• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ultrafast two-dimensional x-ray imager with temporal fiducial pulses for laser-produced plasmas

    2023-12-02 09:22:22ZhengDongLiu劉正東JiaYongZhong仲佳勇XiaoHuiYuan遠(yuǎn)曉輝YaPengZhang張雅芃JiaWenYao姚嘉文ZuoLinMa馬作霖XiangYanXu徐向晏YanHuaXue薛彥華ZheZhang張喆DaWeiYuan袁大偉MinRuiZhang張敏睿BingJunLi李炳均HaoChenGu谷昊琛YuDai戴羽ChengLongZhang張成龍YuFeng
    Chinese Physics B 2023年11期
    關(guān)鍵詞:周鵬張敏

    Zheng-Dong Liu(劉正東), Jia-Yong Zhong(仲佳勇),6,?, Xiao-Hui Yuan(遠(yuǎn)曉輝), Ya-Peng Zhang(張雅芃),Jia-Wen Yao(姚嘉文), Zuo-Lin Ma(馬作霖), Xiang-Yan Xu(徐向晏), Yan-Hua Xue(薛彥華),Zhe Zhang(張喆), Da-Wei Yuan(袁大偉), Min-Rui Zhang(張敏睿), Bing-Jun Li(李炳均),Hao-Chen Gu(谷昊琛), Yu Dai(戴羽), Cheng-Long Zhang(張成龍), Yu-Feng Dong(董玉峰),Peng Zhou(周鵬), Xin-Jie Ma(馬鑫杰), Yun-Feng Ma(馬云峰), Xue-Jie Bai(白雪潔),Gao-Yang Liu(劉高揚(yáng)), Jin-Shou Tian(田進(jìn)壽), Gang Zhao(趙剛), and Jie Zhang(張杰)4,

    1Department of Astronomy,Beijing Normal University,Beijing 100875,China

    2Institute for Frontiers in Astronomy and Astrophysics,Beijing Normal University,Beijing 102206,China

    3Xi’an Institute of Optics and Precision Mechanics,Chinese Academy of Sciences,Xi’an 710119,China

    4Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    5Key Laboratory for Laser Plasmas(MoE)and School of Physics and Astronomy,Shanghai Jiao Tong University,Shanghai 200240,China

    6Collaborative Innovation Center of IFSA(CICIFSA),Shanghai Jiao Tong University,Shanghai 200240,China

    7Key Laboratory of Optical Astronomy,National Astronomical Observatories,Chinese Academy of Sciences,Beijing 100101,China

    8State Key Laboratory for Geomechanics and Deep Underground Engineering,China University of Mining and Technology,Beijing 100083,China

    9School of Nuclear Science and Technology,Xi’an Jiaotong University,Xi’an 710049,China

    10School of Sciences,Harbin Institute of Technology at Weihai,Weihai 264209,China

    11Songshan Lake Materials Laboratory,Guangdong 523808,China

    12School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China

    Keywords: ultrafast diagnosis, double-cone ignition, x-ray streak camera, pinhole array, temporal fiducial pulses

    1.Introduction

    Ultrafast x-ray imaging is crucial for diagnosing small and short-lived plasmas, such as imploded and stagnated plasma in the inertial confinement fusion (ICF) scheme.[1]These processes occur on temporal and spatial scales of several hundred picoseconds or micrometers, requiring temporal and spatial resolutions of a few tens of picoseconds and a few microns, respectively.[2]While gated x-ray framing cameras provide excellent two-dimensional (2D) spatial-intensity information, their temporal resolution is restricted to 80 ps, accompanied by a limited number of frames.[3,4]In contrast,an x-ray streak camera(XSC)can achieve a higher temporal resolution of better than 10 ps,[5]but it is only capable of capturing one-dimensional spatial information.To overcome those limitations,in 1990,Choiet al.[6]applied a streaked multi-pinhole camera technique to record plasma with continuous time resolution and 2D space resolution produced by plasma-focusing devices.In 1992, Landen applied this method to the observation of laser-generated plasma.[7]Furthermore, Shiragaet al.[8–10]developed and utilized a multi-imaging XSC(MIXS)to observe the temporal and spatial evolution of imploding core plasma in laser-fusion targets.

    MIXS is commonly utilized in fast ignition[11]and double-cone ignition (DCI) experiments[12]to track the 2D evolution of plasma spontaneous radiation and provide accurate heating time for subsequent injection of fast electrons.Nevertheless, due to the limited field of view, the traditional MIXS is unable to capture simultaneous images of both the coronal and collision regions in a DCI experiment.Therefore,it is impossible to determine the laser end time by the spontaneous light of the coronal plasma.As a result,accurate physical information and diagnostic moments cannot be provided for other diagnoses during the experiment.

    In this paper, we report the development and optimization of a new ultrafast x-ray imaging technology,multi-image with an XSC with temporal fiducial pulses(MIXS-F),and we present experimental results using this technique to visualize small, short-lived plasma evolution in two dimensions.The timing fiducial pulses can accurately determine the laser time and correct the sweeping nonlinearity of XSC.We have performed an experiment on the Shenguang-II(SG-II)laser facility to test the system,and we reconstructed the time-dependent 2D x-ray images with temporal and spatial resolutions of about 38 ps and 18μm,respectively.

    2.MIXS with temporal fiducial pulses

    MIXS-F is composed of a pinhole array, an XSC, and a set of temporal fiducial pulses.The schematic diagram of its equipment and the solid diagram are shown in Fig.1.

    Fig.1.(a)XSC combined with a pinhole array.The UV fiber is coupled from the slit to the XSC,and the intensity of the temporal fiducial pulses is enhanced by a ball lens and a 2D vacuum displacement platform.(b)Solid diagram of the MIXS-F system.

    The principle of MIXS-F is illustrated in Fig.2.A row of magnified images is formed on the slit of the XSC by a pinhole array tilted at an angleθto the slit.The angleθis determined based on factors, such as slit length, number of pinholes,magnification factor,and desired field of view.The source can be amplified into a row of the same size and slanted array through the pinhole array at an angle ofθto the slit,and it is sampled by the slit.In this way, the slit can simultaneously collect different areas of the same image and obtain the time evolution process of one-dimensional images at different positions of the source.The precise selection ofθensures that the slit efficiently captures images without any loss or redundancy, safeguarding the integrity and authenticity of the reconstructed images throughout the process.At the same time,a sequence of temporal fiducial pulses is generated by a laser and transmitted to the slit end through an ultraviolet(UV)fiber,as shown in Fig.2(a),serving as an additional time reference during experimental measurements.By precisely controlling the relative timing of the nanosecond (ns) laser and the temporal fiducial pulses, the ns laser’s arrival time can be determined through the first pulse of the temporal fiducial pulses, which facilitates a more precise judgment of the collision moment after the end of the ns laser.This provides accurate heating time for subsequent injection of fast electrons.Furthermore, the temporal fiducial pulses also enable correction of the sweeping nonlinearity of the XSC.The nonlinearity in scanning arises from fluctuations in the sweeping speed induced by the non-smooth slope voltage applied to the XSC.These variations in speed result in signal discrepancies across different positions within the imaging time window.The specific procedure for correcting the sweeping nonlinearity entails the following steps.First, temporal fiducial pulses are introduced, causing the fiber positioned at the slit’s edge to emit quadruple-frequency light at a predetermined frequency.The scanning voltage drives this light to sweep across the detector with time,forming a sequence of evenly spaced light spots along the temporal axis.The interval between these light spots corresponds to the preset time interval between two luminous moments.By measuring the spacing between adjacent light spots throughout the entire image,the image can be processed accordingly.This method ensures temporal uniformity in the image dimension and effectively resolves the nonlinear issue caused by fluctuations in the scanning speed of XSC.

    The source passing through the pinhole array with magnificationMis sampled at different positions in one dimension using the cathode slit to obtain a set of temporally resolved,one-dimensional images,as shown in Fig.2(b).Thus,images of different positions of the source are separated by a constant vertical distances(M+1)sinθ/M.Here,sis the separating distance between adjacent pinholes.These one-dimensional image sets are then sliced from left to right for each moment in timet1,t2,t3,etc.The recombined images are then arranged from top to bottom,resulting in an ultrafast 2D structural evolution of the source,as shown in Fig.2(c).Finally,the image smoothing technique is used to process the reconstructed image, and the high-quality 2D spatial evolution of plasma can be obtained.The separating distances>RM/(M+1)must be required.Here,Ris the size of the source to avoid overlapping between images.

    Meticulously adjusting the specifications of the MIXS-F solution ensures optimal performance, and researchers must take into account parameters,such as the angleθ,cathode slit lengthL, number of pinholesN, and magnificationM, that limit the size of the field of view.The horizontal and vertical fields are defined asSH=L/(MN) andSV=Ns(M+1)sinθ/M,respectively.Additionally,the spatial resolution is influenced by the pinhole diameterD,slit widthdk,and magnificationM.In contrast,the temporal resolution is related to the time window and slit widthdk.Ultimately,the number of framing can be as large as the streaked time divided by the temporal resolution of the streak camera.

    Several advantages of the MIXS-F allow it to be excellent in ultrafast x-ray 2D imaging.[7]First, x-ray pinhole cameras and XSCs are already well established, making it easy to obtain fast 2D framing images.Second, the XSC not only can generate faster time-resolved images, but it can also acquire signals for prolonged periods by adjusting the time window as required, something that framed cameras cannot achieve.Third,the operating x-ray spectrum can be rather wide,ranging l–10 keV, which is determined by the filter and cathode materials.Finally, the laser time can be confirmed and the sweeping nonlinearity can be corrected by temporal fiducial pulses.

    3.Design of MIXS-F

    The material of the pinhole array is 10μm thick tantalum,where the diameter of the pinhole is approximately 10±1μm and the spacing is 250μm,with a total of 13 pinholes.Furthermore,four grooves 20μm in width,3 mm in length,and 5μm in depth are also ablated by laser on the surface of the pinhole disk.These grooves are positioned facing the center pinhole to aid in their accurate positioning.Additionally,the horizontal grooves and the pinhole array are processed at a designed angle of 4.6?for optimal performance,as shown in Fig.3.We uses(1+1/M)sinθas the sampling distance to cut the streak image.

    The utilized XSC,model 4200,was manufactured by the Xi’an Institute of Optics and Precision Mechanics of the Chinese Academy of Sciences.The photocathode is cesium iodide(CsI) with a thickness of 150 nm, coated on an organic film.The horizontally placed slit has a length of 28 mm and a width of 100 μm.An optic scientific complementary metal-oxide semiconductor(sCOMS)with a resolution of 2048×2048 pixels was employed to record the image.The full time window was set to 5 ns.

    To accurately determine the laser time and correct for the nonlinear sweeping speed,a UV fiber is coupled to the slit end.However, the intensity of light influences the effectiveness of these pulses.To enhance the focus of the beam and improve the intensity of the temporal fiducial pulses obtained through the slit, a ball lens is added to the UV fiber.The ball lens causes the light beam to converge and increases light intensity by a factor of 1–4, significantly improving the quality of the temporal fiducial pulses.However,adding the ball lens alone is not enough to ensure precise calibration.Thus,a 2D vacuum displacement platform was installed to control the position of the UV fiber securely.This platform has a dual function: first,it can control the UV fiber’s movement perpendicular to the slit, ensuring that the strongest part of the fiber is directly in the middle of the slit.Second,it controls the movement of the fiber toward or away from the slit, so that the focal point of the ball lens is located at the slit.These improvements work together to significantly increase the intensity of the temporal fiducial pulses by a factor of 50.Clearer temporal fiducial pulses help us to better determine the physical information by providing more accurate signals.

    Through precise measurement of the relative delay between the ns laser and the temporal fiducial pulses,it has been determined that the time for the ns laser to reach the center of the target chamber is determined to be 350 ps later than the first pulse summit of the temporal fiducial pulses.The nonlinear effect of the sweeping speed is less than 3% and is rectifiable by utilizing the temporal fiducial pulses.Furthermore,trigger jitter performs well,generally better than 50 ps.

    A combination of 200 nm Al and 10μm Mylar was used as a filter to eliminate most low-energy stray light, and the system had sensitivity in the range of 1–10 keV.The pinhole array was placed at a distance of 200 mm from the target while maintaining a distance of 1435 mm between the pinhole array and the photocathode.The imaging system achieved a magnification ratio ofM=7.2.

    Using a slit width of 100μm and a time window of 5 ns,the temporal resolution attained by the experimental setup was 38 ps.However, improved temporal resolutions can be achieved by employing either shorter laser pulses or through the use of faster time windows.

    The spatial resolution is determined by the pinhole diameterD, the streak camera slit widthds, and the magnificationM.The horizontal spatial resolution ?rx=(?r2PH+?k2x)1/2,where ?r2PHis the geometric resolution of the pinhole and?kx=dK/M, wheredKis the spatial resolution of the slit.The vertical spatial resolution ?ry=(?r2PH+?k2y)1/2, where?ky=ds/M.?rx=?ry=18μm can be calculated.The basic system parameters are detailed in Table 1.

    The aiming method is shown in Fig.3.An internalfocusing telescope is employed to ensure accurate alignment of the slit of the XSC, pinhole, and target.First, the horizontal reference line of the telescope is aligned with the line connecting the slit and the center of the golden sphere.This is achieved by adjusting the attitude of the telescope.Subsequently,the center pinhole is adjusted to align with the center of the reference line.Finally, the pinhole array is rotated to align the four grooves with the reference line, thus ensuring that the slit is positioned at the specified angle of 4.6?to the pinhole array, and the center pinhole is aligned with the center of the slit and golden sphere.This process guarantees the precise alignment of the system for obtaining accurate results.

    Table 1.MIXS-F system basic parameter index.

    Fig.3.View of the internal focusing telescope: aim at the center of the slit,pinhole,and golden sphere,and make the slit 4.6?from the pinhole array.

    4.Experiment and result

    The experiment was conducted at the SG-II laser facility at the National Laboratory on High Power Laser and Physics.Four drive lasers delivering a total energy of 1 kJ with 1 ns square pulse were directly focused onto the golden sphere center.The achieved average intensity is about 1015W/cm2with the overlapped focal spot of about 150μm at a wavelength of 351 nm.The configuration is depicted in Fig.4.

    Figure 5(a) shows the raw experimental results obtained from the XSC,where the temporal axis is the vertical direction and the spatial axis is horizontal.The results depict the timesweep outcomes of signals gathered by 13 pinholes at different source locations.The visualization of edge results was achieved by enhancing contrast due to the significant intensity difference between the center and edge intensities, leading to over saturation of the central intensity.

    Fig.4.Schematic diagram of the laser coupled with the golden sphere and the observation angle of diagnosis.

    The circular spot on the right is the temporal fiducial pulses from the UV fiber corrected to the slit.It can be seen from the experimental results that through the optimization of the ball lens and the 2D vacuum displacement platform, the intensity of the temporal fiducial pulses is improved by about 50 times.Through measuring the temporal fiducial pulses, it is observed that the time interval between adjacent spots is 502 ps.The nonlinearity of the imaging region is subsequently obtained through examination of six light spots displayed by sCOMS.Through these adjustments, the image is corrected accordingly.Such precision measures and findings validate the efficacy of utilizing temporal fiducial pulses in the analysis and correction of XSC imaging.However, it is important to note that the circular imaging surface of the sCOMS results in the lower temporal fiducial pulses lying outside the field of view.Therefore, appropriate considerations should be taken into account when interpreting the results.

    Fig.5.(a)Streak camera results.(b)The evolution of the reconstructed 2D structure of the plasma.(c)Time integration result.

    Using an image processing program to cut and reconstruct the streak image and then smoothing it, the evolution of the 2D structure of the plasma of the gold sphere is obtained, as shown in Fig.5(b).The reconstructed results show that the whole plasma is elliptic,and this symmetry is suspected to be caused by the left and right laser energy imbalance,with 534 J and 556 J,respectively.The x-ray intensity starts to decrease from 1045 ps,which is caused by the laser pulse width being only 1 ns.As a result,the plasma luminescence weakens due to rapid radiation cooling after 1 ns.Figure 5(c) shows the time-integrated image,which can be seen to be still fairly uniform overall but lacks the more detailed structure shown in the time-resolved image.

    The present results demonstrate the suitability of MIXS-F for observing the rapid evolution of small-scale x-ray sources.This ultrafast x-ray 2D imaging technology enabled the detailed visualization of structural changes that are crucial for monitoring the inhomogeneity of the implosion process of ICF as well as the overall evolution of the current sheets during magnetic reconnection.In the future, we will apply the technique to the observation of the collision process of the doublecone collision ignition and the current sheets of magnetic reconnection.

    5.Conclusions and perspectives

    This work demonstrates the feasibility of multi-image xray fringe camera technology.A comprehensive 2D evolution of the plasma within the golden sphere is captured over time by utilizing an XSC with an elongated slit coupled with an array of 13 pinholes.Due to the elongated nature of the slit,employing multiple pinholes for sampling becomes viable, thereby enhancing the realism and level of detail in the reconstructed image.The inclusion of temporal fiducial pulses aids in accurate assessment of laser arrival time and facilitates correction of streak speed nonlinearity.The intensity of the temporal fiducial pulses sees a remarkable enhancement of approximately 50 times through the optimization of the ball lens and the implementation of a 2D vacuum displacement platform.An internally focused telescope is employed for monitoring and alignment purposes, while grooves on the pinhole disk,created via ultra-precision laser machining,assist in adjusting the angle between the slit and the pinhole array.By employing this optimization approach, experimental results with a temporal resolution of 38 ps and a spatial resolution of 18 μm are obtained.Future endeavors involve further optimization of the XSC, including shorter time windows and larger magnifications, to achieve finer temporal and spatial resolutions,with the ultimate goal of applying this technology in various physics experiments.

    Acknowledgements

    We are very grateful to the staff of the Shenguang laser facility in Shanghai and the researchers at Xi’an Institute of Optics and Precision Mechanics for their support of the use of the x-ray streak camera.This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos.XDA25030700 and XDA25030500), the National Key R&D Program of China(Grant Nos.2022YFA1603200 and 2022YFA1603203), and the National Natural Science Foundation of China (Grant Nos.12175018,12135001,12075030,and 11903006).

    猜你喜歡
    周鵬張敏
    周鵬完攀世界級(jí)干攀路線:Ascension
    Recent progress on ambipolar 2D semiconductors in emergent reconfigurable electronics and optoelectronics
    不能信包裝
    你不吃醋嗎
    新婚夫妻是這樣虐狗的
    揭開蟲蟲世界的奧秘
    對(duì)渦輪增壓器進(jìn)行高效加工的應(yīng)用
    2020京山愛(ài)你
    “自然小語(yǔ)”的倡導(dǎo)者和實(shí)踐者——周鵬
    特寫|周鵬進(jìn)山
    中文字幕人妻熟人妻熟丝袜美| 亚洲成人中文字幕在线播放| 97在线视频观看| 性插视频无遮挡在线免费观看| 少妇人妻精品综合一区二区 | 午夜福利视频1000在线观看| 久久久久精品国产欧美久久久| 久久久久久久久久成人| 日韩欧美 国产精品| 久久精品夜夜夜夜夜久久蜜豆| 国产精品女同一区二区软件| 最新在线观看一区二区三区| av专区在线播放| 欧美日韩一区二区视频在线观看视频在线 | 亚洲国产日韩欧美精品在线观看| 日韩欧美 国产精品| 国产高清视频在线观看网站| 亚洲精品久久国产高清桃花| 天堂影院成人在线观看| 亚洲人成网站在线播放欧美日韩| 99久久中文字幕三级久久日本| 丝袜美腿在线中文| 久久久久精品国产欧美久久久| 一个人看的www免费观看视频| 精品久久久久久久久亚洲| 国产精品精品国产色婷婷| 麻豆国产av国片精品| 丝袜喷水一区| 日本黄大片高清| 九九久久精品国产亚洲av麻豆| 国产高清有码在线观看视频| 午夜精品国产一区二区电影 | 国产老妇女一区| 一区福利在线观看| 精品久久久久久久末码| 在线播放国产精品三级| 小说图片视频综合网站| av免费在线看不卡| 99久久精品国产国产毛片| 在线播放国产精品三级| 国产一级毛片七仙女欲春2| 亚洲av.av天堂| 国产精品久久久久久av不卡| 久久久久精品国产欧美久久久| av福利片在线观看| 亚洲av.av天堂| 日韩高清综合在线| 99热这里只有是精品50| 日本黄大片高清| 国产亚洲91精品色在线| 熟女人妻精品中文字幕| 久久久欧美国产精品| 日韩精品青青久久久久久| 国产精品三级大全| 非洲黑人性xxxx精品又粗又长| 国产av麻豆久久久久久久| 亚洲成人久久性| 十八禁网站免费在线| 给我免费播放毛片高清在线观看| 天堂网av新在线| 日本-黄色视频高清免费观看| 久久中文看片网| 一级毛片我不卡| 国产乱人偷精品视频| 成人亚洲欧美一区二区av| 日本 av在线| 久久韩国三级中文字幕| 在线播放国产精品三级| 色5月婷婷丁香| 不卡一级毛片| 亚洲精品在线观看二区| 久久精品国产自在天天线| 香蕉av资源在线| 国产欧美日韩精品亚洲av| 国产伦精品一区二区三区视频9| 国产一区二区三区av在线 | 国产精品久久久久久亚洲av鲁大| 少妇被粗大猛烈的视频| 日本a在线网址| 男人狂女人下面高潮的视频| 国产精品乱码一区二三区的特点| 国产精品av视频在线免费观看| 99九九线精品视频在线观看视频| 日韩欧美精品免费久久| 亚洲av中文字字幕乱码综合| 亚洲成av人片在线播放无| 免费无遮挡裸体视频| 婷婷精品国产亚洲av在线| 国产国拍精品亚洲av在线观看| 国产精品日韩av在线免费观看| 两个人视频免费观看高清| 最近的中文字幕免费完整| 久久久国产成人精品二区| 成人综合一区亚洲| 成人永久免费在线观看视频| 成人亚洲欧美一区二区av| 三级国产精品欧美在线观看| 亚洲成人精品中文字幕电影| av免费在线看不卡| 舔av片在线| 久久午夜福利片| 久久精品夜色国产| 久久久久久久久久久丰满| 日韩大尺度精品在线看网址| 国产伦在线观看视频一区| 全区人妻精品视频| 亚洲精品日韩av片在线观看| 一个人观看的视频www高清免费观看| 中文字幕免费在线视频6| 婷婷精品国产亚洲av| 久久精品国产清高在天天线| 男插女下体视频免费在线播放| 国产av一区在线观看免费| 高清午夜精品一区二区三区 | 国产精品爽爽va在线观看网站| 久久精品夜色国产| 国产伦一二天堂av在线观看| 高清日韩中文字幕在线| 非洲黑人性xxxx精品又粗又长| 国产午夜精品论理片| 婷婷色综合大香蕉| 性色avwww在线观看| 天堂网av新在线| 日韩人妻高清精品专区| 亚洲aⅴ乱码一区二区在线播放| 99热这里只有精品一区| 寂寞人妻少妇视频99o| 97在线视频观看| 啦啦啦啦在线视频资源| 熟女电影av网| 成人漫画全彩无遮挡| 干丝袜人妻中文字幕| 国产精品乱码一区二三区的特点| 深夜精品福利| 99热6这里只有精品| 国产成人一区二区在线| 男人舔女人下体高潮全视频| 国产亚洲精品久久久com| 中文字幕久久专区| 日本色播在线视频| 精品欧美国产一区二区三| a级一级毛片免费在线观看| 午夜福利在线在线| 亚洲精品影视一区二区三区av| 又黄又爽又刺激的免费视频.| 麻豆久久精品国产亚洲av| 麻豆国产97在线/欧美| 精品无人区乱码1区二区| 国产免费男女视频| 国产精品免费一区二区三区在线| 热99re8久久精品国产| 亚洲精华国产精华液的使用体验 | 丝袜美腿在线中文| 欧美潮喷喷水| 深夜a级毛片| 欧美在线一区亚洲| 青春草视频在线免费观看| 国产三级中文精品| 亚洲av熟女| 精品人妻一区二区三区麻豆 | 97在线视频观看| 老司机影院成人| 久久久久久久亚洲中文字幕| 人人妻,人人澡人人爽秒播| 亚洲av一区综合| 国产av一区在线观看免费| 久久久久久九九精品二区国产| 美女xxoo啪啪120秒动态图| 亚洲久久久久久中文字幕| 国产午夜福利久久久久久| 成人特级av手机在线观看| 中出人妻视频一区二区| 悠悠久久av| 免费看美女性在线毛片视频| 国产在线精品亚洲第一网站| 97人妻精品一区二区三区麻豆| 一边摸一边抽搐一进一小说| 亚洲人成网站在线观看播放| 久久婷婷人人爽人人干人人爱| 亚洲国产精品成人久久小说 | 少妇被粗大猛烈的视频| 国产人妻一区二区三区在| 免费看光身美女| 久久久久久久久大av| 午夜激情欧美在线| 波野结衣二区三区在线| or卡值多少钱| 99热这里只有是精品50| 3wmmmm亚洲av在线观看| 国产黄色视频一区二区在线观看 | 国产亚洲精品综合一区在线观看| 日本 av在线| 能在线免费观看的黄片| 国语自产精品视频在线第100页| 色吧在线观看| 春色校园在线视频观看| 少妇人妻精品综合一区二区 | 国产伦在线观看视频一区| 国产极品精品免费视频能看的| 丰满的人妻完整版| 亚洲七黄色美女视频| 一级黄片播放器| 99久久精品一区二区三区| 国产高潮美女av| 国产私拍福利视频在线观看| 亚洲av熟女| 99久国产av精品| 精品少妇黑人巨大在线播放 | 国产高清视频在线播放一区| 国产精品久久久久久av不卡| 亚洲无线观看免费| 亚洲熟妇熟女久久| 国产精品永久免费网站| 无遮挡黄片免费观看| 一边摸一边抽搐一进一小说| 亚洲成av人片在线播放无| 日韩制服骚丝袜av| 欧美丝袜亚洲另类| 亚洲一区二区三区色噜噜| 亚洲av一区综合| 国产高清三级在线| 久久这里只有精品中国| 99热6这里只有精品| 在线a可以看的网站| 久久久精品94久久精品| 老女人水多毛片| 国产午夜精品久久久久久一区二区三区 | 如何舔出高潮| 亚洲中文字幕一区二区三区有码在线看| 亚洲av一区综合| 啦啦啦观看免费观看视频高清| 深夜a级毛片| 亚洲七黄色美女视频| 人妻少妇偷人精品九色| 精品久久久久久久久av| 成人漫画全彩无遮挡| 在线免费观看不下载黄p国产| 久久久精品大字幕| 欧美+亚洲+日韩+国产| 69人妻影院| 国产av一区在线观看免费| 99久久久亚洲精品蜜臀av| 亚洲精品粉嫩美女一区| 最近2019中文字幕mv第一页| 啦啦啦韩国在线观看视频| 欧美+亚洲+日韩+国产| 乱人视频在线观看| 97超级碰碰碰精品色视频在线观看| 日本熟妇午夜| www日本黄色视频网| 国产精品爽爽va在线观看网站| 免费看av在线观看网站| 亚洲欧美日韩东京热| 久久国产乱子免费精品| 国产精品爽爽va在线观看网站| 亚洲国产色片| 中文字幕久久专区| 日韩av不卡免费在线播放| 亚洲最大成人av| 欧美色视频一区免费| a级一级毛片免费在线观看| 日韩精品青青久久久久久| 国产一区二区三区在线臀色熟女| 秋霞在线观看毛片| 特级一级黄色大片| 男人舔女人下体高潮全视频| 一边摸一边抽搐一进一小说| 观看免费一级毛片| 成人亚洲欧美一区二区av| 天天躁夜夜躁狠狠久久av| 精品久久国产蜜桃| 十八禁国产超污无遮挡网站| 免费av毛片视频| 中文字幕精品亚洲无线码一区| 国产激情偷乱视频一区二区| 国产精品一及| 美女高潮的动态| 黄色配什么色好看| 噜噜噜噜噜久久久久久91| 亚洲av成人精品一区久久| 国产高清激情床上av| 国产亚洲欧美98| 日韩欧美 国产精品| 亚洲精品久久国产高清桃花| 国产白丝娇喘喷水9色精品| 深爱激情五月婷婷| 国产亚洲精品av在线| 国产一区亚洲一区在线观看| 尤物成人国产欧美一区二区三区| 男女下面进入的视频免费午夜| 国产日本99.免费观看| 永久网站在线| 美女cb高潮喷水在线观看| 日韩,欧美,国产一区二区三区 | 91午夜精品亚洲一区二区三区| videossex国产| 日韩成人伦理影院| 亚洲精品粉嫩美女一区| 大又大粗又爽又黄少妇毛片口| 久久精品夜夜夜夜夜久久蜜豆| 美女高潮的动态| 久久热精品热| 久久久国产成人免费| 熟女电影av网| 夜夜爽天天搞| 亚洲,欧美,日韩| 变态另类丝袜制服| 国内精品久久久久精免费| 国产伦精品一区二区三区视频9| 国产单亲对白刺激| 日日啪夜夜撸| 国产人妻一区二区三区在| 亚洲国产高清在线一区二区三| 欧美zozozo另类| 中文资源天堂在线| 国产精品精品国产色婷婷| 日日摸夜夜添夜夜添小说| 国产私拍福利视频在线观看| 国内久久婷婷六月综合欲色啪| 亚洲精品成人久久久久久| 亚洲成a人片在线一区二区| av.在线天堂| 寂寞人妻少妇视频99o| 2021天堂中文幕一二区在线观| 俄罗斯特黄特色一大片| 桃色一区二区三区在线观看| 亚洲国产精品合色在线| 免费电影在线观看免费观看| 亚洲五月天丁香| 国产aⅴ精品一区二区三区波| 国产一级毛片七仙女欲春2| 丰满乱子伦码专区| 国产视频内射| 网址你懂的国产日韩在线| 天堂动漫精品| 日韩 亚洲 欧美在线| 久久鲁丝午夜福利片| 免费不卡的大黄色大毛片视频在线观看 | 日日干狠狠操夜夜爽| 男人和女人高潮做爰伦理| a级毛色黄片| 欧美高清成人免费视频www| 成人三级黄色视频| 夜夜爽天天搞| 精品久久久久久久久久免费视频| 此物有八面人人有两片| 国产高清有码在线观看视频| 欧美另类亚洲清纯唯美| 精品一区二区三区视频在线观看免费| 综合色av麻豆| 欧美国产日韩亚洲一区| 国内少妇人妻偷人精品xxx网站| 日本a在线网址| 亚洲av成人精品一区久久| 免费看a级黄色片| 欧美成人a在线观看| 大又大粗又爽又黄少妇毛片口| 国产三级在线视频| 18禁在线无遮挡免费观看视频 | avwww免费| 亚洲av不卡在线观看| 国产一区二区三区av在线 | 特级一级黄色大片| 91在线精品国自产拍蜜月| 国产午夜精品论理片| 亚洲性夜色夜夜综合| 赤兔流量卡办理| 国产一区二区在线av高清观看| 亚洲欧美日韩高清在线视频| 亚洲av成人av| 一级毛片aaaaaa免费看小| 久久人人爽人人爽人人片va| 真人做人爱边吃奶动态| 黄色视频,在线免费观看| 亚洲国产日韩欧美精品在线观看| 免费观看人在逋| 亚洲无线观看免费| 欧美一区二区亚洲| 国内精品一区二区在线观看| 久久韩国三级中文字幕| 国产视频一区二区在线看| 一个人观看的视频www高清免费观看| 少妇高潮的动态图| 六月丁香七月| 久久精品91蜜桃| 亚洲欧美清纯卡通| 日本黄大片高清| 国产欧美日韩一区二区精品| 亚洲精品亚洲一区二区| 免费在线观看成人毛片| 久久国产乱子免费精品| 欧洲精品卡2卡3卡4卡5卡区| 一进一出好大好爽视频| 淫妇啪啪啪对白视频| 亚洲18禁久久av| 午夜精品一区二区三区免费看| 亚洲自偷自拍三级| 亚洲av中文字字幕乱码综合| 18禁在线播放成人免费| 久久久久国产精品人妻aⅴ院| 91久久精品国产一区二区成人| 三级经典国产精品| 免费观看的影片在线观看| 寂寞人妻少妇视频99o| 别揉我奶头~嗯~啊~动态视频| 亚洲成人久久性| 国产成人aa在线观看| 日韩精品青青久久久久久| 国产日本99.免费观看| 国产午夜精品久久久久久一区二区三区 | 欧美高清成人免费视频www| 欧美性感艳星| 亚洲av五月六月丁香网| 国产成人a∨麻豆精品| 女同久久另类99精品国产91| 久久久国产成人免费| 久久精品人妻少妇| 一级av片app| eeuss影院久久| 亚洲人成网站在线播| 久久精品国产亚洲av香蕉五月| 中文在线观看免费www的网站| 黑人高潮一二区| 亚洲丝袜综合中文字幕| 国产精品女同一区二区软件| 亚洲色图av天堂| 一区二区三区免费毛片| 永久网站在线| 久久久久性生活片| 亚洲自拍偷在线| 中文字幕免费在线视频6| 久久久成人免费电影| 国产高清三级在线| 亚洲无线在线观看| 国产精品99久久久久久久久| 18禁在线无遮挡免费观看视频 | 久久久久性生活片| 欧美bdsm另类| 日本一本二区三区精品| 淫秽高清视频在线观看| 伦精品一区二区三区| 狠狠狠狠99中文字幕| av天堂中文字幕网| 别揉我奶头~嗯~啊~动态视频| 亚洲精品日韩在线中文字幕 | 久久久久国产网址| 欧美xxxx黑人xx丫x性爽| 不卡一级毛片| a级毛色黄片| 少妇被粗大猛烈的视频| 国产精品一区二区免费欧美| 91久久精品国产一区二区三区| eeuss影院久久| 亚洲图色成人| 少妇的逼好多水| 久久亚洲国产成人精品v| 成人午夜高清在线视频| 国产午夜福利久久久久久| 亚洲人与动物交配视频| 精品久久久久久久久亚洲| 级片在线观看| 一级毛片电影观看 | 国产麻豆成人av免费视频| 人人妻,人人澡人人爽秒播| 一级av片app| 色综合亚洲欧美另类图片| 联通29元200g的流量卡| 欧美性猛交╳xxx乱大交人| 国产精品乱码一区二三区的特点| 久久久久九九精品影院| 欧美又色又爽又黄视频| 成熟少妇高潮喷水视频| 亚洲精品色激情综合| 午夜免费男女啪啪视频观看 | 日本黄色视频三级网站网址| 国产中年淑女户外野战色| 婷婷色综合大香蕉| 99热这里只有是精品50| 18禁在线播放成人免费| 欧美日韩综合久久久久久| 久99久视频精品免费| 亚洲国产精品sss在线观看| 精品久久久久久久久久久久久| 日韩欧美三级三区| 久久久久久久久中文| 女人十人毛片免费观看3o分钟| 在线观看66精品国产| 午夜爱爱视频在线播放| 3wmmmm亚洲av在线观看| 久久久精品大字幕| 欧美一区二区亚洲| 亚洲人成网站在线播放欧美日韩| 非洲黑人性xxxx精品又粗又长| 在线观看一区二区三区| 99热精品在线国产| а√天堂www在线а√下载| 全区人妻精品视频| 国产精品一二三区在线看| 男女下面进入的视频免费午夜| 精品一区二区三区av网在线观看| 亚洲性夜色夜夜综合| 黄色日韩在线| 乱系列少妇在线播放| 婷婷色综合大香蕉| 黄色欧美视频在线观看| 嫩草影院新地址| 精品一区二区三区视频在线观看免费| 成年免费大片在线观看| 免费av毛片视频| 亚洲人成网站在线观看播放| 一个人观看的视频www高清免费观看| 精品一区二区三区人妻视频| 蜜桃亚洲精品一区二区三区| 久久婷婷人人爽人人干人人爱| 日日摸夜夜添夜夜添小说| 偷拍熟女少妇极品色| 99视频精品全部免费 在线| 美女 人体艺术 gogo| eeuss影院久久| 国产精品久久电影中文字幕| 成人国产麻豆网| 亚洲人成网站在线播| 色哟哟哟哟哟哟| 亚洲精品影视一区二区三区av| 久久鲁丝午夜福利片| 日韩成人av中文字幕在线观看 | 麻豆国产97在线/欧美| 精品国内亚洲2022精品成人| 我的女老师完整版在线观看| 欧美另类亚洲清纯唯美| 久久久久久久久久久丰满| 亚洲美女视频黄频| 直男gayav资源| 久久精品国产自在天天线| 国产精品久久电影中文字幕| 国产高清激情床上av| 亚洲国产精品国产精品| 免费av毛片视频| 丝袜喷水一区| 国产精品一区二区三区四区久久| 黄色欧美视频在线观看| 精品久久久久久久久av| 看片在线看免费视频| 国产国拍精品亚洲av在线观看| 精品久久久久久久人妻蜜臀av| 一个人观看的视频www高清免费观看| 久久久久久九九精品二区国产| 亚洲人成网站在线播| 免费av毛片视频| 亚洲欧美日韩高清在线视频| 嫩草影院精品99| 在线a可以看的网站| 麻豆精品久久久久久蜜桃| 国产精品免费一区二区三区在线| 欧美+日韩+精品| 精品欧美国产一区二区三| 3wmmmm亚洲av在线观看| 99久久精品一区二区三区| 嫩草影院入口| av天堂在线播放| 久久久a久久爽久久v久久| 日韩成人av中文字幕在线观看 | 99热全是精品| 免费av毛片视频| 亚洲性久久影院| 亚洲最大成人手机在线| 亚洲欧美日韩无卡精品| 99精品在免费线老司机午夜| 六月丁香七月| 日本与韩国留学比较| 精品久久久噜噜| 嫩草影院新地址| 22中文网久久字幕| 又爽又黄a免费视频| 激情 狠狠 欧美| 中文亚洲av片在线观看爽| 成年女人毛片免费观看观看9| 变态另类丝袜制服| 亚洲精品一卡2卡三卡4卡5卡| 久久人人爽人人片av| 日韩欧美三级三区| 亚洲国产精品合色在线| 久99久视频精品免费| 免费av毛片视频| 熟妇人妻久久中文字幕3abv| 简卡轻食公司| 99热网站在线观看| 精品少妇黑人巨大在线播放 | 国产精华一区二区三区| 欧美日韩精品成人综合77777| 麻豆一二三区av精品| 18禁在线无遮挡免费观看视频 | 国产综合懂色| 亚洲av第一区精品v没综合| 亚洲成人久久性| 久久精品国产鲁丝片午夜精品| 国产精品女同一区二区软件| 国产高潮美女av| 精品久久久久久久久久久久久| 少妇裸体淫交视频免费看高清| 色哟哟哟哟哟哟| 色尼玛亚洲综合影院| 免费看美女性在线毛片视频| 一区二区三区高清视频在线| 亚洲不卡免费看| 中国国产av一级| 国产免费一级a男人的天堂| 国内久久婷婷六月综合欲色啪| 欧美性感艳星| 91久久精品电影网| 一本精品99久久精品77| 岛国在线免费视频观看| 99国产极品粉嫩在线观看| 成人综合一区亚洲| 中国美女看黄片|