• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis of the Flow Rate Characteristics of Valveless Piezoelectric Pump with Fractal-like Y-shape Branching Tubes

    2014-03-01 01:48:34HUANGJunZHANGJianHuiWANGShouYinandLIUWeiDong

    HUANG Jun, ZHANG JianHui, , WANG ShouYin, and LIU WeiDong

    1 State Key Laboratory of Mechanics and Control of Mechanical Structures,Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

    2 Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China

    1 Introduction

    In recent years, with advancement of manufacturing and processing technology, especially in micro electronic mechanical system (MEMS), information technology (IT)industry has been developing rapidly and integration of various types of chips has also been greatly improved.However, highly integrated chips inevitably bring with problem of heat accumulation, which has seriously affected the efficiency of the chip. At the same time, the conventional solution of forced-air convection heat transfer is trending to its limit. To improve the efficiency of the chips, new heat dissipation methods have become a research focus for those highly integrated chips[1–5].

    Microchannel heat sink with high heat transfer coefficients and simple manufacturing has been extensively investigated due to its wide application prospective in electronic cooling. TUCKERMAN, et al[6], carried out pioneering work for the first proposed microchannel cooling technology in 1981. PENG, et al[7], performed experimental investigations on the convective heat transfer and flow characteristics of water in microchannel structures with small rectangular channels in 1996. Based on constructal theory, BEJAN, et al[8], firstly proposed the tree network to be used for electronic cooling in 1997. PENCE[9]proposed a fractal-like branching flow network to improve the thermal efficiency and temperature uniformity of the heat sink in 2000. CHEN, et al[10], studied fractal tree like microchannel networks in 2002. They found that the fractal tree like microchannel network can improve convective heat transfer and hydrodynamic performance of the heat sink compared with the conventional parallel microchannel network. XU, et al[11], analyzed the heat conduction through symmetric fractal tree-like branching networks and obtained the expression of thermal conductivity in the networks in 2006. Meanwhile, they analyzed the relationship between the effective thermal conductivity and the geometric structures of the networks. However, so as for the cooling system, the microchannel still need a separate micropump as an external power source, which makes the system difficult to miniaturization, and also affects its reliability.

    One new type microchannel cooling system with the characteristic of simple structure and high reliability,combinating power source and microchannel effectively,needs to be designed to overcome above shortcomings.According to the preliminary studies and valve-less piezoelectric pump with Y-shape tubes invented by ZHANG, et al[12–13], the valve-less piezoelectric pump with fractal-like Y-shape branching tubes (VPPFYT) will be proposed. Fractal-like Y-shape branching tube (FYBT) is a no-moving-part (NMP) valve among the valve-less piezoelectric pump, meanwhile pump body and power source can be integrated on the chip.

    Size of fractal dimension reveals complexity of geometry.Hence, fractal theory will be used to discuss flow resistance characteristics of FYBTs with different hydraulic diameter ratios, and analyze relationships between flow rate of VPPFYT and fractal dimensions of diameter distribution of the tubes in this study.

    This paper will firstly propose valveless piezoelectric pump with fractal-like Y-shape branching tubes. It is designed based on actuating mechanism, considering the integration of fractal-like branching tube in microchannel heat sinks, and pump body also. Then, expressions of flow resistance of the tube along merging and dividing flows are established respectively, by which the relationships between flow resistance of FYBT and pump flow rate are analyzed. Meanwhile, finite element method is employed to analyze the FYBTs with different fractal dimensions of diameter distribution. The relationships between pressure drop and flow rate along merging and dividing flows are obtained. Finally, experimental study is done, the feasibility of the VPPFYT is validated, and variations of pump flow rate influenced by fractal dimension of diameter distribution and electrical parameter are obtained.

    2 Structure of the Fractal-like Y-shape Branching Tube and Pump

    Fig. 1 shows the structure of the fractal-like Y-shape branching tube. According to structure of fractal-like branching and based on the Y-shape tube, the fractal-like Y-shape branching tube is designed. To generate this tube,0th level mother duct is divided into 2 daughter branches at 1th level. The branches at the ends of the newly formed ducts may be continued until the required FYBT at the specified branching level is obtained. The width of the 0th level mother duct is w0, the length is l0, then wkis the width at the kth branching level, and lkis the length at the kth branching level. Each bifurcation angle is 2α, and the depth of the whole tube is h.

    When the flow happens in the FYBT, the flow resistance of merging flow is unequal to that of dividing flow.Therefore, a pair of fractal-like Y-shape branching tubes as NMP valve is installed on each side of pump chamber,which constructs the valveless piezoelectric pump with fractal-like Y-shape branching tubes, as shown in Fig. 2.This pump is mainly composed of a piezoelectric vibrator,a pump chamber and a pair of fractal-like Y-shape branching tubes headed in the same direction.

    Fig. 1. Fractal-like Y-shape branching tube

    Fig. 2. Valveless piezoelectric pump with fractal-like Y-shape branching tubes

    Fig. 3 is a schematic diagram of VPPFYT achieving heat dissipation. The substrate with the fractal-like Y-shape branching microchannels is bonded to the chip, on which cover plate is packaged. Piezoelectric thin film and electrode are formed by method of sputter deposition on the surface of cover plate, which assemble a piezoelectric vibrator. The piezoelectric vibrator loaded by an alternating voltage will vibrate upwards and downwards causing the coolant movement. As the result of the difference flow resistances between the merging and dividing flows, the coolant flows from inlet of pump towards the outlet in macro continuously. Meanwhile, fractal-like Y-shape branching tubes have the characteristics of high heat transfer efficiency and better temperature uniformity, which can transfer the heat of chip with the coolant movement.Therefore, by integrating the cooling microchannel and power source, this pump greatly reduces the volume of the whole cooling system.

    Fig. 3. Valveless piezoelectric pump with fractal-like Y-shape branching tubes on chip

    3 Theoretical Analysis for the Flow Resistance and Pump Rate

    3.1 Flow resistance of fractal-like Y-shape branching tube

    Fig. 1 shows that, wkand lkrepresent the width and length of the kth level duct, respectively. And kth level mother duct is divided into 2kdaughter branches at (k+1)th level. Two scale factors are defined to describe the geometric structure of branching network.

    where l0and d0are the length and hydraulic diameter of the initial (0th level) mother duct, respectively. lmand dmare the length and hydraulic diameter of the terminal (mth level)daughter duct, respectively. According to the fractal characteristics of the structure[14],

    where Dland Ddis the fractal dimensions of length and diameter distribution of the fractal-like Y-shape branching network, respectively. For the structure of two bifurcations,n=2. Eq. (5) can be presented as follows:

    Due to characteristics of difference resistances between merging and dividing flows, fractal-like Y-shape branching tube is exploited as a NMP of valveless piezoelectric pump.

    When fluid dividing through tube, the pressure drop along the duct at the kth branching level is given by

    where vkis the velocity in the kth branching level duct,and c is a constant, which depends on fluid properties and cross sectional shape of the duct.

    The local pressure loss, caused by fluid dividing through tube from (k?1)th level to kth level , can be indicated as:

    where ξ is the local resistance coefficient when fluid dividing through tube. The bifurcation angles of Y-shape tubes in every level are 2α, thus the local resistance coefficient of every bifurcation is equal.

    From the law of mass conservation,

    Thus, when the fluid flows along dividing direction, the total pressure drop of the whole tube can be expressed as:

    From Eqs. (6) and (10),

    The total flow resistance of the fractal-like Y-shape branching tube, when fluid dividing through the tube, is

    Similarly, when the fluid flows along merging direction,the pressure drop along the duct at the kth branching level is given by

    The local pressure loss, caused by fluid merging through tube from kth level to (k?1)th level, is expressed as:

    where ξ¢ is the local resistance coefficient when fluid merging through the tube.

    Thus, when the fluid flows along merging direction, the total pressure drop of the whole tube is obtained:

    The total flow resistance of the fractal-like Y-shape branching tube, when fluid merges through the tube, is

    3.2 Flow rate analysis

    Micropump efficiency is evaluated for two limit loading conditions: maximum pressure head at zero flow rate and maximum flow rate at zero pressure head. When piezoelectric pump exports maximum flow rate, pressure drops in two NMP valves are equal[15], as shown in Fig. 4.

    The algebraic sum of flow rates, either flow into or out off the pump chamber through FYBT, is equal to the amount of fluid in pump chamber. So,

    Fig. 4. Flowing scheme of the valveless piezoelectric micropump with fractal-like Y-shape branching tube

    The maximum flow rate of the piezoelectric pump can be expressed as

    From Eqs. (12) and (16),

    When piezoelectric vibrator is driven under a certain frequency, the maximum flow rate of the pump depends on branching levels, fractal dimensions of length and diameter distribution and the local resistance coefficient of the tube.So,

    This nonlinear flow resistance in Eqs. (12) and (16),caused by local pressure loss, does not only depend on the local resistance coefficient and the fractal dimensions of diameter distribution of the tube, but also relate to the flow rate. Therefore, the study utilized the finite element method to analyze the relationship between the flow rate and the pressure drop in the FYBT with different fractal dimensions of diameter distribution is conducted, so that critical standard of effectiveness can be judged.

    4 Simulation Analysis

    In this research, the software CFX is employed to perform the finite element analysis. The model of fractal-like Y-shape branching tube is established, and the duct width of each level is obtained, as shown in Table 1.

    Table 1. Duct widths of each level with different fractal dimensions of diameter distribution

    The model of fractal-like Y-shape branching tube is imported into finite element software, and its flow field is simulated with water as the working fluid. Due to the micro amplitude of vibration of piezoelectric vibrator, the flow is assumed to be laminar in this research. No-slip boundary conditions are applied at the FYBT surfaces. The overall pressure drop across the tube is defined as D p = pin- pout,where pinand poutare the inlet and outlet pressures,respectively. The reference pressure (atmosphere pressure)as the outlet pressure is loaded the outlet planes[16].

    The relationship between pressure drop and flow rate in the tube when flow is merging and dividing can be obtained respectively. Fig. 5 is velocity and pressure contour pattern of the tube along merging and dividing flows, when Dd=2,D p=20 Pa.

    Fig. 5. Velocity and pressure contour patterns of the fractal-like Y-shape branching tube, when

    Fig. 6 and Fig. 7 show the relationship curves between pressure drop and flow rate of the FYBT along merging and dividing flows respectively.

    Fig. 6. Curves between pressure drop and mass flow of the tube along dividing flow

    Fig. 7. Curves between pressure drop and mass flow of the tube along merging flow

    Simulation results show that, with pressure drop increase,export flow rate of tubes with different fractal dimensions of diameter distribution increases gradually. When pressure drop is fixed, with fractal dimensions of diameter distribution increase, export flow rate of tubes increase as well. Meanwhile, export flow rate of each tube is unequal for merging and dividing flows. According to Eq. 20, when difference of flow rate along merging and dividing flows becomes larger, the flow rate of the VPPFYT increases.

    5 Experimental Study

    Four VPPFYTs with different fractal dimensions of diameter distribution are fabricated, as shown in Fig. 8. The geometrical parameters of each tube are the same with Table 1.

    Fig. 9 represents a picture of flow measurement for the valveless piezoelectric pump with fractal-like Y-shape branching tubes. The piezoelectric pump is driven by an alternating sine-wave input. The input signal within 100 V peak to peak (VP-P) is controlled by a function generator[17].The liquid in the piezoelectric pump is deionized water.Through measuring the mass flow rate of VPPFYT in unit time by changing driving frequency of the piezoelectric vibrator, we can obtain the experimental results of volume flow rate with changing frequency under 100 VP-P. The results about the flow rate versus driving frequency are shown in Fig. 10.

    Fig. 8. Tubes with different fractal dimensions of diameter distribution

    Fig. 9. Schematic diagram of flow rate experiment

    The results show that the experimental result is in keeping with the result of simulation. With fractal dimensions of diameter distribution increases, the difference of flow resistance of FYBT along merging and dividing direction increase, which brings a larger flow rate of the pump. When Dd=3, the maximum flow rate of the valveless pump is 29.16 mL/min under 13 Hz.

    When the driving frequency is 13 Hz, we can obtain the curves of flow rate versus voltage of the pump with changing driving voltage of the piezoelectric vibrator as shown in Fig. 11. This figure demonstrates that flow rate of pump increase as driving voltage enhances. When Dd=3,the maximum flow rate of the valveless pump is 55.92 mL/min under 200 VP-P(13 Hz).

    Fig. 11. Curves between the flow rate and the driving voltage

    The experiments show the effectiveness of valveless piezoelectric pump with fractal-like Y-shape branching tubes, which prove that fractal-like Y-shape branching tube has different flow resistances in merging and dividing directions.

    6 Conclusions

    (1) The relationship between structure and flow resistance of fractal-like Y-shape branching tube is analyzed based on the fractal theory. Meanwhile, the flow rate characteristics of valveless piezoelectric pump with fractal-like Y-shape branching tubes are analyzed. When piezoelectric vibrator is driven under a certain frequency,the maximum flow rate of the pump depends on branching levels, fractal dimensions of length and diameter distribution and the local resistance coefficient of the tube.

    (2) The finite element software is employed to simulate the flow filed of fractal-like Y-shape branching tube. And the relationships between pressure drop and flow rate of FYBT with different fractal dimensions of diameter distribution are obtained.

    (3) The valveless piezoelectric pumps with different fractal dimensions of diameter distribution are designed and fabricated. The relationships between the driving frequency and the flow rates, as well as the relationships between the driving voltage and the flow rates are experimentally investigated. The experimental results show that, with fractal dimension of diameter distribution increases, the flow rate of the pump increases. When Dd=3,the maximum flow rate of the valveless pump is 29.16 mL/min under 100 VP-P(13 Hz) power supply.

    [1] SINGHAL V, GARIMELLA S V, RAMAN A. Microscale pumping technologies for microchannel cooling systems[J]. Applied Mechanics Reviews, 2004, 57(3): 191–221.

    [2] MA H K, CHEN B R, GAO J J, et al. Development of an OAPCP-Micropump Liquid Cooling System in a Laptop[J].International Communications in Heat and Mass Transfer, 2009,36(3): 225–232.

    [3] XIAO Qinghua, CHEN Lingen, SUN Fengrui. Constructal entransy dissipation rate and flow-resistance minimizations for cooling channels[J]. Sci. China Tech. Sci., 2010, 53(9): 2458–2468.

    [4] CHI Yong, TANG Yong, CHEN Jinchang, et al. Miniaturized capillary pumped loop heat controlling system and it’s manufacturing technique[J]. Chinese Journal of Mechanical Engineering, 2007, 43(12): 166–170. (in Chinese)

    [5] LI Yong, HE Ting, ZENG Zhixin. Analysis of collapse in flattening a micro-grooved heat pipe by lateral compression[J]. Chinese Journal of Mechanical Engineering, 2012, 25(6): 1210–1217.

    [6] TUCKERMAN D B, PEASE R F W. High-performance heat sinking for VLSI[J]. IEEE Electron Device Letters, 1981, 2(5): 126–129.

    [7] PENG Xiaofeng, PETERSON G P. Convective heat transfer and flow friction for water flow in microchannel structures[J]. Int. J.Heat Mass Transfer, 1996, 39(12): 2599–2608.

    [8] BEJAN A, ERRERA M R. Deterministic tree networks for fluid flow: geometry for minimal flow resistance between a volume and one point[J]. Fractals, 1997, 5(4): 685–695.

    [9] PENCE D V. Improved thermal efficiency and temperature uniformity using fractal-like branching channel networks[C]//Proceedings of the International Conference on Heat Transfer and Transport Phenomena in Micro Scale. Banff, Canada,2000: 142–148.

    [10] CHEN Yongping, CHENG Ping. Heat transfer and pressure drop in fractal tree-like microchannel nets[J]. Int. J. Heat Mass Transfer,2002, 45(13): 2643–2648.

    [11] XU Peng, YU Boming, YUN Meijuan, et al. Heat conduction in fractal tree-like branched networks[J]. Int. J. Heat Mass Transf.,2006, 49(19–20): 3746–3751.

    [12] ZHANG Jianhui, LI Yili, XIA Qixiao. Analysis of the pump volume flow rate and tube property of the piezoelectric valveless pump with Y-shape tubes[J]. Chinese Journal of Mechanical Engineering, 2007,43(11): 136–141. (in Chinese)

    [13] ZHANG Jianhui, LU Jizhuang, XIA Qixiao, et al. Application of valve-less piezoelectric pump with Y-shape tubes for transporting cells and macromolecule[J]. Chinese Journal of Mechanical Engineering, 2008, 44(9): 92–99. (in Chinese)

    [14] MANDELBROT B B. The fractal geometry of nature[M]. New York,W. H. Freeman and Company, 1982.

    [15] IZZO I, ACCOTO D, MENCIASSI A, et al. Modeling and experimental validation of a piezoelectric micropump with novel no-moving-part valves[J]. Sens. Actuators A, 2007, 133(1): 128–140.

    [16] XIA Qixiao, ZHANG Jianhui, LEI Hong, et al. Analysis on flow field of the valveless piezoelectric pump with two inlets and one outlet and a rotating unsymmetrical slopes element[J]. Chinese Journal of Mechanical Engineering, 2012, 25(3): 474–483.

    [17] WANG Baowei, CHU Xiangcheng, LI Enzhu, et al. Simulations and analysis of a piezoelectric micropump[J]. Ultrasonics, 2006, 44:643–646.

    成人国产综合亚洲| 男女床上黄色一级片免费看| 伊人久久大香线蕉亚洲五| 亚洲 欧美 日韩 在线 免费| 美女被艹到高潮喷水动态| 精品日产1卡2卡| 亚洲精华国产精华精| 国产免费av片在线观看野外av| 老司机深夜福利视频在线观看| 亚洲在线观看片| 97超级碰碰碰精品色视频在线观看| 嫁个100分男人电影在线观看| a级毛片a级免费在线| 男人舔女人下体高潮全视频| 午夜福利18| 在线观看免费视频日本深夜| 一个人看视频在线观看www免费 | 国产一区二区激情短视频| 嫩草影视91久久| 欧美激情久久久久久爽电影| 中文字幕av在线有码专区| 人妻久久中文字幕网| 黄色片一级片一级黄色片| 麻豆av在线久日| 亚洲国产欧洲综合997久久,| ponron亚洲| 在线观看舔阴道视频| 国产久久久一区二区三区| 久久久色成人| 欧美黑人巨大hd| 男女床上黄色一级片免费看| 亚洲 国产 在线| 免费无遮挡裸体视频| netflix在线观看网站| 又黄又粗又硬又大视频| 久久国产精品人妻蜜桃| 国产成人啪精品午夜网站| 国产97色在线日韩免费| 欧美成狂野欧美在线观看| 五月玫瑰六月丁香| www.自偷自拍.com| 日本黄色视频三级网站网址| 99热精品在线国产| 精品99又大又爽又粗少妇毛片 | 亚洲性夜色夜夜综合| 久久精品影院6| 一a级毛片在线观看| 人人妻,人人澡人人爽秒播| 色哟哟哟哟哟哟| 动漫黄色视频在线观看| 国产精品一区二区精品视频观看| 国产熟女xx| 人妻丰满熟妇av一区二区三区| 成人18禁在线播放| 欧美3d第一页| 国产真实乱freesex| 嫩草影院入口| 我要搜黄色片| 十八禁网站免费在线| 97超视频在线观看视频| 精品久久蜜臀av无| 国产精品一及| 亚洲午夜理论影院| 99久久国产精品久久久| 少妇人妻一区二区三区视频| 丁香六月欧美| 美女cb高潮喷水在线观看 | 黄色视频,在线免费观看| 每晚都被弄得嗷嗷叫到高潮| 久久久久精品国产欧美久久久| 一个人观看的视频www高清免费观看 | 999精品在线视频| 成熟少妇高潮喷水视频| 亚洲性夜色夜夜综合| 久久香蕉精品热| 欧美丝袜亚洲另类 | 夜夜看夜夜爽夜夜摸| 亚洲国产日韩欧美精品在线观看 | 久久午夜亚洲精品久久| 黄色视频,在线免费观看| 深夜精品福利| 色噜噜av男人的天堂激情| 精品人妻1区二区| 伊人久久大香线蕉亚洲五| 熟女电影av网| 国产亚洲精品综合一区在线观看| 亚洲欧洲精品一区二区精品久久久| 国产成人欧美在线观看| 中国美女看黄片| 国产伦人伦偷精品视频| 国产欧美日韩精品亚洲av| 黄片小视频在线播放| 日本 av在线| 午夜福利18| 精品电影一区二区在线| 国产高清视频在线播放一区| 亚洲熟女毛片儿| 国产成+人综合+亚洲专区| 最近最新中文字幕大全电影3| 老司机午夜福利在线观看视频| 国产亚洲精品久久久com| 国产成人精品久久二区二区91| 亚洲性夜色夜夜综合| 亚洲狠狠婷婷综合久久图片| 亚洲无线在线观看| 天堂动漫精品| 草草在线视频免费看| 国产男靠女视频免费网站| 亚洲专区中文字幕在线| 亚洲中文字幕日韩| 黄色成人免费大全| 亚洲国产精品合色在线| 色综合婷婷激情| 日韩欧美国产在线观看| 一卡2卡三卡四卡精品乱码亚洲| 久久性视频一级片| 免费观看人在逋| 男女之事视频高清在线观看| 亚洲狠狠婷婷综合久久图片| 亚洲av日韩精品久久久久久密| 哪里可以看免费的av片| 18禁国产床啪视频网站| avwww免费| 最好的美女福利视频网| 嫩草影视91久久| 黄色 视频免费看| 成人国产一区最新在线观看| 两个人的视频大全免费| 一进一出抽搐gif免费好疼| 久久欧美精品欧美久久欧美| 999久久久精品免费观看国产| 亚洲专区国产一区二区| 亚洲色图av天堂| 久久久久国产精品人妻aⅴ院| 两性午夜刺激爽爽歪歪视频在线观看| 老熟妇乱子伦视频在线观看| 亚洲国产精品合色在线| 特级一级黄色大片| 欧美乱色亚洲激情| 欧美精品啪啪一区二区三区| 曰老女人黄片| 老熟妇乱子伦视频在线观看| 国产伦在线观看视频一区| 国产亚洲精品一区二区www| 熟女人妻精品中文字幕| 精品无人区乱码1区二区| aaaaa片日本免费| 桃色一区二区三区在线观看| 国产日本99.免费观看| 亚洲一区高清亚洲精品| 少妇的丰满在线观看| 国产成人欧美在线观看| 久久草成人影院| 久久精品国产99精品国产亚洲性色| 老司机午夜十八禁免费视频| 国产69精品久久久久777片 | 成人av一区二区三区在线看| 精品国产三级普通话版| 国产欧美日韩精品亚洲av| 制服丝袜大香蕉在线| 国产精华一区二区三区| 老司机午夜十八禁免费视频| 亚洲欧美精品综合久久99| 亚洲在线观看片| 麻豆一二三区av精品| 少妇的逼水好多| 亚洲成av人片在线播放无| 老司机在亚洲福利影院| 99视频精品全部免费 在线 | 国产蜜桃级精品一区二区三区| ponron亚洲| 久久久久久人人人人人| 国内精品美女久久久久久| 曰老女人黄片| 天天一区二区日本电影三级| 色综合婷婷激情| 国产亚洲精品综合一区在线观看| 成人一区二区视频在线观看| 国内久久婷婷六月综合欲色啪| 首页视频小说图片口味搜索| 午夜激情福利司机影院| 欧美日韩福利视频一区二区| 欧美乱妇无乱码| 黄片大片在线免费观看| 欧美在线一区亚洲| 国产精品自产拍在线观看55亚洲| 亚洲国产欧美人成| 国产午夜精品久久久久久| 日韩欧美三级三区| 精品国产美女av久久久久小说| 美女午夜性视频免费| 搡老岳熟女国产| 人妻夜夜爽99麻豆av| 国产亚洲精品久久久久久毛片| 欧美激情久久久久久爽电影| 香蕉久久夜色| 一级毛片精品| 麻豆一二三区av精品| av黄色大香蕉| 99精品久久久久人妻精品| 俺也久久电影网| 美女cb高潮喷水在线观看 | 国产激情偷乱视频一区二区| 精品久久久久久成人av| 十八禁人妻一区二区| 性色avwww在线观看| 欧美乱妇无乱码| 免费在线观看亚洲国产| 精品日产1卡2卡| 国产人伦9x9x在线观看| 怎么达到女性高潮| 国产熟女xx| 一二三四在线观看免费中文在| 动漫黄色视频在线观看| 精品电影一区二区在线| 人人妻人人澡欧美一区二区| 美女免费视频网站| 精品国产美女av久久久久小说| 哪里可以看免费的av片| 久久精品综合一区二区三区| av在线天堂中文字幕| 精品免费久久久久久久清纯| 天天躁日日操中文字幕| 成人av在线播放网站| 国产视频内射| 国产精品亚洲av一区麻豆| 国产成人欧美在线观看| 天堂影院成人在线观看| 一级毛片精品| 不卡av一区二区三区| 亚洲欧美精品综合一区二区三区| 国产视频一区二区在线看| 人妻夜夜爽99麻豆av| 毛片女人毛片| 校园春色视频在线观看| 香蕉久久夜色| 曰老女人黄片| 亚洲精品在线美女| 国产亚洲精品综合一区在线观看| 亚洲成人免费电影在线观看| 中文亚洲av片在线观看爽| 一级毛片高清免费大全| 国产熟女xx| 怎么达到女性高潮| 少妇熟女aⅴ在线视频| 小说图片视频综合网站| 我的老师免费观看完整版| 亚洲性夜色夜夜综合| 亚洲七黄色美女视频| 午夜免费激情av| 国产日本99.免费观看| 国产久久久一区二区三区| 啦啦啦观看免费观看视频高清| 一本综合久久免费| 国产亚洲精品久久久久久毛片| 亚洲一区二区三区色噜噜| 国产精品影院久久| 国产免费av片在线观看野外av| 亚洲无线在线观看| a级毛片在线看网站| 狂野欧美白嫩少妇大欣赏| 美女扒开内裤让男人捅视频| 高潮久久久久久久久久久不卡| 色综合婷婷激情| 免费av不卡在线播放| 久久精品人妻少妇| 精品国产三级普通话版| 亚洲精品国产精品久久久不卡| 两个人视频免费观看高清| 国产精华一区二区三区| 日本撒尿小便嘘嘘汇集6| 黄色丝袜av网址大全| 国产熟女xx| 精品不卡国产一区二区三区| 男人舔奶头视频| 宅男免费午夜| 日日干狠狠操夜夜爽| 亚洲成人久久爱视频| 国产久久久一区二区三区| 国产激情欧美一区二区| 成年版毛片免费区| 三级国产精品欧美在线观看 | 亚洲精品粉嫩美女一区| 欧美激情在线99| bbb黄色大片| 亚洲天堂国产精品一区在线| 91九色精品人成在线观看| 熟女电影av网| 亚洲欧美日韩无卡精品| 国产欧美日韩精品亚洲av| 国产成人精品无人区| 熟女人妻精品中文字幕| 色尼玛亚洲综合影院| 人人妻人人看人人澡| 欧美日韩精品网址| www.自偷自拍.com| 宅男免费午夜| 亚洲精品中文字幕一二三四区| 香蕉国产在线看| 国产v大片淫在线免费观看| 精品一区二区三区av网在线观看| 欧美日韩瑟瑟在线播放| 国产爱豆传媒在线观看| 婷婷六月久久综合丁香| 听说在线观看完整版免费高清| 俺也久久电影网| 一卡2卡三卡四卡精品乱码亚洲| 国产精品野战在线观看| av福利片在线观看| 日韩欧美国产一区二区入口| 日韩欧美三级三区| 免费人成视频x8x8入口观看| 桃色一区二区三区在线观看| 欧美一级a爱片免费观看看| 欧美激情久久久久久爽电影| 最好的美女福利视频网| 国产精品一区二区三区四区久久| 亚洲aⅴ乱码一区二区在线播放| 一进一出抽搐动态| 级片在线观看| 国产毛片a区久久久久| 人人妻人人澡欧美一区二区| 免费高清视频大片| 亚洲精品久久国产高清桃花| 少妇的丰满在线观看| 成人精品一区二区免费| 动漫黄色视频在线观看| 久久99热这里只有精品18| 偷拍熟女少妇极品色| 一进一出抽搐动态| 高潮久久久久久久久久久不卡| 九九在线视频观看精品| 国产人伦9x9x在线观看| 韩国av一区二区三区四区| 日韩人妻高清精品专区| 欧美午夜高清在线| 日日干狠狠操夜夜爽| 国产69精品久久久久777片 | avwww免费| 国产一区二区三区在线臀色熟女| 欧美日韩福利视频一区二区| 国内久久婷婷六月综合欲色啪| 国产精品亚洲美女久久久| 午夜福利在线在线| 免费高清视频大片| 高清毛片免费观看视频网站| 欧美中文综合在线视频| 熟妇人妻久久中文字幕3abv| av中文乱码字幕在线| 欧美日韩中文字幕国产精品一区二区三区| 99久国产av精品| 亚洲专区字幕在线| 午夜免费成人在线视频| 国产三级黄色录像| 国产亚洲精品久久久com| 亚洲天堂国产精品一区在线| h日本视频在线播放| 亚洲国产看品久久| 国产伦人伦偷精品视频| e午夜精品久久久久久久| 色综合婷婷激情| 嫩草影视91久久| 久久久水蜜桃国产精品网| 国产亚洲av嫩草精品影院| 国产 一区 欧美 日韩| 久久国产精品影院| 国产精品久久久人人做人人爽| 欧美zozozo另类| 成人三级做爰电影| 国产乱人伦免费视频| 日韩欧美精品v在线| 免费看美女性在线毛片视频| 最新在线观看一区二区三区| 国产亚洲精品av在线| 国产av在哪里看| 亚洲九九香蕉| 亚洲一区高清亚洲精品| 久久精品亚洲精品国产色婷小说| 久久久国产欧美日韩av| 偷拍熟女少妇极品色| 又爽又黄无遮挡网站| 一个人看视频在线观看www免费 | av天堂中文字幕网| 国产主播在线观看一区二区| 最近最新免费中文字幕在线| av黄色大香蕉| 日韩中文字幕欧美一区二区| 99热只有精品国产| 国产亚洲av嫩草精品影院| 怎么达到女性高潮| 一区二区三区高清视频在线| 久久久久久国产a免费观看| 很黄的视频免费| 欧美乱码精品一区二区三区| 国产野战对白在线观看| 国内毛片毛片毛片毛片毛片| 国产成人欧美在线观看| 免费在线观看视频国产中文字幕亚洲| 亚洲自拍偷在线| 国产成人精品无人区| 黄色丝袜av网址大全| 亚洲中文字幕日韩| 十八禁网站免费在线| 亚洲人成电影免费在线| 精品久久久久久久人妻蜜臀av| 午夜福利在线在线| 51午夜福利影视在线观看| 国产成人啪精品午夜网站| 黑人巨大精品欧美一区二区mp4| 美女黄网站色视频| 精品熟女少妇八av免费久了| 欧美乱码精品一区二区三区| 欧美av亚洲av综合av国产av| 香蕉丝袜av| 日本在线视频免费播放| 中文字幕高清在线视频| 人妻夜夜爽99麻豆av| 久久久精品欧美日韩精品| 成年女人毛片免费观看观看9| 免费无遮挡裸体视频| 国产私拍福利视频在线观看| 久9热在线精品视频| 在线观看舔阴道视频| 国产又色又爽无遮挡免费看| 亚洲五月天丁香| 久久久精品大字幕| ponron亚洲| 在线观看美女被高潮喷水网站 | 亚洲精品456在线播放app | 少妇的逼水好多| 色在线成人网| 精品久久久久久久末码| 日本三级黄在线观看| 亚洲中文字幕日韩| 视频区欧美日本亚洲| 久久久国产成人精品二区| 曰老女人黄片| 亚洲18禁久久av| 国内精品久久久久久久电影| 欧美乱色亚洲激情| 国产免费av片在线观看野外av| 18禁裸乳无遮挡免费网站照片| 日韩大尺度精品在线看网址| 亚洲乱码一区二区免费版| 一个人观看的视频www高清免费观看 | 成年女人永久免费观看视频| 国产日本99.免费观看| 亚洲午夜精品一区,二区,三区| 日韩欧美三级三区| 老司机午夜十八禁免费视频| 日韩精品中文字幕看吧| 88av欧美| 日本黄色片子视频| 亚洲专区国产一区二区| 老汉色av国产亚洲站长工具| 两人在一起打扑克的视频| 亚洲午夜精品一区,二区,三区| 深夜精品福利| aaaaa片日本免费| 美女高潮喷水抽搐中文字幕| 一本一本综合久久| 搡老熟女国产l中国老女人| 国产蜜桃级精品一区二区三区| 午夜精品久久久久久毛片777| 后天国语完整版免费观看| 欧美大码av| 波多野结衣高清无吗| 色播亚洲综合网| 人妻丰满熟妇av一区二区三区| 亚洲精品一区av在线观看| 欧美xxxx黑人xx丫x性爽| 国产激情欧美一区二区| 一a级毛片在线观看| 一本一本综合久久| 老司机深夜福利视频在线观看| 宅男免费午夜| 欧美3d第一页| 日本黄色视频三级网站网址| 听说在线观看完整版免费高清| 色尼玛亚洲综合影院| 男人舔女人的私密视频| 啪啪无遮挡十八禁网站| 啦啦啦韩国在线观看视频| 精华霜和精华液先用哪个| 国产淫片久久久久久久久 | 日本黄大片高清| 国产伦人伦偷精品视频| 国产精品一区二区免费欧美| 国产男靠女视频免费网站| 又大又爽又粗| 久久精品亚洲精品国产色婷小说| 国产私拍福利视频在线观看| 亚洲人成伊人成综合网2020| av福利片在线观看| 噜噜噜噜噜久久久久久91| 伦理电影免费视频| 国产av在哪里看| 久久久久九九精品影院| 国产精品亚洲美女久久久| 丰满人妻一区二区三区视频av | 美女高潮喷水抽搐中文字幕| 首页视频小说图片口味搜索| 日本黄色视频三级网站网址| 欧美日韩乱码在线| 啦啦啦观看免费观看视频高清| 精华霜和精华液先用哪个| 午夜精品久久久久久毛片777| 色老头精品视频在线观看| 色综合站精品国产| 一本精品99久久精品77| 无遮挡黄片免费观看| 精品一区二区三区视频在线 | 日韩欧美在线乱码| 国产精品免费一区二区三区在线| 国产69精品久久久久777片 | 日韩av在线大香蕉| 色综合婷婷激情| 亚洲av免费在线观看| 国产单亲对白刺激| 国产精品综合久久久久久久免费| 天天躁日日操中文字幕| 国产亚洲精品av在线| 波多野结衣高清作品| 国产亚洲欧美98| 老汉色∧v一级毛片| 成人午夜高清在线视频| 中文字幕高清在线视频| 99热只有精品国产| 蜜桃久久精品国产亚洲av| 精品人妻1区二区| 日本一二三区视频观看| 国内精品一区二区在线观看| 视频区欧美日本亚洲| 久久人妻av系列| 午夜a级毛片| 很黄的视频免费| 麻豆久久精品国产亚洲av| 麻豆av在线久日| 亚洲最大成人中文| a级毛片a级免费在线| 亚洲欧美日韩高清在线视频| 九九久久精品国产亚洲av麻豆 | 美女被艹到高潮喷水动态| 国产精品免费一区二区三区在线| 欧美极品一区二区三区四区| 午夜福利在线在线| 麻豆成人午夜福利视频| 夜夜看夜夜爽夜夜摸| cao死你这个sao货| 在线观看舔阴道视频| 床上黄色一级片| 99热这里只有是精品50| 日韩欧美一区二区三区在线观看| 久久久久国产一级毛片高清牌| 国产精品久久久久久亚洲av鲁大| 香蕉国产在线看| 精品不卡国产一区二区三区| 亚洲av熟女| 欧美绝顶高潮抽搐喷水| 女生性感内裤真人,穿戴方法视频| 国产 一区 欧美 日韩| 久久婷婷人人爽人人干人人爱| 久久久久国产一级毛片高清牌| 精品人妻1区二区| 国产麻豆成人av免费视频| 黄色 视频免费看| 国产亚洲精品久久久com| 小说图片视频综合网站| 国模一区二区三区四区视频 | 一进一出好大好爽视频| 一卡2卡三卡四卡精品乱码亚洲| 久久人人精品亚洲av| 国产成人一区二区三区免费视频网站| 身体一侧抽搐| a在线观看视频网站| 国产精品98久久久久久宅男小说| 亚洲av第一区精品v没综合| 中文资源天堂在线| 成年女人永久免费观看视频| 啦啦啦观看免费观看视频高清| 久久中文看片网| 一本精品99久久精品77| 99久久精品热视频| 久久草成人影院| 亚洲精品一区av在线观看| 国产精品美女特级片免费视频播放器 | av福利片在线观看| 免费搜索国产男女视频| 又黄又爽又免费观看的视频| 男女之事视频高清在线观看| 欧美日本视频| 综合色av麻豆| 国产激情偷乱视频一区二区| 国产精品一区二区三区四区久久| 日日夜夜操网爽| 色吧在线观看| 久久人妻av系列| 深夜精品福利| 久久久精品大字幕| 一二三四社区在线视频社区8| 中文在线观看免费www的网站| 久久99热这里只有精品18| 欧美成人免费av一区二区三区| 一级a爱片免费观看的视频| 免费看日本二区| 午夜福利欧美成人| 午夜福利成人在线免费观看| 一a级毛片在线观看| 99热这里只有精品一区 | 狠狠狠狠99中文字幕| 成人特级黄色片久久久久久久| 午夜激情欧美在线| 少妇丰满av| 怎么达到女性高潮| 欧美性猛交╳xxx乱大交人|