• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis of the Flow Rate Characteristics of Valveless Piezoelectric Pump with Fractal-like Y-shape Branching Tubes

    2014-03-01 01:48:34HUANGJunZHANGJianHuiWANGShouYinandLIUWeiDong

    HUANG Jun, ZHANG JianHui, , WANG ShouYin, and LIU WeiDong

    1 State Key Laboratory of Mechanics and Control of Mechanical Structures,Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

    2 Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China

    1 Introduction

    In recent years, with advancement of manufacturing and processing technology, especially in micro electronic mechanical system (MEMS), information technology (IT)industry has been developing rapidly and integration of various types of chips has also been greatly improved.However, highly integrated chips inevitably bring with problem of heat accumulation, which has seriously affected the efficiency of the chip. At the same time, the conventional solution of forced-air convection heat transfer is trending to its limit. To improve the efficiency of the chips, new heat dissipation methods have become a research focus for those highly integrated chips[1–5].

    Microchannel heat sink with high heat transfer coefficients and simple manufacturing has been extensively investigated due to its wide application prospective in electronic cooling. TUCKERMAN, et al[6], carried out pioneering work for the first proposed microchannel cooling technology in 1981. PENG, et al[7], performed experimental investigations on the convective heat transfer and flow characteristics of water in microchannel structures with small rectangular channels in 1996. Based on constructal theory, BEJAN, et al[8], firstly proposed the tree network to be used for electronic cooling in 1997. PENCE[9]proposed a fractal-like branching flow network to improve the thermal efficiency and temperature uniformity of the heat sink in 2000. CHEN, et al[10], studied fractal tree like microchannel networks in 2002. They found that the fractal tree like microchannel network can improve convective heat transfer and hydrodynamic performance of the heat sink compared with the conventional parallel microchannel network. XU, et al[11], analyzed the heat conduction through symmetric fractal tree-like branching networks and obtained the expression of thermal conductivity in the networks in 2006. Meanwhile, they analyzed the relationship between the effective thermal conductivity and the geometric structures of the networks. However, so as for the cooling system, the microchannel still need a separate micropump as an external power source, which makes the system difficult to miniaturization, and also affects its reliability.

    One new type microchannel cooling system with the characteristic of simple structure and high reliability,combinating power source and microchannel effectively,needs to be designed to overcome above shortcomings.According to the preliminary studies and valve-less piezoelectric pump with Y-shape tubes invented by ZHANG, et al[12–13], the valve-less piezoelectric pump with fractal-like Y-shape branching tubes (VPPFYT) will be proposed. Fractal-like Y-shape branching tube (FYBT) is a no-moving-part (NMP) valve among the valve-less piezoelectric pump, meanwhile pump body and power source can be integrated on the chip.

    Size of fractal dimension reveals complexity of geometry.Hence, fractal theory will be used to discuss flow resistance characteristics of FYBTs with different hydraulic diameter ratios, and analyze relationships between flow rate of VPPFYT and fractal dimensions of diameter distribution of the tubes in this study.

    This paper will firstly propose valveless piezoelectric pump with fractal-like Y-shape branching tubes. It is designed based on actuating mechanism, considering the integration of fractal-like branching tube in microchannel heat sinks, and pump body also. Then, expressions of flow resistance of the tube along merging and dividing flows are established respectively, by which the relationships between flow resistance of FYBT and pump flow rate are analyzed. Meanwhile, finite element method is employed to analyze the FYBTs with different fractal dimensions of diameter distribution. The relationships between pressure drop and flow rate along merging and dividing flows are obtained. Finally, experimental study is done, the feasibility of the VPPFYT is validated, and variations of pump flow rate influenced by fractal dimension of diameter distribution and electrical parameter are obtained.

    2 Structure of the Fractal-like Y-shape Branching Tube and Pump

    Fig. 1 shows the structure of the fractal-like Y-shape branching tube. According to structure of fractal-like branching and based on the Y-shape tube, the fractal-like Y-shape branching tube is designed. To generate this tube,0th level mother duct is divided into 2 daughter branches at 1th level. The branches at the ends of the newly formed ducts may be continued until the required FYBT at the specified branching level is obtained. The width of the 0th level mother duct is w0, the length is l0, then wkis the width at the kth branching level, and lkis the length at the kth branching level. Each bifurcation angle is 2α, and the depth of the whole tube is h.

    When the flow happens in the FYBT, the flow resistance of merging flow is unequal to that of dividing flow.Therefore, a pair of fractal-like Y-shape branching tubes as NMP valve is installed on each side of pump chamber,which constructs the valveless piezoelectric pump with fractal-like Y-shape branching tubes, as shown in Fig. 2.This pump is mainly composed of a piezoelectric vibrator,a pump chamber and a pair of fractal-like Y-shape branching tubes headed in the same direction.

    Fig. 1. Fractal-like Y-shape branching tube

    Fig. 2. Valveless piezoelectric pump with fractal-like Y-shape branching tubes

    Fig. 3 is a schematic diagram of VPPFYT achieving heat dissipation. The substrate with the fractal-like Y-shape branching microchannels is bonded to the chip, on which cover plate is packaged. Piezoelectric thin film and electrode are formed by method of sputter deposition on the surface of cover plate, which assemble a piezoelectric vibrator. The piezoelectric vibrator loaded by an alternating voltage will vibrate upwards and downwards causing the coolant movement. As the result of the difference flow resistances between the merging and dividing flows, the coolant flows from inlet of pump towards the outlet in macro continuously. Meanwhile, fractal-like Y-shape branching tubes have the characteristics of high heat transfer efficiency and better temperature uniformity, which can transfer the heat of chip with the coolant movement.Therefore, by integrating the cooling microchannel and power source, this pump greatly reduces the volume of the whole cooling system.

    Fig. 3. Valveless piezoelectric pump with fractal-like Y-shape branching tubes on chip

    3 Theoretical Analysis for the Flow Resistance and Pump Rate

    3.1 Flow resistance of fractal-like Y-shape branching tube

    Fig. 1 shows that, wkand lkrepresent the width and length of the kth level duct, respectively. And kth level mother duct is divided into 2kdaughter branches at (k+1)th level. Two scale factors are defined to describe the geometric structure of branching network.

    where l0and d0are the length and hydraulic diameter of the initial (0th level) mother duct, respectively. lmand dmare the length and hydraulic diameter of the terminal (mth level)daughter duct, respectively. According to the fractal characteristics of the structure[14],

    where Dland Ddis the fractal dimensions of length and diameter distribution of the fractal-like Y-shape branching network, respectively. For the structure of two bifurcations,n=2. Eq. (5) can be presented as follows:

    Due to characteristics of difference resistances between merging and dividing flows, fractal-like Y-shape branching tube is exploited as a NMP of valveless piezoelectric pump.

    When fluid dividing through tube, the pressure drop along the duct at the kth branching level is given by

    where vkis the velocity in the kth branching level duct,and c is a constant, which depends on fluid properties and cross sectional shape of the duct.

    The local pressure loss, caused by fluid dividing through tube from (k?1)th level to kth level , can be indicated as:

    where ξ is the local resistance coefficient when fluid dividing through tube. The bifurcation angles of Y-shape tubes in every level are 2α, thus the local resistance coefficient of every bifurcation is equal.

    From the law of mass conservation,

    Thus, when the fluid flows along dividing direction, the total pressure drop of the whole tube can be expressed as:

    From Eqs. (6) and (10),

    The total flow resistance of the fractal-like Y-shape branching tube, when fluid dividing through the tube, is

    Similarly, when the fluid flows along merging direction,the pressure drop along the duct at the kth branching level is given by

    The local pressure loss, caused by fluid merging through tube from kth level to (k?1)th level, is expressed as:

    where ξ¢ is the local resistance coefficient when fluid merging through the tube.

    Thus, when the fluid flows along merging direction, the total pressure drop of the whole tube is obtained:

    The total flow resistance of the fractal-like Y-shape branching tube, when fluid merges through the tube, is

    3.2 Flow rate analysis

    Micropump efficiency is evaluated for two limit loading conditions: maximum pressure head at zero flow rate and maximum flow rate at zero pressure head. When piezoelectric pump exports maximum flow rate, pressure drops in two NMP valves are equal[15], as shown in Fig. 4.

    The algebraic sum of flow rates, either flow into or out off the pump chamber through FYBT, is equal to the amount of fluid in pump chamber. So,

    Fig. 4. Flowing scheme of the valveless piezoelectric micropump with fractal-like Y-shape branching tube

    The maximum flow rate of the piezoelectric pump can be expressed as

    From Eqs. (12) and (16),

    When piezoelectric vibrator is driven under a certain frequency, the maximum flow rate of the pump depends on branching levels, fractal dimensions of length and diameter distribution and the local resistance coefficient of the tube.So,

    This nonlinear flow resistance in Eqs. (12) and (16),caused by local pressure loss, does not only depend on the local resistance coefficient and the fractal dimensions of diameter distribution of the tube, but also relate to the flow rate. Therefore, the study utilized the finite element method to analyze the relationship between the flow rate and the pressure drop in the FYBT with different fractal dimensions of diameter distribution is conducted, so that critical standard of effectiveness can be judged.

    4 Simulation Analysis

    In this research, the software CFX is employed to perform the finite element analysis. The model of fractal-like Y-shape branching tube is established, and the duct width of each level is obtained, as shown in Table 1.

    Table 1. Duct widths of each level with different fractal dimensions of diameter distribution

    The model of fractal-like Y-shape branching tube is imported into finite element software, and its flow field is simulated with water as the working fluid. Due to the micro amplitude of vibration of piezoelectric vibrator, the flow is assumed to be laminar in this research. No-slip boundary conditions are applied at the FYBT surfaces. The overall pressure drop across the tube is defined as D p = pin- pout,where pinand poutare the inlet and outlet pressures,respectively. The reference pressure (atmosphere pressure)as the outlet pressure is loaded the outlet planes[16].

    The relationship between pressure drop and flow rate in the tube when flow is merging and dividing can be obtained respectively. Fig. 5 is velocity and pressure contour pattern of the tube along merging and dividing flows, when Dd=2,D p=20 Pa.

    Fig. 5. Velocity and pressure contour patterns of the fractal-like Y-shape branching tube, when

    Fig. 6 and Fig. 7 show the relationship curves between pressure drop and flow rate of the FYBT along merging and dividing flows respectively.

    Fig. 6. Curves between pressure drop and mass flow of the tube along dividing flow

    Fig. 7. Curves between pressure drop and mass flow of the tube along merging flow

    Simulation results show that, with pressure drop increase,export flow rate of tubes with different fractal dimensions of diameter distribution increases gradually. When pressure drop is fixed, with fractal dimensions of diameter distribution increase, export flow rate of tubes increase as well. Meanwhile, export flow rate of each tube is unequal for merging and dividing flows. According to Eq. 20, when difference of flow rate along merging and dividing flows becomes larger, the flow rate of the VPPFYT increases.

    5 Experimental Study

    Four VPPFYTs with different fractal dimensions of diameter distribution are fabricated, as shown in Fig. 8. The geometrical parameters of each tube are the same with Table 1.

    Fig. 9 represents a picture of flow measurement for the valveless piezoelectric pump with fractal-like Y-shape branching tubes. The piezoelectric pump is driven by an alternating sine-wave input. The input signal within 100 V peak to peak (VP-P) is controlled by a function generator[17].The liquid in the piezoelectric pump is deionized water.Through measuring the mass flow rate of VPPFYT in unit time by changing driving frequency of the piezoelectric vibrator, we can obtain the experimental results of volume flow rate with changing frequency under 100 VP-P. The results about the flow rate versus driving frequency are shown in Fig. 10.

    Fig. 8. Tubes with different fractal dimensions of diameter distribution

    Fig. 9. Schematic diagram of flow rate experiment

    The results show that the experimental result is in keeping with the result of simulation. With fractal dimensions of diameter distribution increases, the difference of flow resistance of FYBT along merging and dividing direction increase, which brings a larger flow rate of the pump. When Dd=3, the maximum flow rate of the valveless pump is 29.16 mL/min under 13 Hz.

    When the driving frequency is 13 Hz, we can obtain the curves of flow rate versus voltage of the pump with changing driving voltage of the piezoelectric vibrator as shown in Fig. 11. This figure demonstrates that flow rate of pump increase as driving voltage enhances. When Dd=3,the maximum flow rate of the valveless pump is 55.92 mL/min under 200 VP-P(13 Hz).

    Fig. 11. Curves between the flow rate and the driving voltage

    The experiments show the effectiveness of valveless piezoelectric pump with fractal-like Y-shape branching tubes, which prove that fractal-like Y-shape branching tube has different flow resistances in merging and dividing directions.

    6 Conclusions

    (1) The relationship between structure and flow resistance of fractal-like Y-shape branching tube is analyzed based on the fractal theory. Meanwhile, the flow rate characteristics of valveless piezoelectric pump with fractal-like Y-shape branching tubes are analyzed. When piezoelectric vibrator is driven under a certain frequency,the maximum flow rate of the pump depends on branching levels, fractal dimensions of length and diameter distribution and the local resistance coefficient of the tube.

    (2) The finite element software is employed to simulate the flow filed of fractal-like Y-shape branching tube. And the relationships between pressure drop and flow rate of FYBT with different fractal dimensions of diameter distribution are obtained.

    (3) The valveless piezoelectric pumps with different fractal dimensions of diameter distribution are designed and fabricated. The relationships between the driving frequency and the flow rates, as well as the relationships between the driving voltage and the flow rates are experimentally investigated. The experimental results show that, with fractal dimension of diameter distribution increases, the flow rate of the pump increases. When Dd=3,the maximum flow rate of the valveless pump is 29.16 mL/min under 100 VP-P(13 Hz) power supply.

    [1] SINGHAL V, GARIMELLA S V, RAMAN A. Microscale pumping technologies for microchannel cooling systems[J]. Applied Mechanics Reviews, 2004, 57(3): 191–221.

    [2] MA H K, CHEN B R, GAO J J, et al. Development of an OAPCP-Micropump Liquid Cooling System in a Laptop[J].International Communications in Heat and Mass Transfer, 2009,36(3): 225–232.

    [3] XIAO Qinghua, CHEN Lingen, SUN Fengrui. Constructal entransy dissipation rate and flow-resistance minimizations for cooling channels[J]. Sci. China Tech. Sci., 2010, 53(9): 2458–2468.

    [4] CHI Yong, TANG Yong, CHEN Jinchang, et al. Miniaturized capillary pumped loop heat controlling system and it’s manufacturing technique[J]. Chinese Journal of Mechanical Engineering, 2007, 43(12): 166–170. (in Chinese)

    [5] LI Yong, HE Ting, ZENG Zhixin. Analysis of collapse in flattening a micro-grooved heat pipe by lateral compression[J]. Chinese Journal of Mechanical Engineering, 2012, 25(6): 1210–1217.

    [6] TUCKERMAN D B, PEASE R F W. High-performance heat sinking for VLSI[J]. IEEE Electron Device Letters, 1981, 2(5): 126–129.

    [7] PENG Xiaofeng, PETERSON G P. Convective heat transfer and flow friction for water flow in microchannel structures[J]. Int. J.Heat Mass Transfer, 1996, 39(12): 2599–2608.

    [8] BEJAN A, ERRERA M R. Deterministic tree networks for fluid flow: geometry for minimal flow resistance between a volume and one point[J]. Fractals, 1997, 5(4): 685–695.

    [9] PENCE D V. Improved thermal efficiency and temperature uniformity using fractal-like branching channel networks[C]//Proceedings of the International Conference on Heat Transfer and Transport Phenomena in Micro Scale. Banff, Canada,2000: 142–148.

    [10] CHEN Yongping, CHENG Ping. Heat transfer and pressure drop in fractal tree-like microchannel nets[J]. Int. J. Heat Mass Transfer,2002, 45(13): 2643–2648.

    [11] XU Peng, YU Boming, YUN Meijuan, et al. Heat conduction in fractal tree-like branched networks[J]. Int. J. Heat Mass Transf.,2006, 49(19–20): 3746–3751.

    [12] ZHANG Jianhui, LI Yili, XIA Qixiao. Analysis of the pump volume flow rate and tube property of the piezoelectric valveless pump with Y-shape tubes[J]. Chinese Journal of Mechanical Engineering, 2007,43(11): 136–141. (in Chinese)

    [13] ZHANG Jianhui, LU Jizhuang, XIA Qixiao, et al. Application of valve-less piezoelectric pump with Y-shape tubes for transporting cells and macromolecule[J]. Chinese Journal of Mechanical Engineering, 2008, 44(9): 92–99. (in Chinese)

    [14] MANDELBROT B B. The fractal geometry of nature[M]. New York,W. H. Freeman and Company, 1982.

    [15] IZZO I, ACCOTO D, MENCIASSI A, et al. Modeling and experimental validation of a piezoelectric micropump with novel no-moving-part valves[J]. Sens. Actuators A, 2007, 133(1): 128–140.

    [16] XIA Qixiao, ZHANG Jianhui, LEI Hong, et al. Analysis on flow field of the valveless piezoelectric pump with two inlets and one outlet and a rotating unsymmetrical slopes element[J]. Chinese Journal of Mechanical Engineering, 2012, 25(3): 474–483.

    [17] WANG Baowei, CHU Xiangcheng, LI Enzhu, et al. Simulations and analysis of a piezoelectric micropump[J]. Ultrasonics, 2006, 44:643–646.

    欧美+日韩+精品| 日韩欧美三级三区| 九九久久精品国产亚洲av麻豆| 18禁黄网站禁片免费观看直播| 欧美bdsm另类| 91在线精品国自产拍蜜月| 亚洲人成伊人成综合网2020| 成人精品一区二区免费| 日本免费一区二区三区高清不卡| 国产精品福利在线免费观看| 丰满的人妻完整版| 亚洲五月天丁香| 男人的好看免费观看在线视频| 日韩欧美在线二视频| av黄色大香蕉| 小说图片视频综合网站| 精品一区二区三区视频在线观看免费| 亚洲精品亚洲一区二区| 国国产精品蜜臀av免费| 国产人妻一区二区三区在| 久久午夜亚洲精品久久| 99久久中文字幕三级久久日本| 最近中文字幕高清免费大全6 | 一卡2卡三卡四卡精品乱码亚洲| 亚洲午夜理论影院| 波多野结衣高清无吗| 床上黄色一级片| 男插女下体视频免费在线播放| 国内久久婷婷六月综合欲色啪| 少妇熟女aⅴ在线视频| 人人妻人人澡欧美一区二区| 制服丝袜大香蕉在线| 在线看三级毛片| 亚洲av中文字字幕乱码综合| 22中文网久久字幕| 成年女人永久免费观看视频| 熟女人妻精品中文字幕| 国内精品一区二区在线观看| 两个人的视频大全免费| 有码 亚洲区| 麻豆国产av国片精品| 99热这里只有是精品50| 国产一区二区三区视频了| 久久中文看片网| 午夜老司机福利剧场| 直男gayav资源| 亚洲经典国产精华液单| 欧美日韩黄片免| 国产私拍福利视频在线观看| 久久久久国内视频| 国产综合懂色| 国产毛片a区久久久久| 久久国产乱子免费精品| 最近中文字幕高清免费大全6 | 中文字幕av成人在线电影| 国产精品三级大全| 麻豆精品久久久久久蜜桃| 中国美白少妇内射xxxbb| av天堂在线播放| 91久久精品国产一区二区三区| 国产精品美女特级片免费视频播放器| 精品久久久久久久人妻蜜臀av| 男女啪啪激烈高潮av片| 久久6这里有精品| av女优亚洲男人天堂| 日本一本二区三区精品| 欧美区成人在线视频| 一进一出好大好爽视频| 免费观看的影片在线观看| 久久人妻av系列| 亚洲第一区二区三区不卡| 色吧在线观看| 久久九九热精品免费| 男女那种视频在线观看| 一区二区三区激情视频| 哪里可以看免费的av片| 国产精品美女特级片免费视频播放器| 搡老熟女国产l中国老女人| 人人妻,人人澡人人爽秒播| 国产精品爽爽va在线观看网站| 99热6这里只有精品| 久久久久久久久中文| 嫩草影视91久久| 久久久久久久午夜电影| 无人区码免费观看不卡| 91狼人影院| 美女大奶头视频| 亚洲黑人精品在线| 久久精品国产亚洲av天美| 99视频精品全部免费 在线| 91麻豆精品激情在线观看国产| 亚洲va在线va天堂va国产| 观看免费一级毛片| 国内少妇人妻偷人精品xxx网站| 色哟哟·www| 中文字幕精品亚洲无线码一区| 中文字幕高清在线视频| 亚洲国产精品sss在线观看| 91在线精品国自产拍蜜月| 内地一区二区视频在线| 免费观看在线日韩| 久久精品综合一区二区三区| 成人二区视频| 亚洲精品一卡2卡三卡4卡5卡| 在线免费观看的www视频| 久久久国产成人免费| 中文字幕av在线有码专区| av天堂在线播放| 一夜夜www| 欧美日韩亚洲国产一区二区在线观看| 在线观看免费视频日本深夜| 少妇的逼好多水| 日韩 亚洲 欧美在线| 在线播放无遮挡| 国产午夜精品久久久久久一区二区三区 | 亚洲国产精品合色在线| 亚洲综合色惰| 99在线视频只有这里精品首页| 国产伦精品一区二区三区四那| 婷婷精品国产亚洲av在线| 亚洲av一区综合| 人妻久久中文字幕网| 国产精品98久久久久久宅男小说| 十八禁网站免费在线| 国产成人aa在线观看| 久久久久免费精品人妻一区二区| 午夜福利在线在线| 长腿黑丝高跟| 麻豆av噜噜一区二区三区| 又黄又爽又刺激的免费视频.| 欧美日韩综合久久久久久 | 亚洲图色成人| 国产午夜福利久久久久久| 国产精品日韩av在线免费观看| 成年免费大片在线观看| 成人国产综合亚洲| 亚洲av美国av| 久久99热6这里只有精品| 国产精品一区二区三区四区免费观看 | 亚洲18禁久久av| bbb黄色大片| 欧美激情国产日韩精品一区| 婷婷六月久久综合丁香| 国产成人aa在线观看| 熟妇人妻久久中文字幕3abv| 久久这里只有精品中国| 99在线视频只有这里精品首页| 在线播放无遮挡| 久久精品国产自在天天线| 午夜老司机福利剧场| 日韩一区二区视频免费看| 国产三级在线视频| videossex国产| 国内精品久久久久精免费| 97碰自拍视频| 亚洲黑人精品在线| 真人做人爱边吃奶动态| 国产主播在线观看一区二区| bbb黄色大片| 成人高潮视频无遮挡免费网站| 精品一区二区免费观看| 日韩 亚洲 欧美在线| 欧美绝顶高潮抽搐喷水| 97超视频在线观看视频| 午夜激情欧美在线| 看十八女毛片水多多多| 欧美精品国产亚洲| 成年女人毛片免费观看观看9| 波野结衣二区三区在线| 成年女人永久免费观看视频| 亚洲人成网站在线播| 免费观看在线日韩| 精品人妻偷拍中文字幕| 日本 欧美在线| 国产色婷婷99| 美女大奶头视频| 给我免费播放毛片高清在线观看| 中文资源天堂在线| 亚洲av.av天堂| 国产麻豆成人av免费视频| 亚洲va日本ⅴa欧美va伊人久久| 国产91精品成人一区二区三区| 可以在线观看的亚洲视频| 一个人看视频在线观看www免费| 久久精品国产清高在天天线| 成年免费大片在线观看| 亚洲一区二区三区色噜噜| 极品教师在线免费播放| 十八禁国产超污无遮挡网站| 亚洲成人精品中文字幕电影| 亚洲av免费高清在线观看| 亚洲国产日韩欧美精品在线观看| 丰满人妻一区二区三区视频av| 非洲黑人性xxxx精品又粗又长| 黄色一级大片看看| 国产一区二区亚洲精品在线观看| 特大巨黑吊av在线直播| 久久精品91蜜桃| 我要看日韩黄色一级片| 中文在线观看免费www的网站| 我的老师免费观看完整版| 色综合亚洲欧美另类图片| 亚洲欧美日韩高清专用| 久久久精品大字幕| 国产极品精品免费视频能看的| 黄色视频,在线免费观看| 久久久久精品国产欧美久久久| 91午夜精品亚洲一区二区三区 | 身体一侧抽搐| 女人十人毛片免费观看3o分钟| 久久久精品大字幕| 亚洲成人中文字幕在线播放| 国产精品一区www在线观看 | 国产精品嫩草影院av在线观看 | 国国产精品蜜臀av免费| 乱码一卡2卡4卡精品| 国产精品福利在线免费观看| 真人一进一出gif抽搐免费| 亚洲性久久影院| 免费不卡的大黄色大毛片视频在线观看 | 亚洲男人的天堂狠狠| av在线蜜桃| 超碰av人人做人人爽久久| 老师上课跳d突然被开到最大视频| 人人妻,人人澡人人爽秒播| 99riav亚洲国产免费| 亚洲成av人片在线播放无| 高清日韩中文字幕在线| 成年免费大片在线观看| 欧美一区二区精品小视频在线| 欧美在线一区亚洲| 尾随美女入室| 97超视频在线观看视频| 亚洲美女搞黄在线观看 | 欧美一区二区亚洲| 免费观看精品视频网站| 国产蜜桃级精品一区二区三区| 在线看三级毛片| 免费观看在线日韩| 精品久久久久久久末码| 内射极品少妇av片p| 长腿黑丝高跟| 最近最新中文字幕大全电影3| 亚洲国产精品sss在线观看| 精品一区二区三区视频在线| 亚洲精品一卡2卡三卡4卡5卡| 亚洲最大成人av| 国产aⅴ精品一区二区三区波| 欧美日本亚洲视频在线播放| 亚洲人与动物交配视频| 亚洲国产高清在线一区二区三| 嫩草影院新地址| av专区在线播放| 国产精品av视频在线免费观看| 少妇人妻精品综合一区二区 | 久久久精品大字幕| 久久久久久伊人网av| 97超级碰碰碰精品色视频在线观看| 网址你懂的国产日韩在线| 欧美性猛交黑人性爽| 精品久久久久久久久久久久久| 自拍偷自拍亚洲精品老妇| 亚洲av免费高清在线观看| 看十八女毛片水多多多| a级毛片免费高清观看在线播放| 亚洲天堂国产精品一区在线| 草草在线视频免费看| 国内精品久久久久久久电影| 一进一出抽搐gif免费好疼| 久久久久国内视频| 一个人看的www免费观看视频| 嫩草影院精品99| 人妻丰满熟妇av一区二区三区| 男女下面进入的视频免费午夜| 久久久久性生活片| 国产高潮美女av| 色精品久久人妻99蜜桃| 白带黄色成豆腐渣| 91在线精品国自产拍蜜月| 少妇的逼水好多| 欧美黑人欧美精品刺激| 乱码一卡2卡4卡精品| eeuss影院久久| 韩国av在线不卡| 国内精品美女久久久久久| 欧美成人a在线观看| 伦精品一区二区三区| 精品久久国产蜜桃| 日日夜夜操网爽| 久久精品国产清高在天天线| 久久精品国产鲁丝片午夜精品 | 亚洲在线自拍视频| 亚洲一级一片aⅴ在线观看| 老司机午夜福利在线观看视频| 午夜福利高清视频| 欧美色视频一区免费| 国语自产精品视频在线第100页| 国内毛片毛片毛片毛片毛片| 亚洲中文日韩欧美视频| 色综合站精品国产| 国产伦精品一区二区三区四那| 亚洲av免费在线观看| 蜜桃久久精品国产亚洲av| 日本与韩国留学比较| 能在线免费观看的黄片| 亚洲中文字幕一区二区三区有码在线看| 日本 欧美在线| 亚洲欧美日韩东京热| 国产乱人视频| 一本一本综合久久| 在线天堂最新版资源| 欧美在线一区亚洲| 亚洲色图av天堂| 校园人妻丝袜中文字幕| 日日摸夜夜添夜夜添av毛片 | 免费看光身美女| 日韩强制内射视频| 99热精品在线国产| 女生性感内裤真人,穿戴方法视频| 99热这里只有是精品50| 国产91精品成人一区二区三区| 欧美高清性xxxxhd video| 精华霜和精华液先用哪个| 成人三级黄色视频| 日本黄色片子视频| 国产真实伦视频高清在线观看 | 天堂动漫精品| av黄色大香蕉| 国产精品一及| 久久人妻av系列| 久久久久久久久大av| 欧洲精品卡2卡3卡4卡5卡区| 男女做爰动态图高潮gif福利片| 亚洲欧美激情综合另类| av天堂在线播放| 午夜激情福利司机影院| 亚洲真实伦在线观看| 欧美xxxx性猛交bbbb| 免费在线观看影片大全网站| 国产精品一区www在线观看 | 日韩欧美在线二视频| 午夜福利欧美成人| 精品日产1卡2卡| 午夜影院日韩av| 亚洲成人久久爱视频| 亚洲成人久久性| 成年人黄色毛片网站| 全区人妻精品视频| 午夜精品在线福利| 人妻夜夜爽99麻豆av| 国产精品嫩草影院av在线观看 | 性插视频无遮挡在线免费观看| 成人国产综合亚洲| 一区二区三区免费毛片| 亚洲国产高清在线一区二区三| 18禁裸乳无遮挡免费网站照片| av天堂中文字幕网| 久久久久九九精品影院| 精品一区二区三区视频在线观看免费| 亚洲欧美日韩高清专用| 在线观看av片永久免费下载| 无人区码免费观看不卡| 日本与韩国留学比较| 麻豆av噜噜一区二区三区| 欧美日本亚洲视频在线播放| 国产v大片淫在线免费观看| 美女免费视频网站| 亚洲人成网站在线播| 久久精品夜夜夜夜夜久久蜜豆| 欧美极品一区二区三区四区| 男女做爰动态图高潮gif福利片| 亚洲美女搞黄在线观看 | 性色avwww在线观看| 变态另类成人亚洲欧美熟女| 久久久久九九精品影院| 两个人的视频大全免费| 少妇人妻精品综合一区二区 | 欧美+日韩+精品| 欧美日韩乱码在线| 欧美不卡视频在线免费观看| 亚洲国产精品成人综合色| 看免费成人av毛片| 欧美xxxx黑人xx丫x性爽| 女同久久另类99精品国产91| 亚洲最大成人手机在线| 亚洲成人久久性| 亚洲成人久久爱视频| 日韩精品青青久久久久久| 国产美女午夜福利| 人人妻人人澡欧美一区二区| 亚洲av不卡在线观看| eeuss影院久久| 蜜桃久久精品国产亚洲av| 国产蜜桃级精品一区二区三区| 精品久久久久久久久久久久久| 国产91精品成人一区二区三区| 男女那种视频在线观看| 国产精品三级大全| 国产伦一二天堂av在线观看| 亚洲av熟女| 少妇高潮的动态图| 国模一区二区三区四区视频| 成人特级黄色片久久久久久久| 99久久精品国产国产毛片| 人妻夜夜爽99麻豆av| 99精品久久久久人妻精品| 97碰自拍视频| 99久国产av精品| 久久精品久久久久久噜噜老黄 | 色综合站精品国产| 欧美人与善性xxx| 亚洲av第一区精品v没综合| 少妇熟女aⅴ在线视频| 夜夜爽天天搞| 欧美三级亚洲精品| 能在线免费观看的黄片| 久久人人精品亚洲av| 又爽又黄无遮挡网站| 欧美bdsm另类| 国产高清三级在线| 亚洲无线在线观看| 成人高潮视频无遮挡免费网站| 天天躁日日操中文字幕| 成人特级黄色片久久久久久久| 精品一区二区三区视频在线| av中文乱码字幕在线| 亚洲欧美精品综合久久99| 久久婷婷人人爽人人干人人爱| 天堂影院成人在线观看| 天堂√8在线中文| 国产在线男女| 欧美成人性av电影在线观看| 精品不卡国产一区二区三区| 国产淫片久久久久久久久| 波多野结衣高清无吗| 一级av片app| 男女做爰动态图高潮gif福利片| 十八禁国产超污无遮挡网站| 九九热线精品视视频播放| 熟妇人妻久久中文字幕3abv| 午夜精品久久久久久毛片777| 国产一级毛片七仙女欲春2| 亚洲欧美日韩高清专用| 免费看a级黄色片| 人妻久久中文字幕网| 久久久久久伊人网av| 人妻丰满熟妇av一区二区三区| 亚洲精品国产成人久久av| 久久精品国产亚洲av涩爱 | 久久久精品欧美日韩精品| 免费看光身美女| 国模一区二区三区四区视频| 午夜福利高清视频| 如何舔出高潮| 99热只有精品国产| 小蜜桃在线观看免费完整版高清| 校园人妻丝袜中文字幕| 国产熟女欧美一区二区| 午夜激情福利司机影院| 在线观看一区二区三区| 午夜精品一区二区三区免费看| 亚洲国产欧美人成| 人妻制服诱惑在线中文字幕| 久久久久国内视频| 成人国产一区最新在线观看| 干丝袜人妻中文字幕| 亚洲美女视频黄频| 欧美潮喷喷水| 日本a在线网址| 国产视频一区二区在线看| av女优亚洲男人天堂| 亚洲自拍偷在线| 99久久成人亚洲精品观看| 国产亚洲91精品色在线| 欧美激情国产日韩精品一区| a在线观看视频网站| 日韩一本色道免费dvd| 成人鲁丝片一二三区免费| 色综合亚洲欧美另类图片| 日日夜夜操网爽| 观看美女的网站| 小说图片视频综合网站| 在线免费观看不下载黄p国产 | 大又大粗又爽又黄少妇毛片口| 欧美性感艳星| 日本成人三级电影网站| 熟女人妻精品中文字幕| 欧美bdsm另类| 欧美最黄视频在线播放免费| 亚洲七黄色美女视频| 免费观看在线日韩| 欧美丝袜亚洲另类 | 联通29元200g的流量卡| 欧美一区二区亚洲| 国产熟女欧美一区二区| xxxwww97欧美| 91麻豆精品激情在线观看国产| 真人做人爱边吃奶动态| 99久久无色码亚洲精品果冻| 欧美一区二区精品小视频在线| 老司机午夜福利在线观看视频| 久久中文看片网| 国产亚洲精品综合一区在线观看| 色精品久久人妻99蜜桃| 嫩草影视91久久| 免费黄网站久久成人精品| 哪里可以看免费的av片| 国内精品一区二区在线观看| 久9热在线精品视频| 久久国产乱子免费精品| 天堂网av新在线| 观看美女的网站| 日韩中文字幕欧美一区二区| 日本黄色片子视频| 久久久久久久久久黄片| 特级一级黄色大片| 久久国内精品自在自线图片| 国产男靠女视频免费网站| 99久久成人亚洲精品观看| 九九热线精品视视频播放| h日本视频在线播放| 国产成人aa在线观看| 午夜a级毛片| 国产精品野战在线观看| 亚洲国产精品成人综合色| 一进一出抽搐gif免费好疼| 精品日产1卡2卡| 国产av不卡久久| 久久久久国产精品人妻aⅴ院| 亚洲最大成人手机在线| 香蕉av资源在线| 久久久久久久久中文| 久久午夜福利片| 日韩一本色道免费dvd| 亚洲精品乱码久久久v下载方式| 哪里可以看免费的av片| 亚洲av五月六月丁香网| 国产成人aa在线观看| 久久这里只有精品中国| 午夜日韩欧美国产| 国产成人影院久久av| 国产三级在线视频| 亚洲av成人精品一区久久| 校园人妻丝袜中文字幕| 悠悠久久av| 亚洲男人的天堂狠狠| 琪琪午夜伦伦电影理论片6080| 亚洲经典国产精华液单| 国内精品久久久久久久电影| 色吧在线观看| 熟妇人妻久久中文字幕3abv| 欧美色视频一区免费| 一a级毛片在线观看| 99热精品在线国产| 夜夜爽天天搞| 婷婷精品国产亚洲av在线| 一本精品99久久精品77| 亚洲精品国产成人久久av| 日本成人三级电影网站| 亚洲一区高清亚洲精品| 国产欧美日韩精品亚洲av| 少妇高潮的动态图| 非洲黑人性xxxx精品又粗又长| 日日撸夜夜添| 欧美激情国产日韩精品一区| 麻豆成人午夜福利视频| 久久这里只有精品中国| 国产亚洲精品av在线| 午夜福利在线观看吧| 人人妻人人澡欧美一区二区| 精品久久久噜噜| 日日干狠狠操夜夜爽| 国产精品亚洲一级av第二区| 久久久国产成人免费| 欧美日本亚洲视频在线播放| 亚洲欧美日韩高清在线视频| 男女之事视频高清在线观看| 又紧又爽又黄一区二区| 别揉我奶头~嗯~啊~动态视频| 亚洲成人精品中文字幕电影| 欧美最黄视频在线播放免费| 一区二区三区免费毛片| 国产午夜精品久久久久久一区二区三区 | 亚洲av不卡在线观看| 欧美日韩中文字幕国产精品一区二区三区| 亚洲精品一卡2卡三卡4卡5卡| 桃色一区二区三区在线观看| 长腿黑丝高跟| av天堂中文字幕网| 久久久国产成人精品二区| 变态另类丝袜制服| 日本成人三级电影网站| 国产精品伦人一区二区| 有码 亚洲区| 九九在线视频观看精品| 干丝袜人妻中文字幕| 国产一区二区在线av高清观看| 又紧又爽又黄一区二区| 91精品国产九色| 亚洲无线在线观看| 成年女人看的毛片在线观看| 国产精品久久电影中文字幕| 淫秽高清视频在线观看| 永久网站在线| 国产久久久一区二区三区| 免费大片18禁| 午夜福利高清视频| 国产 一区 欧美 日韩| 精品免费久久久久久久清纯| 在线观看av片永久免费下载| 国产 一区 欧美 日韩| 91久久精品国产一区二区成人| 亚洲精品一区av在线观看| 日韩大尺度精品在线看网址| 午夜福利在线观看吧|