• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A discrete Boltzmann model with symmetric velocity discretization for compressible flow

    2023-12-02 09:22:16ChuandongLin林傳棟XiaopengSun孫笑朋XianliSu蘇咸利HuilinLai賴惠林andXiaoFang方曉
    Chinese Physics B 2023年11期
    關鍵詞:界面混凝土

    Chuandong Lin(林傳棟), Xiaopeng Sun(孫笑朋), Xianli Su(蘇咸利),Huilin Lai(賴惠林), and Xiao Fang(方曉)

    1Sino-French Institute of Nuclear Engineering and Technology,Sun Yat-sen University,Zhuhai 519082,China

    2School of Mathematics and Statistics,the Key Laboratory of Analytical Mathematics and Applications(Ministry of Education),Fujian Key Laboratory of Analytical Mathematics and Applications(FJKLAMA),and Center for Applied Mathematics of Fujian Province(FJNU),Fujian Normal University,Fuzhou 350117,China

    Keywords: discrete Boltzmann method,compressible flow,nonequilibrium effect,kinetic method

    1.Introduction

    Compressible flow with or without external force is of great importance in nature and a variety of engineering applications,such as high-speed aircraft,jet engines,rocket motors,entry into a planetary atmosphere,shock,and explosion.[1]Up to today,it remains a challenge to conduct in-depth research on compressible flow that often involves violent changes in physical fields,spatial and temporal multiscale behaviours,thermodynamic nonequilibrium (TNE) and hydrodynamic nonequilibrium(HNE)effects,among others.With the rapid development of computational fluid dynamics(CFD),numerical simulations have become a powerful tool for investigating fluid behaviours in either nearly incompressible or compressible complex systems,complementing the research conducted through pure experimentation and theory.[1]The fundamental basis of almost all CFD is the Navier–Stokes (NS) equations, which can be simplified by removing terms describing viscous actions to yield the Euler equations.Actually, both the NS and Euler models are based on the continuum assumption and primarily describe the HNE behaviours of the fluid system, but can not capture the essential accompanying TNE.As a transport equation describing the statistical behaviour of a thermodynamic system out of equilibrium, the Boltzmann equation can effectively incorporate both HNE and TNE information about the fluid systems.

    絲黑穗?。翰デ胺N子處理,用藥劑處理種子是綜合防治中不可忽視的重要環(huán)節(jié)。方法有拌種、浸種和種衣劑處理三種。藥劑防治必須選擇內吸性強、殘效期長的農藥,三唑類殺菌劑拌種防治玉米絲黑穗病效果較好,大面積防效可穩(wěn)定在60%~70%。

    采用SPSS 21.0軟件進行統(tǒng)計分析,計量資料用均數±標準差表示,滿足正態(tài)性,用t檢驗,不滿足正態(tài)性,用秩和檢驗。計數資料用x2檢驗。

    At present,based on the Boltzmann equation,a series of simulation methods have been designed.One popular computational technique in association with the Boltzmann equation is the lattice Boltzmann method(LBM),which has been successfully developed for simulations of fluid phenomena.[2–14]The LBM research consists of two complementary branches.One aims to serve as a novel approach for numerically solving various partial differential equation(s).The other aims to act as an innovative method for constructing kinetic model to bridge the macro and micro descriptions.These two branches have distinct goals and consequently obey different rules.[15]For the first branch of LBM, a few examples are as follows.In 1998, Martyset al.derived a representation of the forcing term in the LBM based upon a Hermite expansion of the Boltzmann distribution function in velocity phase space.[2]In 2002,Guoet al.demonstrated that discrete lattice effects should be considered in the introduction of a force,and they designed a representation of the forcing term for the LBM, from which the NS equations could be obtained via the Chapman–Enskog analysis.[3]In 2010, Mohamad and Kuzmin evaluated three different schemes for adding a force term to the LBM using the Bhatnager–Gross–Krook (BGK) method.[4]In 2018, Feiet al.used the central-moment-based collision operator and consistent forcing scheme for the three-dimensional LBM that significantly reduced computational costs.[9]It is worth noting that,as an optional numerical solver,the first branch of LBM aims to present a numerical solution of the traditional macroscopic governing equations of fluid mechanics, therefore its duty lies in being loyal to the original physical model.

    As a variant version of the second branch of LBM, the discrete Boltzmann method (DBM) has emerged as a powerful tool for the research of compressible nonequilibrium phenomena during the last decade.[15–32]To be specific,the DBM possesses two remarkable merits.On the one hand,it can recover macroscopic fluid equations in the hydrodynamic limit and provide essential TNE information.On the other hand,the DBM is equivalent to a modified hydrodynamic model combined with a coarse-grained model that captures significant TNE behaviours when the physical system departs a bit far from equilibrium.In 2012,Xuet al.firstly pointed out that,under the condition that the based Boltzmann equation and the kinetic moments before discretization are consistent with those in nonequilibrium statistical physics,the non-conserved kinetic moments of the difference of distribution functionffrom its corresponding equilibriumfeqcan be used to measure the deviation of the system from its thermodynamic equilibrium and the resulting TNE effects.[16]This is the starting point of the current DBM.[15]In 2017,a two-component DBM was extended for compressible flows in the presence of a force field and utilized to study the effects of Reynolds numbers on the Rayleigh–Taylor (RT) instability.[21]In 2019, a multiplerelaxation-time DBM was developed for compressible thermal reactive flows, and an accurate matrix inversion method was adopted to calculate collision, reaction, and force terms.[24]In 2022, based on the ellipsoidal statistical BGK model, the DBM was developed for high-speed compressible flows,capturing various depths of TNE effects.[31]In the same year, a simplified DBM was presented, capable of recovering the reactive Euler equations in the continuum limit,and a 2D ninevelocity model was constructed, with the discrete velocities divided into three groups.[27]In brief,the current DBM stems from the second branch of LBM and focuses more on the TNE behaviors that the macro modeling generally ignore.It breaks through the continuity and near-equilibrium assumptions of traditional fluid modeling, discards the lattice gas image of standard LBM, and incorporates various methods based on phase space for checking,exhibiting,describing and analyzing the nonequilibrium state and resulting effects.More information extraction technologies and analysis methods for complex field are introduced over time.[15]

    It should be pointed out that,after the physical model construction that is relatively fundamental,the next step involves the numerical design of a discrete scheme, which is another important issue directly related to the computational precision,robustness,and efficiency of simulations.For the kinetic model DBM,there are three aspects of discretization,i.e.,the discretizing of time, space, and velocities.To solve the temporal and spatial derivatives in the discrete Boltzmann equation, researchers can adopt reasonable traditional or modified algorithms.[16]Furthermore, for the purpose of preliminary study on discrete velocities, in this paper, a 2D nine-velocity(D2V9) scheme is constructed for the DBM of compressible flow with external force.This discrete velocity scheme,named model (1, 4, 4), assumes a rest velocity, a group of velocities with the same magnitudevain four horizontal or vertical directions, and a group with sizevbin four diagonal directions.The proposed model exhibits greater spatial symmetry and numerical accuracy than the model(3,3,3)that includes three sets of discrete velocities with three directions in each group.[27]Besides, compared to the DBM using 2D sixteenvelocity (D2V16) composed of 4×4 discrete velocities and recovering the NS equations in the hydrodynamic limit,[24]the model with D2V9 offers higher computational efficiency but lower physical accuracy.

    Figure 6 exhibits the density contours in the evolution of RT instability at time instantst=0,0.5,1.0,and 1.5,respectively.The left four snapshots are simulation results of the DBM with D2V9,while the right four snapshots are obtained using the model of D2V16.As shown in Fig.6, the heavy(light) medium continuously sinks (rises) due to the gravity.With the passage of time, the vortex emerges and continues to develop in the later stage.The material interface becomes smooth and some fine fluid structures disappear as the two media penetrate into each other.It is confirmed that both models are capable of simulating the compressible RT instability and offer similar results with subtle differences.The simulation difference arises from the fact that,in the hydrodynamic limit,the former recovers the Euler equations,while the latter recovers the NS equations that contain dissipative effects of viscosity and heat conduction.

    2.Discrete Boltzmann method

    The BGK discrete Boltzmann equation takes the following form,

    where ?stands for the Hamilton operator,tthe time,τthe relaxation time,fi(feqi)the discrete(equilibrium)distribution function,Fithe force term,i=1, 2,..., 9, the index of discrete Boltzmann velocityvi.Furthermore, from the discrete distribution function,the densityρ,hydrodynamic velocityu,the energyE,and temperatureTcan be obtained by

    whereu=|u|is the magnitude of the flow velocity,vi=|vi|denotes the magnitude of the discrete velocity,ηiaccounts for the vibrational and/or rotational energies,andγrepresents the specific heat ratio as follows:

    著火落后期的長短與燃料本身的分子結構和物理化學性質、過量空氣系數(φat=0.8~0.9時最短)、開始點火時汽缸內溫度和

    in terms of the translational degrees of freedomDand extra degrees of freedomI.It is clear that this DBM can describe fluid systems with a flexible specific heat ratio as the parameterD=2 is fixed for a 2D system andIis tunable.It should be mentioned that the BGK-like models in various kinetic methods for nonequilibrium flow are not the original versions directly simplified from the Boltzmann equation,but are modified versions that have incorporated the mean-field theory description.[15]

    which describes the variation rate of distribution function due to external force.[21,24]Physically, equation (16) is derived from the prerequisite that the equilibrium distribution functionfeqis the main portion of the distribution functionfwhen the system is not too far from equilibrium.For a 2D coordinate system,equation(16)can be written as in the continuum limit.Herep=ρTis the pressure,rdenotes the position,arepresents the acceleration,the subscriptsαandβstand for indices of coordinates,and Einstein summation notation is applied.

    Mathematically,?2,αβis a second-order tensor with three independent variables?2,xx,?2,xy, and?2yy.The symbol?αdenotes a vector with two components?xand?y.Physically,?2,αβis associated with the non-organized energy, and?αis relevant to the non-organized energy flux in theαdirection.In particular, the nonequilibrium quantity?2,xxreflects the derivation of the translational energy in thexdegree from equilibrium state,and?2,yyreflects the departure of the translational energy in theydegree from equilibrium.

    在小學數學教學的過程中,習題練習能夠有效地幫助學生鞏固知識記憶,同時也能夠幫助教師了解學生的學習難點,從而能夠有針對性地進行講解。而在此過程中,教師也可以結合微課教學視頻開展復習工作,提升學生的學習效率。

    Fig.1.Sketch of the discrete velocity model.

    At this point, we have proposed a discrete Boltzmann model that can not only recover the Euler equations, but also capture some TNE effects.After the construction of the physical model,the next step is the numerical design of appropriate discretization schemes.In this work,the second-order Runge–Kutta scheme is chosen for the time derivative in Eq.(1),and the nonoscillatory nonfree dissipative scheme that is at the level of the second-order accuracy is adopted for the spatial derivative.[33]Furthermore, we construct a discrete velocity model,D2V9,in the following mathematical form:

    where(0,0)stands for the resting velocity,and the tunable parametersvaandvbare used to control the values of non-zero discrete velocities.Figure 1 depicts the sketch of the discrete velocities,which include a motionless velocity,four velocities with magnitudevain horizontal or vertical directions,and four velocities with sizevbin diagonal directions.Meanwhile,the variableηiis introduced as follows:

    農產品科技含量較低,品牌潛力有待挖掘。農業(yè)品牌建設必須有過硬的質量和足夠的資金作為基礎,而過硬的質量又需要由強大的科技作為后盾。為確保品牌農產品的高質量和高效益,農業(yè)企業(yè)應當加強對農產品的深加工。然而,現(xiàn)階段臥龍區(qū)已認證的無公害品牌除了青華鎮(zhèn)永興農貿公司粗加工玉米面和玉米糝外,其他企業(yè)都沒有對其產品內在價值進行加工,最終嚴重影響了企業(yè)效益。

    Figure 2 delineates the amplitude of vertical velocityuyversus the value of accelerationayat a time instantt=0.01 in the free-falling process.The squares represent the simulation results,and the solid line denotes the exact solutionuy=ayt.Evidently, the DBM results are in excellent agreement with the exact solutions,hence it is confirmed that the matrix inversion method is accurate to calculate the external force on the right-hand of the discrete Boltzmann equation.

    3.Simulation and verification

    In this section, let us carry out numerical simulations to test the DBM with the proposed discrete velocity scheme.To this end, we consider five typical benchmarks, i.e., the freefalling process, Sod’s shock tube, sound wave, compressible RT instability,and translational motion of a 2D fluid system.

    3.1.The free-falling process

    First of all,the free-falling process of a physical system is adopted to verify the effectiveness of the force term.The system is homogeneous in a gravity field.Initially,the density isρ=1.0,the flow velocityu=0,and the temperatureT=1.0.Due to the external force,it falls with accelerationayin theydirection as time goes on.The specific heat ratio isγ=1.4,the relaxation timeτ=4×10-6,the temporal step ?t=10-6,the spatial step ?x=?y=10-5, the mesh gridNx×Ny=1×1,and parameters(va,vb,ηa,ηb,ηc)=(1.2,2.0,0.9,3.0,1.3).In addition,the periodic boundary condition is imposed on each boundary.

    whereηa,ηb,andηcare adjustable parameters.

    Fig.2.Velocity versus acceleration in the free failing process.

    3.2.Sod’s shock tube

    The physical reasons for the above phenomena are as follows.In the simplified DBM with D2V9,there are only 9 independent kinetic moment relations satisfied by the discrete equilibrium distribution function.On the contrary, for the DBM with D2V16, there are another 7 kinetic moment relations apart from those in the DBM with D2V9.That is to say,there are 16 independent moment relations satisfied byfeqiin the model of D2V16.The former DBM with D2V9 can recover the Euler equations in the continuum limit and capture a few TNE effects, while the latter model with D2V16 could recover the NS equations in the hydrodynamic limit and offer more TNE information at a higher level of physical accuracy.Consequently,although both DBMs can provide quantities that are qualitatively correct,the model of D2V9 may involve larger errors than the one of D2V16.In fact,to achieve more accurate simulations in situations with various significant TNE effects,we can resort to a DBM where a larger number of moment relationships are required.[29,34]

    Figure 5 displays the position of the sound wave travelling forwards in the evolution.The squares stand for simulation results of our DBM, and the solid lines indicate the theoretical solutions ofx=x0+vst.Figure 5(a) shows results in three cases with different specific heat ratiosγand a constant temperatureT=2.0.Figure 5(b)gives cases of various temperatures and a fixed specific heat ratioγ=2.0.Obviously,the numerical results agree well with the exact solutions.Therefore,the model is suitable for fluid systems with various temperatures and specific heat ratios.

    Furthermore, let us test whether our DBM has the capability of describing TNE effects.Figure 4 depicts the nonequilibrium quantity?2,xxin the Sod’s shock tube at timet=0.03.Subplot (a) illustrates the entire computational region, while subplots(b)and(c)show the areas around the rarefaction wave and shock wave, respectively.In each subplot, the results of D2V9,D2V16,[24]and theoretical solutions[26]are compared with each other.Firstly, it can be observed in Fig.4(a) that the simulation results of both D2V9 and D2V16 agree with the analytical solutions on the whole.Secondly,the amplified domain in Fig.4(b) shows that the D2V16 offers simulation results much closer to the theoretical solutions than D2V9.Thirdly, the amplified realm in Fig.4(c) displays slight differences between all numerical and theoretical results.

    Fig.3.Physical quantities in the Sod’s shock tube: (a)density,(b)pressure,(c) temperature, and (d) horizontal velocity.The solid lines represent the Riemann solutions,and the squares stand for the DBM results.

    Figure 3 plots profiles of the density (a), pressure (b),temperature(c),and horizontal velocity(d)in the Sod’s shock tube at the momentt=0.02.Clearly,the leftmost is a rarefaction wave,the middle is a material interface,and the rightmost is a shock wave.The pressure and velocity keep constant while the density and temperature change across the material interface.All physical fields show remarkable gradients around the rarefaction or shock wave,and change sharply near the shock front.It can be found that the DBM results coincide with Riemann solutions on the whole.This indicates that the present DBM can be applied to compressible fluids.

    Next,the Sod’s shock tube is simulated to verify that the DBM can be applied to compressible fluids.The initial configuration is

    采用英威達行業(yè)領先的技術建設PTA裝置,是PTA行業(yè)對英威達多方面技術和建設工期方面優(yōu)勢的進一步認可。自2012年起,由英威達授權許可的PTA技術總產能達到2100萬t/a,約占在中國技術許可的PTA總產能的三分之二。而在這2100萬t/a英威達授權許可的PTA產能中,70%的產能基于英威達行業(yè)領先的PTA P8技術,該技術為國內新老客戶帶來了長期的價值。

    3.3.Sound wave

    In this part,the propagation of a sound wave is simulated in a physical system with the densityρ0=1.0 and velocityu0=0.The relaxation time, temporal step, spatial step, and grid mesh areτ=×10-4, ?t=10-4, ?x=?y=10-3, andNx×Ny=2000×1, respectively.Exerting a small perturbation at the initial positionx0=0.2 will result in the emergence of sound waves that propagate forwards and backwards, respectively.Additionally, the outflow boundary condition and periodic boundary condition are employed in thexandydirections,respectively.

    Fig.5.Propagation of the sound wave with various specific heat ratios(a)and various temperatures(b).

    where the subscript L denotes the left side 0≤x<0.075 and R represents the right side 0.075≤x ≤0.15.In this simulation, the specific heat ratio isγ=2.0, the relaxation timeτ=10-5, the temporal step ?t=2×10-6, the spatial step?x=?y=5×10-5, and the discrete parametersva=-3.5,vb=1.2,ηa=4.0,ηb=0, andηc=0.In addition, the periodic boundary condition is employed for the top and bottom boundaries, and the inflow and outflow boundary conditions are selected in the left and right boundaries,respectively.

    3.4.The compressible RT instability

    To further verify whether the DBM can effectively simulate complex fluids subjected to external force,we consider the compressible RT instability in a gravitational field.The computational domain,[0,d]×[-4d, 4d],is filled with two layers of fluids with different densities.Between the two media lies the material interface initially located atyc(x)=y0cos(kx),wherek=2π/λ,y0=0.2d, andλ=2drepresent the wave number,the amplitude,and the wavelength,respectively.Initially,the whole system is in hydrostatic equilibrium,wherep0is the initial pressure at the top of the fluid system,andTu(Tb)denotes the initial temperature at the top(bottom).To smooth the transition between the interfaces,a layer is arranged between the two fluids with thicknessW=0.03d,and the initial temperature field is set as where tanh denotes a hyperbolic tangent function.Then, the density field is obtained from the relationρ=p/T.For the simulation, parameters arep0=3.53,τ=1×10-5,ax=0,ay=-g=-1.0,Tu= 1.0, andTb= 2.0, ?t= 5×10-6,?x=?y=1.25×10-4, andNx×Ny=250×2000.Moreover,the symmetric boundary condition is applied in thexandydirections.

    The rest of the paper is organized as follows.In Section 2,we introduce the DBM with the proposed discrete velocity model D2V9,utilize the matrix inversion method to calculate the equilibrium distribution function and force term,and show that the DBM could recover the Euler equations in the continuum limit and describe a few TNE effects beyond.In Section 3, the DBM is verified numerically through the benchmarks of the free-falling process, Sod’s shock tube, sound wave,compressible RT instability,and translational motion of a 2D fluid system.Section 4 concludes the paper.

    Fig.6.Density contours in the evolution of RT instability simulated by the DBM with D2V9 (in the left four snapshots) and the model of D2V16(in the right four snapshots).[24]

    3.5.Translational motion

    In this subsection,the movement of 2D fluid without considering external force is simulated to prove that the current model D2V9(1,4,4)has better spatial symmetry and numerical robustness than the previous model D2V9(3,3,3)[27]and possesses higher computational efficiency than D2V16.[24]Here the model(3,3,3)includes three sets of discrete velocities with three directions in each set,[27]and D2V16 contains fours groups of discrete velocities with four directions in each group.[24]

    The computation area is a square in size [0,d]×[0,d],where a portion of fluid is placed around the center(d/2,d/2)with a radiusR=d/4.The inner and outer densities areρi=1.1 andρo=1.0, respectively, and there is a transition layer between the two parts.Mathematically,the density is set as follows:

    whereW=d/50 is the thickness of the transition layer.The pressure is homogeneous in the system withp=1.0.Meanwhile,two types of flow are under consideration.One is moving rightwards, and the other is flowing in the diagonal direction.The initial configurations of the two cases are plotted in Figs.7(a) and 7(b), respectively.Moreover, the periodic boundary condition is adopted, and simulation parameters ared=0.02,τ=4.0×10-6,?t=2.0×10-6,?x=?y=1.0×10-4,andNx×Ny=200×200.

    根據已有研究,在現(xiàn)澆混凝土中添加HEA-JL型抗裂防水可以保證接觸界面的黏結強度,提高接觸界面的拉拔、劈裂以及抗折強度,減小混凝土的收縮變形,而且可以使局部現(xiàn)澆段有很好的防水能力.選用聚丙烯纖維硅灰水泥漿的界面劑[12],可以使現(xiàn)澆混凝土與預制混凝土之間緊密結合,二者形成良好的黏結強度,減少混凝土裂縫,將裂縫細化[13].

    Hussain等[20]研究發(fā)現(xiàn)S.subserrata中化合物53、64、122、142對革蘭陽性菌巨大芽胞桿菌和革蘭陰性桿菌大腸桿菌具有良好的抑菌作用,對真菌花藥黑粉菌的作用較弱。韓立芹[6]報道了旱柳葉的不同提取物的抑菌活性,實驗結果顯示石油醚層提取物對大腸桿菌、鼠傷寒沙門氏菌具有抑菌作用,最小抑菌濃度為5 mg/mL,醋酸乙酯層提取物對大腸桿菌具有抑菌作用,最小抑菌濃度為25 mg/mL。

    Fig.7.The initial configurations of translational motion: horizontal flow(left)and diagonal flow(light).

    Fig.8.The horizontal motion of fluid simulated by the models of D2V9 (1, 4, 4), D2V9 (3, 3, 3),[27] and D2V16,[24] in the three rows from top to bottom.The time instants are t=0.01,0.02,0.03,and 0.04 in the four columns from left to right.

    Fig.9.The diagonal motion of fluid simulated by the models of D2V9(1,4,4),D2V9(3,3,3),[27] and D2V16,[24] in the three rows from top to bottom.The time instants are t=0.01,0.02,0.03,and 0.04 in the four columns from left to right.

    Figure 8 displays the snapshots of a horizontal flow system at four time instantst=0.01, 0.02, 0.03, and 0.04 from left to right.The three rows of simulation results are given by using the models of D2V9 (1, 4, 4), D2V9 (3, 3, 3),[27]and D2V16,[24]respectively.In each subplot, the density reduces from red to blue,and the flow direction is marked with arrows.The dashed black circle in the last column is located at the initial position of the interface between the two media.Given an initial horizontal velocityux=0.5 for the fluids, then it can be predicted that the system moves a distanced=0.02 after a period of timet=0.04,according to the relationshipux=d/tin theory.

    It can be seen in Fig.8 that the trajectories of the center of the fluid system provided by the three models are identical.The simulated material interface is symmetric about the centerline in thexdirection and is close to the theoretical position on the dashed black curve.However,upon closer observation of subgraphs in the last column,slight differences can be found among the three simulation results at timet=0.04.(i)In the first row, the dividing interface has little change in thickness,and its shape keeps quite close to a circle.(ii) In the second row, the contact area is wider in thexdirection than in theydirection,and the shape seems an ellipse.(iii)In the last row,the material interface becomes wide gradually due to diffusion and its shape shows perfect symmetry.

    In addition, we simulate the motion of a fluid system along the diagonal direction in Fig.9.The components of flow velocity areux=uy=0.5, and the other conditions are the same as those in Fig.8.It can be observed in Fig.9 that the trajectory of the center follows the diagonal direction in both the first and last rows,while the center point departs farther and farther from the diagonal line over time.At the time instantt=0.04,we can observe remarkable differences in the calculated results of the three models: (i)In the first row, the fluid moves in the diagonal direction,the material interface has little change in width, and its shape keeps close to a circle at the predetermined place.(ii)In the second row, the direction of flow velocity completely deviates from the predetermined direction,the contact area becomes wider in the horizontal direction than in the vertical direction, its location deviates far from the exact place,and its shape seems elliptical.(iii)In the last row,the fluid moves along a predetermined trajectory,the dividing boundary becomes thick,both the location and shape are correct.

    From Figs.8 and 9, it can be concluded that the models D2V9(1,4,4)and D2V16 have higher physical accuracy and spatial symmetry than D2V9 (3, 3, 3).Moreover, it is worth noting that D2V9 of either (1, 4, 4) or (3, 3, 3) has a higher computational efficiency than D2V16.Table 1 shows the spatial symmetry and computational time of various discrete velocity models in simulations of the diagonal motion.The computation runs on a personal computer with the Intel(R) Core(TM) i7-8550U CPU @1.80 GHz.The computing time required by D2V9 (1, 4, 4) is close to that of the model (3, 3, 3), and is shorter than the one of D2V16.The computation time of D2V16 is about twice as much as that of D2V9.Therefore,the current model D2V9 has a higher computational efficiency.

    警察和協(xié)警很快就到了。左小龍坐在摩托車上,泥巴不知所措看著。警察到了左小龍跟前,問:“是不是你搶他CD機?”

    Table 1.Spatial symmetry and computational efficiency of various discrete velocity models.

    4.Conclusion

    In this work,a DBM with symmetric velocity discretization is presented for compressible flow system that is subjected to external force and possesses an adjustable specific heat ratio.We constructed a discrete velocity scheme, D2V9 (1, 4,4),which assumes a resting velocity,a group of velocities with the same magnitudevain four horizontal or vertical directions,and a group with sizevbin four diagonal directions.This discretized velocity model has better spatial symmetry and numerical accuracy than the model in Ref.[27]and owns higher computational efficiency than the one in Ref.[24].In addition, the matrix inversion method is adopted to calculate the discrete equilibrium distribution function and force term,both of which satisfy nine independent kinetic moment relations.Moreover, the DBM could be used to study a few thermodynamic nonequilibrium effects beyond the Euler equations that can be recovered from the kinetic model in the hydrodynamic limit via the Chapman–Enskog expansion.Finally,the method is verified through typical numerical simulations,including the free-falling process,Sod’s shock tube,sound wave,compressible RT instability,and translational motion of a 2D fluid system.These simulations show that the current DBM can effectively investigate compressible flows with or without external force and could provide some nonequilibrium information.

    財務內控管理應該是全面的,全面的企業(yè)財務內控管理機制應該全面覆蓋事前控制、事中控制以及事后控制這些環(huán)節(jié)。

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos.51806116, U2242214, and 11875329), Guangdong Basic and Applied Basic Research Foundation (Grant No.2022A1515012116), and the Natural Science Foundation of Fujian Province, China (Grant Nos.2021J01652 and 2021J01655).

    猜你喜歡
    界面混凝土
    混凝土試驗之家
    關于不同聚合物對混凝土修復的研究
    低強度自密實混凝土在房建中的應用
    國企黨委前置研究的“四個界面”
    當代陜西(2020年13期)2020-08-24 08:22:02
    混凝土預制塊模板在堆石混凝土壩中的應用
    混凝土,了不起
    基于FANUC PICTURE的虛擬軸坐標顯示界面開發(fā)方法研究
    空間界面
    金秋(2017年4期)2017-06-07 08:22:16
    電子顯微打開材料界面世界之門
    人機交互界面發(fā)展趨勢研究
    久久99蜜桃精品久久| 性高湖久久久久久久久免费观看| 精品亚洲乱码少妇综合久久| 性色av一级| 国内精品宾馆在线| 国产av国产精品国产| 中文字幕最新亚洲高清| 中文字幕最新亚洲高清| 亚洲国产欧美在线一区| 国产欧美日韩综合在线一区二区| 国产精品国产三级专区第一集| 22中文网久久字幕| 色94色欧美一区二区| 久久精品人人爽人人爽视色| 亚洲成av片中文字幕在线观看 | 91国产中文字幕| 最近中文字幕2019免费版| 亚洲精品美女久久av网站| 丝袜喷水一区| 97在线人人人人妻| 在线亚洲精品国产二区图片欧美| 日韩 亚洲 欧美在线| 久久久久国产精品人妻一区二区| 在线免费观看不下载黄p国产| 色婷婷久久久亚洲欧美| 2021少妇久久久久久久久久久| 免费观看无遮挡的男女| 久久 成人 亚洲| 日本av手机在线免费观看| 欧美另类一区| 国产国拍精品亚洲av在线观看| 日韩中文字幕视频在线看片| 桃花免费在线播放| 一区二区av电影网| 免费播放大片免费观看视频在线观看| 久久99精品国语久久久| 超色免费av| 交换朋友夫妻互换小说| 日韩人妻精品一区2区三区| 男女免费视频国产| 亚洲av日韩在线播放| 欧美日韩综合久久久久久| 国产av码专区亚洲av| 99国产综合亚洲精品| 九九在线视频观看精品| 欧美日韩一区二区视频在线观看视频在线| 国产av精品麻豆| 久久久久久久久久久免费av| 久久久国产精品麻豆| 大香蕉久久网| 国产男女超爽视频在线观看| 亚洲欧美精品自产自拍| a级毛片在线看网站| 久久久久久久久久久久大奶| 久久久久久久久久久久大奶| 久久免费观看电影| 视频在线观看一区二区三区| 2022亚洲国产成人精品| 欧美亚洲 丝袜 人妻 在线| 亚洲成人av在线免费| 精品熟女少妇av免费看| 午夜福利网站1000一区二区三区| 久久99一区二区三区| 欧美精品人与动牲交sv欧美| 成人毛片a级毛片在线播放| a级毛片在线看网站| 亚洲av国产av综合av卡| 久久精品国产自在天天线| 精品国产一区二区久久| 亚洲av中文av极速乱| 久久精品人人爽人人爽视色| 18禁动态无遮挡网站| 欧美成人精品欧美一级黄| 国产精品久久久久久精品古装| 欧美亚洲日本最大视频资源| 国产精品久久久久久精品古装| 亚洲伊人色综图| 午夜影院在线不卡| 亚洲第一av免费看| 亚洲三级黄色毛片| 国产午夜精品一二区理论片| 久久久精品免费免费高清| 国产不卡av网站在线观看| 精品少妇黑人巨大在线播放| 国产欧美亚洲国产| 大陆偷拍与自拍| 母亲3免费完整高清在线观看 | 亚洲国产毛片av蜜桃av| 成年动漫av网址| 欧美激情 高清一区二区三区| 十八禁网站网址无遮挡| 久久女婷五月综合色啪小说| 天堂中文最新版在线下载| 一级毛片黄色毛片免费观看视频| videosex国产| 日本黄色日本黄色录像| 日韩,欧美,国产一区二区三区| 欧美老熟妇乱子伦牲交| 欧美+日韩+精品| 精品少妇黑人巨大在线播放| 九草在线视频观看| 人妻一区二区av| 精品酒店卫生间| 最近中文字幕2019免费版| 人成视频在线观看免费观看| 欧美日韩成人在线一区二区| 亚洲美女黄色视频免费看| 国产 一区精品| 最黄视频免费看| 哪个播放器可以免费观看大片| 欧美亚洲 丝袜 人妻 在线| 国产黄频视频在线观看| 日韩中字成人| 最新中文字幕久久久久| 亚洲成国产人片在线观看| 欧美另类一区| 久久 成人 亚洲| 午夜老司机福利剧场| 大香蕉97超碰在线| 熟女人妻精品中文字幕| a级毛色黄片| 秋霞在线观看毛片| 女的被弄到高潮叫床怎么办| 亚洲精品中文字幕在线视频| 天天躁夜夜躁狠狠躁躁| 在线观看一区二区三区激情| 涩涩av久久男人的天堂| videos熟女内射| 亚洲精华国产精华液的使用体验| 久久鲁丝午夜福利片| 国产精品一区二区在线观看99| 中文字幕另类日韩欧美亚洲嫩草| 久久99一区二区三区| 欧美亚洲 丝袜 人妻 在线| 少妇人妻 视频| 国产成人精品婷婷| 啦啦啦中文免费视频观看日本| 亚洲欧美清纯卡通| 久久久久国产精品人妻一区二区| 成人二区视频| 在线观看人妻少妇| 日韩精品免费视频一区二区三区 | 日韩av不卡免费在线播放| 亚洲精品久久久久久婷婷小说| 亚洲av成人精品一二三区| 97在线视频观看| 青青草视频在线视频观看| 春色校园在线视频观看| 少妇熟女欧美另类| 久久精品国产鲁丝片午夜精品| kizo精华| 国产男女超爽视频在线观看| 亚洲一区二区三区欧美精品| 婷婷色综合大香蕉| 五月玫瑰六月丁香| 最近中文字幕高清免费大全6| 亚洲国产精品成人久久小说| 蜜桃国产av成人99| 新久久久久国产一级毛片| 久久精品熟女亚洲av麻豆精品| 国产毛片在线视频| 国产免费福利视频在线观看| 国产黄频视频在线观看| 成人国语在线视频| 久久久久久久精品精品| 国内精品宾馆在线| 婷婷色av中文字幕| 亚洲第一av免费看| av有码第一页| 久久免费观看电影| 菩萨蛮人人尽说江南好唐韦庄| 狂野欧美激情性xxxx在线观看| 精品少妇内射三级| 国产乱来视频区| 啦啦啦啦在线视频资源| 国产色爽女视频免费观看| 国产免费一级a男人的天堂| 免费高清在线观看日韩| 国产精品国产三级专区第一集| 美女国产视频在线观看| 久久久久人妻精品一区果冻| 亚洲精品国产av成人精品| 啦啦啦啦在线视频资源| 在线观看免费视频网站a站| 亚洲,欧美,日韩| 制服丝袜香蕉在线| 日本午夜av视频| 色哟哟·www| 亚洲精品av麻豆狂野| 国产成人aa在线观看| 18禁观看日本| 18+在线观看网站| 国产av精品麻豆| 亚洲色图 男人天堂 中文字幕 | 一二三四中文在线观看免费高清| 老司机亚洲免费影院| 丝瓜视频免费看黄片| 国产探花极品一区二区| 寂寞人妻少妇视频99o| 国产欧美日韩综合在线一区二区| 免费av中文字幕在线| 成人无遮挡网站| 久久久精品区二区三区| 男人添女人高潮全过程视频| 国产男女超爽视频在线观看| 免费高清在线观看视频在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 精品国产国语对白av| a级毛色黄片| 日韩精品免费视频一区二区三区 | 国产成人91sexporn| 亚洲,一卡二卡三卡| 国产无遮挡羞羞视频在线观看| 精品一区二区三卡| 成人亚洲欧美一区二区av| av免费观看日本| 夫妻午夜视频| 女性被躁到高潮视频| 精品亚洲乱码少妇综合久久| 少妇高潮的动态图| 丝袜人妻中文字幕| 久久人人爽人人爽人人片va| 99久久综合免费| 免费看av在线观看网站| 尾随美女入室| 亚洲精品日韩在线中文字幕| 国产一区二区在线观看av| 久久精品久久精品一区二区三区| 久久精品夜色国产| tube8黄色片| 久久久久久久久久人人人人人人| 日本av免费视频播放| 久久午夜综合久久蜜桃| 最近2019中文字幕mv第一页| 精品国产一区二区三区四区第35| 熟女电影av网| 国产精品秋霞免费鲁丝片| 看免费av毛片| 欧美丝袜亚洲另类| 成人午夜精彩视频在线观看| 插逼视频在线观看| www.色视频.com| 久久人人爽av亚洲精品天堂| 97人妻天天添夜夜摸| 成年动漫av网址| av网站免费在线观看视频| 一级片'在线观看视频| 国产在视频线精品| 精品亚洲乱码少妇综合久久| 女人久久www免费人成看片| 少妇被粗大猛烈的视频| 国产精品女同一区二区软件| 丰满饥渴人妻一区二区三| 日韩精品免费视频一区二区三区 | 爱豆传媒免费全集在线观看| 99久久综合免费| 亚洲美女搞黄在线观看| 捣出白浆h1v1| 69精品国产乱码久久久| 黄片播放在线免费| 欧美成人午夜精品| 成年女人在线观看亚洲视频| 成人毛片60女人毛片免费| 桃花免费在线播放| 观看美女的网站| 国产无遮挡羞羞视频在线观看| 国产日韩欧美在线精品| 中文字幕人妻丝袜制服| 精品久久久久久电影网| 黄色毛片三级朝国网站| 香蕉精品网在线| 久久鲁丝午夜福利片| 91aial.com中文字幕在线观看| 成人漫画全彩无遮挡| 国产乱来视频区| 宅男免费午夜| 汤姆久久久久久久影院中文字幕| 男女边吃奶边做爰视频| 国产精品久久久久成人av| 国产爽快片一区二区三区| 久久久久精品人妻al黑| 香蕉国产在线看| av国产精品久久久久影院| 香蕉精品网在线| 精品少妇黑人巨大在线播放| 制服诱惑二区| 国产av国产精品国产| 女人被躁到高潮嗷嗷叫费观| 亚洲国产日韩一区二区| 黄片无遮挡物在线观看| 久久精品久久精品一区二区三区| 亚洲精品国产av蜜桃| 久久女婷五月综合色啪小说| 国产麻豆69| 美国免费a级毛片| 国产午夜精品一二区理论片| 一级,二级,三级黄色视频| 亚洲av福利一区| 2021少妇久久久久久久久久久| av电影中文网址| 国产精品一二三区在线看| 精品一区二区三卡| 交换朋友夫妻互换小说| 国产精品三级大全| 国产精品99久久99久久久不卡 | 国产黄频视频在线观看| 青青草视频在线视频观看| 如何舔出高潮| 国产一区二区三区综合在线观看 | 三上悠亚av全集在线观看| 亚洲经典国产精华液单| 七月丁香在线播放| av电影中文网址| 亚洲精品久久成人aⅴ小说| 亚洲一区二区三区欧美精品| 久久热在线av| 欧美日韩亚洲高清精品| 伦理电影大哥的女人| 一区二区av电影网| 大香蕉97超碰在线| 丝袜喷水一区| 纵有疾风起免费观看全集完整版| √禁漫天堂资源中文www| 少妇人妻精品综合一区二区| 午夜视频国产福利| 欧美日韩视频精品一区| 久久 成人 亚洲| 丁香六月天网| 人成视频在线观看免费观看| 美女xxoo啪啪120秒动态图| 在线亚洲精品国产二区图片欧美| 99国产综合亚洲精品| 一本—道久久a久久精品蜜桃钙片| 国产片特级美女逼逼视频| 亚洲,欧美精品.| 极品人妻少妇av视频| 亚洲精品日本国产第一区| 国产淫语在线视频| av在线观看视频网站免费| 免费观看无遮挡的男女| 久久精品国产a三级三级三级| 99国产综合亚洲精品| 午夜激情久久久久久久| 51国产日韩欧美| 人人妻人人爽人人添夜夜欢视频| 日韩不卡一区二区三区视频在线| 国产精品久久久久成人av| 国产午夜精品一二区理论片| 波多野结衣一区麻豆| 精品卡一卡二卡四卡免费| 久久久久久久亚洲中文字幕| 久久免费观看电影| 亚洲色图综合在线观看| 国产高清三级在线| 国产成人精品久久久久久| 国产亚洲最大av| 亚洲国产欧美日韩在线播放| 亚洲中文av在线| 日韩三级伦理在线观看| 免费黄色在线免费观看| 日韩熟女老妇一区二区性免费视频| 亚洲成国产人片在线观看| 51国产日韩欧美| 亚洲国产精品999| 欧美精品一区二区免费开放| 美女福利国产在线| 两个人免费观看高清视频| av免费观看日本| 精品少妇内射三级| 巨乳人妻的诱惑在线观看| 欧美日韩成人在线一区二区| 亚洲成人手机| av视频免费观看在线观看| 看非洲黑人一级黄片| 免费日韩欧美在线观看| 亚洲精华国产精华液的使用体验| 欧美bdsm另类| 国产精品一区www在线观看| 99re6热这里在线精品视频| www.色视频.com| 国产 精品1| 性高湖久久久久久久久免费观看| 国产一区亚洲一区在线观看| 亚洲欧美一区二区三区国产| 91精品三级在线观看| 一级毛片 在线播放| 亚洲欧美中文字幕日韩二区| 伦精品一区二区三区| 国产欧美另类精品又又久久亚洲欧美| 9热在线视频观看99| 欧美+日韩+精品| 国产成人免费观看mmmm| 99热6这里只有精品| 精品国产露脸久久av麻豆| 久久久久视频综合| a级毛色黄片| 国产精品.久久久| 中文精品一卡2卡3卡4更新| 亚洲欧美日韩另类电影网站| 国产成人精品福利久久| 国产国拍精品亚洲av在线观看| 另类精品久久| 免费av不卡在线播放| 97在线视频观看| 久久精品国产a三级三级三级| 精品人妻偷拍中文字幕| 热re99久久国产66热| 少妇被粗大的猛进出69影院 | 久久97久久精品| 国产色婷婷99| 在线观看免费日韩欧美大片| 亚洲婷婷狠狠爱综合网| 久久这里有精品视频免费| 日韩伦理黄色片| 丝袜脚勾引网站| 久久久久久久久久久免费av| 黑人猛操日本美女一级片| 国产在线一区二区三区精| 一级片免费观看大全| 18禁在线无遮挡免费观看视频| 热99久久久久精品小说推荐| 日本vs欧美在线观看视频| 国产精品国产三级国产专区5o| 久久人妻熟女aⅴ| 在线观看美女被高潮喷水网站| 国产亚洲精品第一综合不卡 | 欧美成人午夜精品| 最近中文字幕2019免费版| 成人漫画全彩无遮挡| 免费少妇av软件| 成人黄色视频免费在线看| 老司机影院成人| 久久久久国产网址| 一级片'在线观看视频| 国产爽快片一区二区三区| 精品人妻偷拍中文字幕| av卡一久久| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产日韩欧美在线精品| 亚洲天堂av无毛| 国内精品宾馆在线| 成年人免费黄色播放视频| 久久精品国产a三级三级三级| 国产女主播在线喷水免费视频网站| 免费观看无遮挡的男女| 成人午夜精彩视频在线观看| 观看美女的网站| 水蜜桃什么品种好| 亚洲成人av在线免费| 天堂8中文在线网| 欧美97在线视频| 成人国产麻豆网| 麻豆乱淫一区二区| 成年人免费黄色播放视频| 欧美另类一区| 欧美精品高潮呻吟av久久| 少妇被粗大猛烈的视频| 亚洲欧美一区二区三区国产| 大陆偷拍与自拍| 欧美性感艳星| 久久精品熟女亚洲av麻豆精品| 亚洲天堂av无毛| 午夜激情av网站| 最近中文字幕2019免费版| 日日爽夜夜爽网站| a级片在线免费高清观看视频| 久久久久视频综合| 亚洲国产成人一精品久久久| 日韩人妻精品一区2区三区| 亚洲综合精品二区| 女人久久www免费人成看片| 久久热在线av| 午夜免费观看性视频| 一本—道久久a久久精品蜜桃钙片| 免费黄网站久久成人精品| 日本与韩国留学比较| 老司机亚洲免费影院| 欧美日韩综合久久久久久| 啦啦啦中文免费视频观看日本| 久久久精品免费免费高清| 爱豆传媒免费全集在线观看| 日韩制服丝袜自拍偷拍| 成人黄色视频免费在线看| 久久人人爽人人片av| 母亲3免费完整高清在线观看 | 久久久久视频综合| 九九爱精品视频在线观看| 久久99蜜桃精品久久| 久久久久精品性色| 中文字幕人妻丝袜制服| 国产精品久久久久久av不卡| 国产探花极品一区二区| 国产高清国产精品国产三级| 久久狼人影院| 亚洲精品色激情综合| 中文字幕免费在线视频6| 街头女战士在线观看网站| 欧美精品亚洲一区二区| 日本-黄色视频高清免费观看| 精品少妇内射三级| 看免费成人av毛片| 人人澡人人妻人| 18+在线观看网站| 国产男女内射视频| 在线观看一区二区三区激情| 久久这里只有精品19| 18禁观看日本| 看非洲黑人一级黄片| 国产亚洲一区二区精品| 亚洲精品乱码久久久久久按摩| 老司机亚洲免费影院| 肉色欧美久久久久久久蜜桃| 丝袜美足系列| 女人久久www免费人成看片| xxxhd国产人妻xxx| 宅男免费午夜| av天堂久久9| 免费看不卡的av| 久久久精品94久久精品| 欧美97在线视频| 十分钟在线观看高清视频www| 丁香六月天网| 色婷婷av一区二区三区视频| 乱人伦中国视频| 视频区图区小说| 久久久久久人妻| 99香蕉大伊视频| 中文字幕免费在线视频6| 免费在线观看黄色视频的| 亚洲国产欧美日韩在线播放| 香蕉国产在线看| 久久精品久久久久久久性| 欧美日韩成人在线一区二区| 国产乱来视频区| 免费人妻精品一区二区三区视频| 韩国av在线不卡| 91午夜精品亚洲一区二区三区| 人妻少妇偷人精品九色| 亚洲av欧美aⅴ国产| 成年人午夜在线观看视频| 亚洲国产精品一区二区三区在线| 国产在视频线精品| 在线天堂最新版资源| 最近手机中文字幕大全| 精品熟女少妇av免费看| 一区二区三区乱码不卡18| 国产高清不卡午夜福利| 美女内射精品一级片tv| 亚洲成人av在线免费| 9191精品国产免费久久| 黑丝袜美女国产一区| 午夜福利影视在线免费观看| 一级毛片黄色毛片免费观看视频| 最后的刺客免费高清国语| 精品国产一区二区三区久久久樱花| 性色avwww在线观看| 午夜福利在线观看免费完整高清在| 午夜老司机福利剧场| 永久网站在线| 精品一区二区三区视频在线| 永久免费av网站大全| 少妇人妻精品综合一区二区| 国产精品国产三级专区第一集| 亚洲精品成人av观看孕妇| 日韩av不卡免费在线播放| 欧美成人午夜精品| 成人手机av| 欧美 日韩 精品 国产| 亚洲欧美成人综合另类久久久| 乱人伦中国视频| 中国三级夫妇交换| 国产精品久久久av美女十八| 免费久久久久久久精品成人欧美视频 | 亚洲av免费高清在线观看| 精品国产一区二区三区久久久樱花| 欧美日韩国产mv在线观看视频| 在线天堂最新版资源| 日本欧美国产在线视频| 天天躁夜夜躁狠狠久久av| a级毛色黄片| 中文字幕人妻熟女乱码| 18禁观看日本| 美女国产视频在线观看| 少妇精品久久久久久久| 精品久久蜜臀av无| 日韩一区二区视频免费看| 久久综合国产亚洲精品| 伦理电影大哥的女人| 9191精品国产免费久久| av.在线天堂| 最近2019中文字幕mv第一页| 91国产中文字幕| 精品99又大又爽又粗少妇毛片| 亚洲av男天堂| 久久狼人影院| 国产精品一区二区在线不卡| 久久鲁丝午夜福利片| videossex国产| 在线看a的网站| 狂野欧美激情性bbbbbb| 欧美日韩视频精品一区| 成年av动漫网址| 少妇人妻久久综合中文| 欧美精品高潮呻吟av久久| 在线观看三级黄色| 国产精品国产av在线观看| 久久人人爽av亚洲精品天堂| 国产精品.久久久| 春色校园在线视频观看| 国产精品久久久久成人av| 满18在线观看网站| 色婷婷久久久亚洲欧美| 最新的欧美精品一区二区| 欧美亚洲日本最大视频资源| 亚洲伊人久久精品综合|