• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    W-doped In2O3 nanofiber optoelectronic neuromorphic transistors with synergistic synaptic plasticity

    2023-12-02 09:29:36YangYang楊洋ChuanyuFu傅傳玉ShuoKe柯碩HangyuanCui崔航源XiaoFang方曉ChangjinWan萬昌錦andQingWan萬青
    Chinese Physics B 2023年11期
    關(guān)鍵詞:楊洋

    Yang Yang(楊洋), Chuanyu Fu(傅傳玉), Shuo Ke(柯碩), Hangyuan Cui(崔航源),Xiao Fang(方曉), Changjin Wan(萬昌錦),?, and Qing Wan(萬青),2,§

    1School of Electronic Science&Engineering,and Collaborative Innovation Center of Advanced Microstructures,Nanjing University,Nanjing 210023,China

    2School of Micro-Nano Electronics,Hangzhou Global Scientific and Technological Innovation Center,Zhejiang University,Hangzhou 310027,China

    Keywords: W-doped In2O3 nanofibers,neuromorphic transistors,optoelectronic synaptic plasticity

    1.Introduction

    In the current post-Moore era, the simulation of the perception and computing functions of synapses and neurons by artificial neuromorphic devices has attracted increasing attention.[1]Over the past few decades, many types of neuromorphic devices have been proposed to emulate synapses/neurons.[2,3]Among them, nanofiber optoelectronic synapse transistors are novel electronic devices that combines the benefits of optics,electricity,and nanotechnology.[4,5]Optical signal has significant advantages in high-speed transmission,high stability and efficient connection of separated modules.Therefore, nanofiber optoelectronic synapse transistors have higher switching speed, smaller size, lower power consumption,and greater reliability comparing with other synaptic devices.[6–8]In the meantime, multi-functional synaptic plasticity can be achieved in a single synaptic device through photoelectric synergy, greatly simplifying the artificial neural network (ANN) with improved the robustness and scalability.[7]What is more, a stronger light-guiding effect may be exhibited by nanofibers with higher surface area,which can be beneficial for simulating synaptic plasticity and can enrich the diversity of neural network designs.[9]Therefore,the nanofiber optoelectronic synapse transistors with synergistic synaptic plasticity may have promising applications in ANN for neuromorphic computing.[10–13]

    Indium oxide (In2O3) is a wide bandgap (3.75 eV)semiconductor material with high electron mobility (theoretical value~270 cm2·V-1·s-1) and high transparency,and it has been widely used in semiconductor optoelectronic devices.[14–16]Recently,efforts have been made to improve its properties by doping elements such as Sn,[17]Mo,[18]Ga,[19]Zn,[20]and so on.Among them,W-doped In2O3(IWO)have recently gained interest following the experimental demonstration of IWO field effect transistors with ultra-high on/off current ratio.[21–25]The high valence difference between W6+and In3+may be particularly advantageous for facilitating the transfer of electrons.[26]Moreover, W has high oxygen bond dissociation energy, even low doping concentration of W can inhibit the excess oxygen vacancy, thus improving the electrical performance of the device.[27]Therefore,IWO can be a promising candidate for future channel material of transistors.

    Here, we employed the highly efficient and controllable electrospinning method to prepare IWO nanofibers, and its simple schematic illustrated in Fig.1(a).Under a high-voltage electric field, polymer solution is sprayed through a nozzle,forming fiber-shaped droplets or streamlines in the air, and ultimately resulting in nanofiber formation on the electrode.Subsequently, by combining with the fabrication process of synaptic transistors,IWO nanofibers synaptic transistors were successfully constructed.The long-term plasticity of the transistor was successfully demonstrated using light pulses as input signals.Furthermore,the synaptic weight can be precisely regulated by the light and electrical signals.Our results are very interesting for the development of nanofiber neuromorphic systems.

    2.Experimental details

    A solution was prepared by dissolving 0.3 g of indium nitrate (In(NO3)3·xH2O, Aladdin) in 10 ml of N, Ndimethylformamide(DMF,Aladdin),which was then stirred at 50?C for 1 h.A specific amount of tungsten chloride(WCl6,Meryer)was added to the solution,with a molar ratio of W:In set to 5 mol%.After stirring for 1 h,2.0 g of polyvinylpyrrolidone (PVP, Aladdin, Mw=1.3×106) was added to the solution and stirred overnight to form a clear and uniform solution.Electrospinning was employed to fabricate homogeneous nanofiber films on an(aluminum oxide)Al2O3/Si substrate.To ensure good contact between the nanofiber film and the Al2O3/Si substrate, the sample was baked at 150?C for 15 min and then treated under an ultraviolet lamp for 45 min.The PVP polymer was removed from the nanofibers by annealing at 500?C for 2 h,resulting in crystalline IWO nanofibers.Finally,the Al films with thickness of 100 nm were deposited by thermal evaporation for severing as source–drain electrodes using a shadow mask.The channel length and width of the IWO nanofiber optoelectronic synapse transistors are 80 μm and 1000 μm respectively.The size of the source/drain electrodes are all 150μm×1000μm.The morphology and composition of IWO nanofibers were analyzed respectively using a scanning electron microscope (SEM, JEOL, JSM-7000F)and x-ray photoelectron spectroscopy (XPS, ThermoFisher 250Xi).We used a semiconductor parameter analyzer(Keithley 2636B)and a fiber-coupled laser module(Changchun New Industry(CNI)Laser PGL-FC-360 nm)to investigate the electrical characteristics and neural morphology functions of photoelectric synaptic transistors based on IWO nanofibers.

    3.Results and discussion

    The morphology of IWO nanofibers after hightemperature annealing was analyzed using scanning electron microscopy (SEM), as illustrated in Fig.1(b).And the magnified view inset reveals IWO nanofibers diameter of approximately 80 nm.Next, the chemical states of In and W atoms in the IWO nanofibers were detected using XPS,as shown in Figs.1(c) and 1(d), respectively.The binding energies of In 3d3/2and In 3d5/2were 452.3 eV and 444.7 eV,respectively,which match well with In3+ions in In2O3.[28]The W 4f5/2and W 4f7/2peaks at 38.1 eV and 35.8 eV, respectively, can be attributed to the existence of W6+in the IWO nanofibers(Fig.1(d)).The W 4f5/2and W 4f7/2peaks both appeared as doublets, possibly due to the presence of other valence states of W,as described in other literature.[29]

    The schematic diagram of biological neurons and synapse is illustrated in Fig.2(a).Biological synapses are mainly composed of presynaptic membrane, synaptic cleft, and postsynaptic membrane.[30]The synaptic cleft contains a substantial amount of neurotransmitters.Upon stimulation of the presynaptic membrane, the neurotransmitter in the synaptic cleft is released and diffuses to the postsynaptic membrane, completing the information transmission.[31]The IWO nanofibers transistor can simulate the biological synapses, and its structure diagram is shown in Fig.2(b).The bottom gate(silicon)and the light source(360 nm)are utilized to simulate the presynaptic input,while the source/drain electrodes function as the postsynaptic output.The transfer characteristic curve of the transistor is shown in Fig.2(c),with the gate voltage scanned from-2 V to 3 V, whileVDSis fixed at 2 V.An anticlockwise hysteresis is evident, and theION/IOFFratio is around 2.2×105.

    A typical light induced excitatory postsynaptic current(EPSC) is stimulated by applying an optical pulse (25 ms,0.04 nW/μm2),as shown in Fig.3(a).EPSC increased rapidly to 10.27 nA under the light pulse, and then exhibited a slow decay.Because electrons could be generated in the channel when the IWO nanofiber channel is stimulated by the light pulse, and eventually the channel conductance will be increased.When the light pulse is finished, the conductance of the IWO nanofiber channel will not be reduced to the initial value.This phenomenon is commonly referred to as the persistent photoconduction effect.This the intrinsic mechanism of long-term synaptic plasticity in our device.Subsequently,the influences of light intensity and pulse width on the EPSC were investigated, as shown in Fig.3(b).Eight light pulses with different widths and three power densities of 0.04 nW/μm2,0.34 nW/μm2,and 0.66 nW/μm2were measured.When light power density is 0.04 nW/μm2, the EPSC value is very low due to the very small photoconduction effect.The maximum EPSC can reach 144.19 nA and 342.62 nA when the light power densities are 0.34 nW/μm2and 0.66 nW/μm2, respectively.In addition,when the pulse width is the same,the EPSC increases with the increase of light power density.Similarly,at the same light power density,EPSC increases linearly with increasing pulse widths(Fig.3(c)).In general, the long-term potentiation(LTP)can be achieved through repeated training.The increase of pulse numbers could lead to the enhancement of synaptic weight.Three sets of light pulses(0.34 nW/μm2,25 ms, andVDS=0.1 V) with different numbers (300, 600,and 1000) were designed to emulate this process (Fig.3(d)).When the light pulse numbers are 300,600,and 1000,the EPSCs increase to 63.58 nA,129.11 nA,and 243.70 nA,respectively.Moreover, when light pulse is finished, the retention rates after 10 seconds are 69.99%, 84.07%, and 90.86% for light pulse numbers of 300,600,and 1000.Assuming that the decay time of EPSC corresponds to the time course of forgetting after learning, the retention rate of the learning outcome will increase with the increase of learning number.

    To investigate the synergistic synaptic plasticity of IWO nanofiber optoelectronic synapse transistor, electrical signals were applied to the bottom gate (silicon) while optical signals were applied to the IWO nanofibers channel to trigger the EPSCs.The EPSCs of the transistor were measured under the same light intensity (0.34 nW/μm2) and at differentVGSof-0.2 V,-0.1 V, 0 V, and 0.1 V for 7 s.The light pulse width was fixed at 300 ms.Figure 4(a)shows the normalized conductance decay behaviors of the IWO nanofibers channel under differentVGS.The application of a positiveVGSleads to an increase in the electron density in the IWO nanofiber channel layer, consequently causing a rise in EPSC.The electron density in the IWO nanofibers channel layer decreases when a negativeVGSis applied, resulting in a decrease in EPSC.Figure 4(b) shows the synaptic weight variation curve of the device after applying differentVGSfor 7 s.AsVGSincreases from-0.2 V to 0.1 V,the synapse weight increases from 4.7%to 96.2%.According to the accumulation and consumption of electrons at the IWO/Al2O3interface, the band bending diagram is shown in Fig.4(c).Under light illumination, the ionization of oxygen vacancies induces an excess of electrons(VO→V+O+ e-and VO→V2+O+2e-), thereby increasing the IWO conductivity.When the light is finished, whenVGS>0,it provides additional electrons that reduce the recombination rate of photogenerated electrons(V2+O+2e-→VO),and a relatively higher normalized conductance value can be observed.[32,33]Conversely (VGS< 0), the recombination of photo-induced electrons is accelerated, and a relatively low normalized conductance is maintained.Therefore,the synaptic plasticity of the IWO nanofiber optoelectronic synapse transistors can be synergistic modulation by optical and electrical signals.

    The long-term potentiation (LTP) and long-term depression(LTD)are also important parameters of synaptic plasticity.Combining the results of light-induced potentiation and voltage-induced depression,the transition from LTP to LTD in biological synapses was emulated,as shown in Fig.4(d).The EPSC increased to 38.23 nA by continuously applying 64 light pulses (?t=90 ms, 0.34 nW/μm2), emulating LTP behavior in the biological synapse behavior.Then,the light source was turned off and 64 electrical pulses(?t=90 ms,VGS=-0.3 V)were applied to the device,reducing the EPSC to 0.53 nA.The transformation process of the synaptic weight updating,which is significant for the construction of artificial neural networks.

    To better visualize the synaptic plasticity of photoelectric synergistic modulation, a 5×5 device array was simulated,and the results are shown in Fig.5.From Fig.5(b), “N” is clearly written into the array, when the light signal is applied to the device.After a period of time,the“N”symbol can still be maintained in the array (Fig.5(c)), corresponding to the long-term memory of the system.Then, the image memory in the system was erased using an electrical signal(Fig.5(d)).After the erasure operation, the system returned to its initial state.Since the system can exhibit “write–erase” processes according to different sequence pulse stimulations,the system has a certain degree of robustness.

    4.Conclusion and perspectives

    In summary, we successfully prepared IWO nanofibers using electrospinning method and fabricated optoelectronic neuromorphic transistors with synergistic synaptic plasticity.Some important synaptic functions such as EPSC, long-term plasticity, and multipulse facilitation, have been studied in IWO nanofiber optoelectronic synapse transistors.Moreover,the long-term retention in the characterization of electrical parameters of electronic synaptic devices can be emulated by repeated pulsed stimuli.Importantly,a reliable conversion from light-induced LTP to electrically induced LTD can emulate the learning and forgetting processes in the human brain.Our results indicated that nanofiber optoelectronic synapse transistor is promising for artificial neural network construction.

    Acknowledgements

    Project supported by the National Key Research and Development Program of China (Grant Nos.2021YFA1200051 and 2019YFB2205400) and the National Natural Science Foundation of China(Grant Nos.62174082 and 62074075).

    猜你喜歡
    楊洋
    “不及格”
    做人與處世(2022年6期)2022-05-26 10:26:35
    詩與遠(yuǎn)方
    新唱黃楊扁擔(dān)
    Upper trophic structure in the Atlantic Patagonian shelf break as inferred from stable isotope analysis*
    陪父親跑步
    小小說月刊(2018年2期)2018-02-07 15:39:27
    Why Should We Teach Languages
    楊洋:安靜持久的發(fā)光體
    愛吃零食的小白兔
    国产免费一级a男人的天堂| 久久久久视频综合| 亚洲综合精品二区| 精品少妇久久久久久888优播| 婷婷色综合www| 国产深夜福利视频在线观看| h日本视频在线播放| 亚洲真实伦在线观看| 国产永久视频网站| 国产一区二区在线观看日韩| 亚洲精品乱久久久久久| 五月伊人婷婷丁香| 亚洲怡红院男人天堂| 亚洲精品乱久久久久久| 亚洲国产欧美人成| 久久ye,这里只有精品| 亚洲欧美中文字幕日韩二区| 国产在线男女| 国产永久视频网站| 91久久精品国产一区二区三区| 国产精品嫩草影院av在线观看| 新久久久久国产一级毛片| 一个人看的www免费观看视频| 欧美日韩精品成人综合77777| 偷拍熟女少妇极品色| 国产中年淑女户外野战色| av专区在线播放| 一个人看的www免费观看视频| 欧美bdsm另类| 嫩草影院新地址| 欧美3d第一页| 日韩国内少妇激情av| 91久久精品电影网| 亚洲美女视频黄频| 日本wwww免费看| 爱豆传媒免费全集在线观看| 建设人人有责人人尽责人人享有的 | 这个男人来自地球电影免费观看 | 国内揄拍国产精品人妻在线| 国产高清有码在线观看视频| 国产乱人偷精品视频| 五月开心婷婷网| 欧美bdsm另类| 18禁裸乳无遮挡免费网站照片| 99热这里只有精品一区| 秋霞伦理黄片| 在线播放无遮挡| 最近中文字幕2019免费版| 91狼人影院| 欧美变态另类bdsm刘玥| 欧美成人午夜免费资源| 中文在线观看免费www的网站| 国产成人午夜福利电影在线观看| 黄色配什么色好看| 欧美精品人与动牲交sv欧美| 日本猛色少妇xxxxx猛交久久| 简卡轻食公司| 99久久精品一区二区三区| 欧美精品人与动牲交sv欧美| 一级毛片久久久久久久久女| 国产深夜福利视频在线观看| 日本黄大片高清| 久久久国产一区二区| 亚洲欧美中文字幕日韩二区| 91狼人影院| 精品人妻视频免费看| 精品少妇久久久久久888优播| 蜜桃亚洲精品一区二区三区| 最近中文字幕2019免费版| 国产精品一及| 亚洲人与动物交配视频| 免费看光身美女| 精品国产乱码久久久久久小说| 久久韩国三级中文字幕| 国产成人a区在线观看| 日韩 亚洲 欧美在线| 内地一区二区视频在线| 日本黄大片高清| 国产精品人妻久久久影院| 国产精品三级大全| 各种免费的搞黄视频| 美女主播在线视频| 国产伦理片在线播放av一区| 国产高清三级在线| 久久毛片免费看一区二区三区| 久久国产精品大桥未久av | 亚洲,一卡二卡三卡| 中文字幕免费在线视频6| 五月开心婷婷网| 少妇人妻久久综合中文| 2021少妇久久久久久久久久久| 欧美97在线视频| 国产爱豆传媒在线观看| 国产黄片视频在线免费观看| 亚洲图色成人| 日韩人妻高清精品专区| 久久青草综合色| 高清毛片免费看| 九九在线视频观看精品| 精品一区在线观看国产| 热re99久久精品国产66热6| 日韩,欧美,国产一区二区三区| 国内揄拍国产精品人妻在线| 在线免费十八禁| 成年女人在线观看亚洲视频| 国产精品偷伦视频观看了| 久久青草综合色| 国产久久久一区二区三区| 在线天堂最新版资源| 亚州av有码| 国产 精品1| 日日摸夜夜添夜夜添av毛片| 亚洲av成人精品一二三区| 国语对白做爰xxxⅹ性视频网站| 亚洲第一av免费看| 国产真实伦视频高清在线观看| 啦啦啦中文免费视频观看日本| 亚洲av在线观看美女高潮| 成年美女黄网站色视频大全免费 | 18禁裸乳无遮挡动漫免费视频| 亚洲精品日本国产第一区| 国产又色又爽无遮挡免| 国产精品秋霞免费鲁丝片| 夜夜骑夜夜射夜夜干| 久久婷婷青草| 欧美精品一区二区免费开放| 一本久久精品| 久久av网站| 3wmmmm亚洲av在线观看| 亚洲国产精品成人久久小说| 日韩在线高清观看一区二区三区| 黄片wwwwww| 欧美xxxx黑人xx丫x性爽| 夜夜爽夜夜爽视频| 最黄视频免费看| 最近手机中文字幕大全| 日韩欧美一区视频在线观看 | 免费大片18禁| 99热这里只有是精品50| 国产永久视频网站| 女人十人毛片免费观看3o分钟| 国产大屁股一区二区在线视频| 日韩欧美 国产精品| 美女xxoo啪啪120秒动态图| 免费黄网站久久成人精品| 最近中文字幕2019免费版| 大片电影免费在线观看免费| 久久人人爽人人片av| 岛国毛片在线播放| 欧美少妇被猛烈插入视频| 91精品国产九色| 国产有黄有色有爽视频| 色视频在线一区二区三区| 日日啪夜夜爽| 久久精品人妻少妇| 最后的刺客免费高清国语| 80岁老熟妇乱子伦牲交| 色婷婷av一区二区三区视频| 狂野欧美白嫩少妇大欣赏| 国产高清三级在线| 男女边摸边吃奶| av国产精品久久久久影院| 日日啪夜夜爽| 中文欧美无线码| 一区二区三区免费毛片| 人妻 亚洲 视频| 美女主播在线视频| 97精品久久久久久久久久精品| 九草在线视频观看| 精品一区在线观看国产| 伊人久久国产一区二区| 国产一区二区三区av在线| av卡一久久| 午夜免费观看性视频| 欧美日韩精品成人综合77777| 婷婷色综合www| 欧美高清成人免费视频www| 成人国产麻豆网| 久久久久精品性色| 另类亚洲欧美激情| 免费高清在线观看视频在线观看| 七月丁香在线播放| 高清视频免费观看一区二区| 边亲边吃奶的免费视频| 又粗又硬又长又爽又黄的视频| 国模一区二区三区四区视频| 国产精品久久久久久久久免| 国产在线免费精品| 婷婷色麻豆天堂久久| 日韩精品有码人妻一区| 男女国产视频网站| 国产 精品1| 亚洲三级黄色毛片| 欧美日韩一区二区视频在线观看视频在线| 成人国产麻豆网| 久久韩国三级中文字幕| 国产一级毛片在线| 欧美激情国产日韩精品一区| 街头女战士在线观看网站| 青春草亚洲视频在线观看| 少妇 在线观看| 国产伦精品一区二区三区四那| 欧美xxⅹ黑人| 日韩中文字幕视频在线看片 | 久久毛片免费看一区二区三区| 国产一区二区在线观看日韩| 狂野欧美白嫩少妇大欣赏| 三级经典国产精品| 观看美女的网站| 99热这里只有是精品50| 亚洲欧美精品专区久久| 水蜜桃什么品种好| 肉色欧美久久久久久久蜜桃| 亚洲aⅴ乱码一区二区在线播放| 联通29元200g的流量卡| 久久99蜜桃精品久久| 欧美性感艳星| 国产成人freesex在线| 亚洲色图av天堂| 搡女人真爽免费视频火全软件| 国产精品一区二区在线不卡| 国产黄色视频一区二区在线观看| 精品亚洲成国产av| .国产精品久久| www.色视频.com| 国语对白做爰xxxⅹ性视频网站| 少妇精品久久久久久久| 亚洲电影在线观看av| 一本色道久久久久久精品综合| 大香蕉97超碰在线| 日韩视频在线欧美| 纵有疾风起免费观看全集完整版| 亚洲国产欧美人成| 狂野欧美白嫩少妇大欣赏| 久久这里有精品视频免费| 国产女主播在线喷水免费视频网站| 久久人人爽人人爽人人片va| 国产成人aa在线观看| 在线精品无人区一区二区三 | 国内精品宾馆在线| 国产精品.久久久| 国产视频首页在线观看| 久久婷婷青草| 精品午夜福利在线看| 狠狠精品人妻久久久久久综合| 日韩av在线免费看完整版不卡| 日韩欧美精品免费久久| 国产黄片美女视频| 日本av手机在线免费观看| 久久精品熟女亚洲av麻豆精品| 草草在线视频免费看| 国产视频内射| 婷婷色麻豆天堂久久| 2021少妇久久久久久久久久久| 九草在线视频观看| 久久久久久久精品精品| 91狼人影院| 日韩中文字幕视频在线看片 | av免费在线看不卡| 亚洲不卡免费看| 久久久午夜欧美精品| 亚洲欧美清纯卡通| 国产黄片美女视频| 啦啦啦中文免费视频观看日本| 日韩电影二区| 18禁裸乳无遮挡动漫免费视频| 亚洲av不卡在线观看| 婷婷色麻豆天堂久久| 一本一本综合久久| 国产白丝娇喘喷水9色精品| 亚洲av.av天堂| 天天躁日日操中文字幕| 大片电影免费在线观看免费| 久久久精品94久久精品| 国精品久久久久久国模美| 性色av一级| 九草在线视频观看| 欧美精品一区二区免费开放| 久久99热这里只频精品6学生| 精品99又大又爽又粗少妇毛片| 波野结衣二区三区在线| 亚洲国产欧美在线一区| 一本久久精品| 国产精品久久久久久精品古装| 欧美人与善性xxx| 婷婷色综合大香蕉| 久久韩国三级中文字幕| av在线app专区| 亚洲欧美一区二区三区黑人 | 国产精品麻豆人妻色哟哟久久| 全区人妻精品视频| 亚洲怡红院男人天堂| av不卡在线播放| 国产成人a区在线观看| 三级国产精品欧美在线观看| 简卡轻食公司| 久热久热在线精品观看| 色综合色国产| 一区二区av电影网| 日韩免费高清中文字幕av| 国产淫语在线视频| 边亲边吃奶的免费视频| 日本猛色少妇xxxxx猛交久久| 久久久久网色| 熟女电影av网| 午夜福利在线在线| 色视频在线一区二区三区| 国产视频内射| 中文资源天堂在线| 永久免费av网站大全| 国产高清国产精品国产三级 | 日韩欧美 国产精品| 国产男女内射视频| 国产视频内射| 黄色一级大片看看| 一区二区av电影网| 91精品伊人久久大香线蕉| 欧美成人精品欧美一级黄| 亚洲国产日韩一区二区| 精品国产三级普通话版| 欧美日韩国产mv在线观看视频 | 菩萨蛮人人尽说江南好唐韦庄| 国产片特级美女逼逼视频| 人妻 亚洲 视频| 亚洲欧美成人综合另类久久久| a 毛片基地| 精品酒店卫生间| 高清av免费在线| 亚洲人成网站在线播| 一区在线观看完整版| 性色av一级| 国产极品天堂在线| 国产亚洲一区二区精品| 91aial.com中文字幕在线观看| 免费在线观看成人毛片| 亚洲精品久久久久久婷婷小说| 欧美精品亚洲一区二区| 男人舔奶头视频| 51国产日韩欧美| 夫妻性生交免费视频一级片| 日韩不卡一区二区三区视频在线| 亚洲欧美清纯卡通| 在线观看免费视频网站a站| 免费观看a级毛片全部| 春色校园在线视频观看| 在线观看免费视频网站a站| 一区二区三区精品91| 亚洲婷婷狠狠爱综合网| 久久这里有精品视频免费| 免费观看a级毛片全部| 日韩免费高清中文字幕av| 国产伦理片在线播放av一区| 精品午夜福利在线看| 中文字幕亚洲精品专区| 欧美精品一区二区大全| 人人妻人人看人人澡| 日本黄大片高清| 我要看日韩黄色一级片| 久久久久久久大尺度免费视频| 赤兔流量卡办理| 日本与韩国留学比较| 美女内射精品一级片tv| 成年免费大片在线观看| .国产精品久久| 一级a做视频免费观看| 中文字幕亚洲精品专区| av网站免费在线观看视频| 欧美精品国产亚洲| 晚上一个人看的免费电影| 国产探花极品一区二区| av又黄又爽大尺度在线免费看| 免费在线观看成人毛片| 精品熟女少妇av免费看| 一级二级三级毛片免费看| 免费少妇av软件| 观看免费一级毛片| 国产精品99久久久久久久久| 2022亚洲国产成人精品| 国产黄色免费在线视频| 国产精品爽爽va在线观看网站| 久久久久久人妻| 男人舔奶头视频| 午夜免费鲁丝| 少妇精品久久久久久久| 男女下面进入的视频免费午夜| 狂野欧美白嫩少妇大欣赏| 精品酒店卫生间| 97在线视频观看| 国产精品久久久久久精品古装| 我的老师免费观看完整版| 一级二级三级毛片免费看| 内地一区二区视频在线| 日韩人妻高清精品专区| 国精品久久久久久国模美| 国产久久久一区二区三区| 亚洲精品视频女| 一区二区三区免费毛片| av视频免费观看在线观看| 色婷婷av一区二区三区视频| 久久精品国产亚洲网站| 全区人妻精品视频| 一级毛片久久久久久久久女| 高清在线视频一区二区三区| 只有这里有精品99| 国产亚洲精品久久久com| 国产欧美亚洲国产| 欧美少妇被猛烈插入视频| 免费黄频网站在线观看国产| 国产极品天堂在线| 美女福利国产在线 | 亚洲精品一二三| 高清日韩中文字幕在线| 婷婷色av中文字幕| 国产女主播在线喷水免费视频网站| 91久久精品国产一区二区成人| 国产又色又爽无遮挡免| 大码成人一级视频| 国产精品久久久久久精品古装| 男女免费视频国产| 人人妻人人添人人爽欧美一区卜 | 人体艺术视频欧美日本| 久久人人爽av亚洲精品天堂 | www.色视频.com| 一级黄片播放器| 免费观看在线日韩| 亚洲精品久久午夜乱码| 小蜜桃在线观看免费完整版高清| 国产成人91sexporn| 欧美丝袜亚洲另类| 永久网站在线| 少妇猛男粗大的猛烈进出视频| www.av在线官网国产| 亚洲熟女精品中文字幕| 午夜福利在线观看免费完整高清在| 大码成人一级视频| 亚洲av综合色区一区| 日本-黄色视频高清免费观看| 校园人妻丝袜中文字幕| 亚洲av中文字字幕乱码综合| 一本色道久久久久久精品综合| 亚洲人成网站在线播| 久久99蜜桃精品久久| 99热6这里只有精品| 午夜福利在线观看免费完整高清在| 王馨瑶露胸无遮挡在线观看| 精品酒店卫生间| 久久久久久久久久久免费av| 国国产精品蜜臀av免费| 中文在线观看免费www的网站| av播播在线观看一区| 97精品久久久久久久久久精品| 欧美三级亚洲精品| 91精品国产国语对白视频| 尾随美女入室| 免费久久久久久久精品成人欧美视频 | 男女下面进入的视频免费午夜| 国产视频内射| 亚洲精品日韩在线中文字幕| 黄色视频在线播放观看不卡| 欧美日韩视频精品一区| 精品酒店卫生间| av一本久久久久| 国产一区二区三区综合在线观看 | 成年美女黄网站色视频大全免费 | av国产久精品久网站免费入址| 亚洲电影在线观看av| 国产美女午夜福利| 日韩人妻高清精品专区| 熟女人妻精品中文字幕| 99re6热这里在线精品视频| 久久久久久久久久成人| 99热网站在线观看| 晚上一个人看的免费电影| 国产亚洲5aaaaa淫片| 亚洲欧美中文字幕日韩二区| 免费观看av网站的网址| 国精品久久久久久国模美| 国产伦在线观看视频一区| 精品一区在线观看国产| 免费黄频网站在线观看国产| 又大又黄又爽视频免费| 国产v大片淫在线免费观看| 91aial.com中文字幕在线观看| 免费黄色在线免费观看| 亚洲av欧美aⅴ国产| 婷婷色综合www| 性高湖久久久久久久久免费观看| 自拍欧美九色日韩亚洲蝌蚪91 | 国模一区二区三区四区视频| 一个人看的www免费观看视频| 深爱激情五月婷婷| 国产成人精品一,二区| 观看av在线不卡| 麻豆乱淫一区二区| 久久久亚洲精品成人影院| 日韩免费高清中文字幕av| 国产成人freesex在线| 亚洲国产精品一区三区| 日韩视频在线欧美| 国产成人免费观看mmmm| 国产爽快片一区二区三区| 五月伊人婷婷丁香| 91精品国产九色| 亚洲av国产av综合av卡| a 毛片基地| 交换朋友夫妻互换小说| 色婷婷久久久亚洲欧美| 欧美日韩一区二区视频在线观看视频在线| 午夜福利影视在线免费观看| 99精国产麻豆久久婷婷| 精品久久久精品久久久| 亚洲av二区三区四区| videossex国产| 国产深夜福利视频在线观看| 欧美激情极品国产一区二区三区 | 色5月婷婷丁香| 26uuu在线亚洲综合色| 国产欧美日韩一区二区三区在线 | 国产午夜精品一二区理论片| 多毛熟女@视频| 国产欧美日韩精品一区二区| 久久久精品94久久精品| 97超碰精品成人国产| 青青草视频在线视频观看| 久久久久久久久久成人| 日本爱情动作片www.在线观看| 内射极品少妇av片p| 激情 狠狠 欧美| 成人综合一区亚洲| 国产亚洲欧美精品永久| 美女中出高潮动态图| 亚洲欧洲日产国产| av视频免费观看在线观看| 欧美另类一区| 熟女av电影| 在线观看美女被高潮喷水网站| 人妻一区二区av| 日本爱情动作片www.在线观看| 成人高潮视频无遮挡免费网站| 国产黄片视频在线免费观看| h日本视频在线播放| 国模一区二区三区四区视频| 精品熟女少妇av免费看| 中文乱码字字幕精品一区二区三区| 插逼视频在线观看| 国产黄片视频在线免费观看| 亚洲成色77777| 免费观看的影片在线观看| av在线蜜桃| 亚洲欧美一区二区三区国产| 国产精品成人在线| 欧美 日韩 精品 国产| 久久99热这里只有精品18| 乱码一卡2卡4卡精品| 高清av免费在线| 人人妻人人看人人澡| 最近中文字幕高清免费大全6| 九草在线视频观看| 能在线免费看毛片的网站| 日本黄大片高清| 99热6这里只有精品| 国产真实伦视频高清在线观看| 如何舔出高潮| 国产成人91sexporn| 青春草视频在线免费观看| 日韩av免费高清视频| 少妇的逼水好多| 精品久久国产蜜桃| 久久久精品免费免费高清| 成人18禁高潮啪啪吃奶动态图 | 亚洲国产欧美人成| 91精品一卡2卡3卡4卡| 高清不卡的av网站| 精品国产一区二区三区久久久樱花 | 在线免费十八禁| 这个男人来自地球电影免费观看 | 精品人妻偷拍中文字幕| 免费看光身美女| 国产黄片视频在线免费观看| 国产在线视频一区二区| 久久青草综合色| 精品国产露脸久久av麻豆| 日本欧美国产在线视频| 男人舔奶头视频| 热re99久久精品国产66热6| 欧美日韩精品成人综合77777| 成年av动漫网址| 久久久久久伊人网av| 国产免费又黄又爽又色| 久久久精品94久久精品| 欧美高清成人免费视频www| 少妇的逼好多水| av视频免费观看在线观看| 国产精品女同一区二区软件| 免费看光身美女| 97热精品久久久久久| 亚洲av日韩在线播放| 熟女人妻精品中文字幕| 91aial.com中文字幕在线观看| 国产91av在线免费观看| 国产成人免费观看mmmm| 亚洲丝袜综合中文字幕| 国产高清有码在线观看视频| 欧美精品人与动牲交sv欧美| 涩涩av久久男人的天堂| 青青草视频在线视频观看| 亚洲av欧美aⅴ国产| 午夜精品国产一区二区电影| 舔av片在线| 日本黄大片高清| 国产在线一区二区三区精| 黄色怎么调成土黄色| 国产成人精品久久久久久| 亚洲图色成人| 亚洲精品久久午夜乱码|