视频在线观看欧美| 欧美日韩乱码在线| 免费av观看视频| 国产视频首页在线观看| 啦啦啦韩国在线观看视频| 又粗又硬又长又爽又黄的视频 | 可以在线观看的亚洲视频| 国产欧美日韩精品一区二区| 精品午夜福利在线看| 国产久久久一区二区三区| 免费av毛片视频| 尤物成人国产欧美一区二区三区| 国产精品久久久久久亚洲av鲁大| 午夜精品在线福利| 日本黄色视频三级网站网址| 免费搜索国产男女视频| 免费看光身美女| 中国国产av一级| 欧美变态另类bdsm刘玥| 国国产精品蜜臀av免费| 国产在线男女| 综合色丁香网| 婷婷亚洲欧美| 一边摸一边抽搐一进一小说| 免费av不卡在线播放| 美女cb高潮喷水在线观看| 我的老师免费观看完整版| 非洲黑人性xxxx精品又粗又长| 神马国产精品三级电影在线观看| 桃色一区二区三区在线观看| 97人妻精品一区二区三区麻豆| 欧美另类亚洲清纯唯美| 久久精品国产清高在天天线| 联通29元200g的流量卡| 激情 狠狠 欧美| 欧美激情久久久久久爽电影| 亚洲婷婷狠狠爱综合网| 亚洲中文字幕一区二区三区有码在线看| 午夜爱爱视频在线播放| 最好的美女福利视频网| 晚上一个人看的免费电影| 日日撸夜夜添| 国产探花极品一区二区| 国产老妇伦熟女老妇高清| 精品国产三级普通话版| 亚洲国产日韩欧美精品在线观看| 99久国产av精品国产电影| 最新中文字幕久久久久| 国产精品人妻久久久久久| 午夜福利视频1000在线观看| 少妇被粗大猛烈的视频| 18+在线观看网站| 给我免费播放毛片高清在线观看| 男人舔女人下体高潮全视频| kizo精华| 亚洲欧美日韩高清专用| 久久婷婷人人爽人人干人人爱| 亚洲性久久影院| 国产真实乱freesex| 免费av毛片视频| 不卡视频在线观看欧美| 三级毛片av免费| 美女黄网站色视频| 欧美激情久久久久久爽电影| 免费在线观看成人毛片| 国产男人的电影天堂91| 国产精品一区二区在线观看99 | 亚洲精品粉嫩美女一区| 国产老妇女一区| 特大巨黑吊av在线直播| 日韩强制内射视频| 国内精品美女久久久久久| 直男gayav资源| 嫩草影院新地址| 神马国产精品三级电影在线观看|