• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Finite-time ?∞filtering for Markov jump systems with uniform quantization

    2023-12-02 09:22:22JingjingDong董敬敬XiaofengMa馬曉峰XiaoqingZhang張曉慶JianpingZhou周建平andZhenWang王震
    Chinese Physics B 2023年11期
    關鍵詞:王震建平

    Jingjing Dong(董敬敬), Xiaofeng Ma(馬曉峰), Xiaoqing Zhang(張曉慶),Jianping Zhou(周建平),?, and Zhen Wang(王震)

    1School of Computer Science&Technology,Anhui University of Technology,Ma’anshan 243032,China.

    2College of Mathematics&Systems Science,Shandong University of Science and Technology,Qingdao 266590,China

    Keywords: Markov jump system,filter design,finite-time ?∞performance,uniform quantization

    1.Introduction

    A Markov jump system (MJS) is a distinctive type of hybrid system comprising a collection of continuous-time(or discrete-time) subsystems, which are mathematically described by differential (or difference) equations, as well as a Markov process that governs the transitions occurring between these subsystems.MJSs are particularly useful for analyzing complex dynamic systems that are susceptible to unpredictable changes in parameters or structures caused by component or link failures.[1]The origins of theoretical research on these systems can be found in the 1960s.In 1961,Krasovskii and Lidskii[2]presented an initial model of MJSs and provided the corresponding control design scheme.Subsequently,Rishel[3]applied the dynamic programming method to discuss the optimal control problem of MJSs.Costa and do Val[4]further studied some fundamental issues of MJSs, including observability and measurability.In recent years,more topics related to MJSs, ranging from almost sure stability,[5]state estimation,[6]fault detection,[7]and dissipativity-based stabilization,[8]to sampled-data synchronization,[9]have been extensively investigated in the automation community.

    Disturbances are often unavoidable in dynamic systems.Filtering,a specific type of state estimation,provides a means to estimate unmeasurable state variables while mitigating the impact of external disturbances.Broadly speaking, there are two categories of filtering methods: infinite-horizon filtering and finite-time filtering(FTF).The former focuses on the asymptotic stability of the filtering error system(FES)over an infinite time horizon,while the latter emphasizes the boundedness within a fixed time interval.[10]When faced with application scenarios where excessively large values arise during the state evolution, the FTF becomes a more suitable choice.[11]For MJSs, the investigation of FTF has emerged as an attractive research subject.In Ref.[12], Wuet al.explored a stochastic MJS and proposed an optimization-based FTF method.Heet al.[13]established criteria to ensure the existence of finite-timel2-l∞filters for discrete-time MJSs.In Ref.[14], Saravananet al.examined the finite-time?∞filtering (FTHF) issue of delayed MJSs and presented a design methodology based on linear matrix inequalities(LMIs).It is noteworthy that the filter designs in these studies require the modes of the MJS and the filter to be fully matched, limiting their applicability to some degree.

    The filtering strategies in the majority of existing studies are based on a traditional point-to-point architecture.With the rapid advancement of communication technology, signals between the sensor and the filter of a MJS can be transmitted through a wired or wireless network,forming a networked FES.The introduction of communication networks reduces wiring between the sensor and the filter, enabling data transmission across long distances.This results in cost savings and enhanced system flexibility.[15]Due to the limited communication bandwidth and network throughput, the measurement signals are often quantized to mitigate the communication load.[16]Two common types of quantization discussed in the literature on network-based filtering are logarithmic quantization and uniform quantization.In comparison to logarithmic quantization,uniform quantization,which utilizes fixed-point number representation, is considered easier to implement.[17]During the last few years, a number of attempts have been made on FTF for MJSs with logarithmic quantization.[18–20]However, to our knowledge, no research has been published on the FTF or FTHF for MJSs with uniform quantization effects.

    Motivated by the above discussion,this paper revisits the FTHF issue for MJSs with signal quantization.The goal is to design quantized mode-dependent filters to ensure that the FES is not only mean-square finite-time bounded (MSFTB)but also has a prescribed finite-time?∞performance(FTHP)index.First,we consider the case where the switching modes of the filter align with those of the MJS.An LMIs-based filter design approach is put forward to achieve a predefined FTHP for the FES utilizing a mode-dependent Lyapunov function,Schur’s complement, and Dynkin’s formula.Then, we explore a more complex scenario where the switching modes of the filter are allowed to differ from those of the MJS.To address this, a mode-mismatched filter design method is developed by leveraging a hidden Markov model(HMM)to describe the asynchronous mode switching and the double expectation formula.Finally, we utilize a spring system model subject to a Markov chain to validate the quantized filter design approaches for the mode-matched and mode-mismatched cases,respectively.

    The main contributions of this paper can be summarized as follows:

    (i) Unlike previous studies on FTF for MJSs with signal quantization, the present work employs a uniform quantizer,designed as a piecewise function,to quantize the measurement output before transmission to the filter.

    (ii) In contrast to the works of Refs.[12–14], which focused solely on the mode-matched filtering scenario, the present study encompasses both mode-matched and modemismatched filtering cases, and proposes the corresponding filter design approaches.

    2.Preliminaries

    In this section, we first describe the MJS model under consideration, explicitly formulate the FTHF issue, and then prepare some necessary lemmas.The notations involved throughout are standard unless explicitly stated otherwise.

    2.1.Markov jump system model

    We consider a continuous-time MJS described by

    whereχ(t)∈Rnχ,ξ(t)∈Rnξ, andζ(t)∈Rnζrepresent the system state, performance output signal to be estimated, and measurement output, respectively;ω(t)∈Rnωis the external disturbance,which,as in Refs.[21,22],satisfies

    within whichdis a given positive parameter and [0,Tf] is a fixed finite-time interval.In addition,Ams(t),Dχms(t),Cξms(t),Dξms(t),Cζms(t),andDζms(t)represent the given parameter matrices subject to a Markov chain{ms(t)}that takes values in set Sm={1,...,m}and is characterized by transition rate matrix?=(msr1r2)m×mwith

    2.2.Uniform quantization

    As shown in Fig.1,the measurement outputζ(t)is quantized using a uniform quantizer before being transmitted to the filter to reduce the communication load.The quantizerQ(·)is defined as

    whereQv(ζv(t))(v ∈{1,...,nζ})are designed as the following piecewise function:

    in which?·」is the round-down operation, andEb/2>0 andTs> 0 represent the error bound and saturation threshold level,respectively.Clearly,for anyv ∈{1,...,nζ},Qv(ζv(t))satisfies the following properties

    holds when all quantizersQ1(ζ1(t)),...,Qnζ(ζnζ(t)) are not saturated.

    Fig.1.The framework of filter design for MJS with uniform quantization.

    2.3.Mode-dependent filter

    The form of the mode-dependent filter is presented as follows:

    whereχf(t)∈Rnχis the filter state,ξf(t)∈Rnξis the filter output signal,{mf(t)}denotes the modes of the filter,andAfmf(t),Bfmf(t),Cfmf(t), andDfmf(t)represent the filter gains to be determined.

    2.4.Filtering error system

    We can further obtain from Eqs.(2)and(6)that

    Remark 1In contrast to prior studies on FTF for MJSs with signal quantization, the present work employs the uniform quantizer, designed as a piecewise function, to quantize the measurement output before transmitting it to the filter.However, this will result in the estimation of a timeindependent upper bound for the quantization error, which poses challenges in handling.To tackle such an issue,inspired by Refs.[25,26],the quantization error is regarded as an additional disturbance term.

    2.5.Problem statement

    The definitions related to mean-square finite-time boundedness and FTHP are presented as follows.

    Definition 1[27]Given scalarsη1,η2, andTfwith 0<η1<η2and a matrixH>0, the FES is said to be MSFTB with regard to(η1,η2,Tf,H)if

    holds under the zero initial condition(i.e.,(0)=0).

    Now, the objective of this paper can be explicitly expressed as follows: to design a quantized mode-dependent filter (7) for MJS (1) such that the FES in Eq.(8) is not only MSFTB but also has a prescribed FTHP index

    2.6.Necessary lemmas

    To facilitate the establishment of the subsequent results,we introduce two lemmas.

    Lemma 1[29](Dynkin’s formula)For any stopping times 0≤t0≤t1,ifV(χ(t),ms(t))and?V(χ(t),ms(t))are bounded ont ∈[t0,t1],then we have

    Lemma 2[30](Double expectation formula)For any random variables?andN,

    holds, where E{?|N}is the conditional expectation givenN.

    3.Mode-matched filter design

    This section considers a simple mode-dependent filter referred to as the mode-matched filter, in which the switching modes of the filter are the same as those of MJS (1) (i.e.,mf(t)≡ms(t)).The mode-matched filter is described as follows:

    A mode-matched filter design approach, which guarantees both mean-square finite-time boundedness and FTHP of FES(12),is provided in the following theorem.

    Theorem 1 Given scalarsγ>0,α>0,β1,andβ2>0,suppose that,forr1∈Sm,there exist scalarsρ1>0 andρ2>0 and matricesP1r1> 0 andP2r1> 0 such that the following LMIs hold:

    By means of Schur’s complement in Ref.[31],we deduce from inequality(17)that

    Consider the following mode-dependent Lyapunov function

    Define?by the weak infinitesimal generator.Then, we have the following expression:

    It follows from Eqs.(3),(20),and(21)that

    4.Mode-mismatched filter design

    In networked systems, it is common for the modes of the filter and system not to fully match due to networkinduced constrains,such as data dropouts[32]and transmission delays.[33]Consequently,in this section we further explore the design of mode-mismatched filters.Specifically, the modemismatched filter model we consider is described by Eq.(7),where{mf(t)}is another stochastic process correlated with the Markov process{ms(t)}, which is characterized by a conditional probability matrix(CPM)Λ=(mfr1r3)m×nwith

    Remark 3 The switching modes of filter are represented by the stochastic process{mf(t)}, which is distinct from the Markov process{ms(t)}but hinges on it through the CPM.Motivated by Refs.[34–36], an HMM({ms(t)},{mf(t)},?,Λ) is employed to characterize the mode-mismatched behavior between MJS (1) and filter (7).Note that when CPMΛis an identity matrix, the switching modes of filter(7)align with those of MJS(1).

    Theorem 2 Given scalarsγ>0,α>0,β1,andβ2>0,suppose that,forr1∈Smandr3∈Sn,there exist scalarsρ1>0 andρ2>0 and matricesP1r1>0,P2>0,Rr1r3,andGr1r3such that LMIs(14),(15),and

    which, in conjunction withmfr1r3> 0 (r1∈Sm,r3∈Sn),yields that

    Remark 4 Theorem 2 further proposes a modemismatched filter design approach to ensure that FES (8) is MSFTB and has the FTHP indexThis design approach allows the switching modes of the filter to differ from those of the system while depending on it through conditional probabilities.To tackle the mode-mismatched filter design issue,as in Ref.[36],we introduce two decision variablesRr1r3andGr1r3to separate inequality(40)from the conditional probabilitymfr1r3.However,this may bring some conservatism,which will be verified in Section 5.

    5.Example

    In this section, we utilize the spring system model in Ref.[37]to illustrate the effectiveness of the proposed modematched and mode-mismatched filter design approaches.In Fig.2,k1andk2denote the spring constants, andM1ms(t)andM2ms(t)represent the masses subject to a Markov chain{ms(t)},which can take values 1 or 2.

    Fig.2.Spring system model.

    Furthermore, the coefficient of friction between objects A, B, and the horizontal surface is denoted byc.The spring system model can be described by Eq.(1),and its system matrices are given by

    The uniform quantization and finite-time performance parameters are set asTs=10,Eb=0.05,η1=1,η2=36,d=8,Tf=20,andH=I,respectively.

    We first consider the mode-matched scenario.In this case, the existing literature on filtering under uniform quantization (see,e.g., Refs.[38–40]) cannot be applied to find finite-time filters, while the design approaches proposed in Theorems 1 and 2 are applicable.In what follows, we take transition rate matrix as

    and set the CPMΛto be an identity matrix.It should be noted that the smaller the FTHP indexthe better the performance of FES.Table 1 provides the minimum allowable FTHP indexfor different values ofβ1andβ2by solving the LMIs in Theorems 1 and 2, respectively.It can be observed from the table that adjusting the values ofβ1andβ2can influence the minimum allowable FTHP index significantly.Furthermore, in comparison with the quantized filter design approach presented in Theorem 2,the one in Theorem 1 always achieves a better minimum allowable FTHP indexThis outcome can be attributed to the introduction of additional variablesRr1r3andGr1r3in Theorem 2, which induce extra conservatism.

    Table 1.Minimum allowable FTHP index for different values of β1 and β2.

    ˉγmin β1=-0.05 β1=0.95 β1=1.95 β1=2.95 β1=3.95 β2=0.06 β2=1.06 β2=2.06 β2=3.06 β2=4.06 Theorem 1 0.9772 1.0745 1.2260 1.3240 1.3961 Theorem 2 0.9891 1.0949 1.2959 1.4708 1.6378

    Next, we consider a mode-mismatched scenario where the CPM is set as

    In this situation,the quantized filter design approach given in Theorem 1 is not applicable,while the approach presented in Theorem 2 can be utilized to ensure the mean-square finitetime boundedness and FTHP of the FES.In fact, if we setβ1=1.5 andβ2=2, then by using Theorem 2, we can obtain the minimum allowable FTHP index=0.9215 and the corresponding filter gains as follows:

    In this simulation,the external disturbance is given by

    and the initial values are set asχ(0)=[-0.4-0.2 0.4 0.1]Tandχf(0)=[-0.5-0.1 0.3 0.2]T.

    Figures 3 and 4 show the switching modes of the Markov jump system and the filter, respectively, revealing the mode-mismatch behavior.Figure 5 shows the trajectories of the measurement output and the corresponding quantized measurement output.Figure 6 depicts the trajectory ofClearly,throughout the time interval[0,20],the value ofconsistently remains lower thanη2=36, which indicate that the FES is MSFTB.Lastly, we define the following equation

    Then,figure 7 shows the trajectory ofγ(t)under the zero initial condition.We can find that the values ofγ(t)always stay below the minimum allowable FTHP index=0.9215.This shows the designed quantized mode-mismatched filter can ensure the FTHP of the FES.

    Fig.3.Switching modes of the system.

    Fig.4.Switching modes of filter.

    Fig.5.Trajectories of ζ(t)and Q(ζ(t)).

    Fig.7.Trajectory of γ(t).

    6.Conclusion

    This work investigated the FTHF problem for MJSs with uniform quantization by considering two different modedependent filters.First, the case where the filter modes were the same as the system modes was considered.A modematched filter design method was given in Theorem 1 for MJS (1) to ensure that the FES is not only MSFTB but also satisfies a prescribed FTHP by employing a mode-dependent Lyapunov function, Schur’s complement, and Dynkin’s formula.Then, in order to solve the situation that the switching modes of the filter may differ from those of the MJS in practical systems, a mode-mismatched filter design approach was further proposed in Theorem 2 by leveraging an HMM to characterize the asynchronous mode switching between MJS (1)and filter (7) and the double expectation formula.Finally, a spring system model was utilized to validate the proposed filter design methods for the mode-matched and mode-mismatched cases,respectively.

    Acknowledgement

    Project supported by the Natural Science Foundation of the Anhui Higher Education Institutions (Grant Nos.KJ2020A0248 and 2022AH050310).

    Fig.6.Trajectory of E(t)Ht).

    猜你喜歡
    王震建平
    Her dream came true她的夢想成真了
    Spectroscopic study of B2Σ+–X1 2Π1/2 transition of electron electric dipole moment candidate PbF
    復韻母歌
    “要是”的作用
    什么是“羊雜粹”?
    Preface
    搶著去邊疆的王震
    “辦”“為”和解
    “慌”與“沒有慌”
    The Effect of Grammar Teaching on Writing in China
    卷宗(2016年3期)2016-05-10 07:41:06
    黑丝袜美女国产一区| 日韩视频在线欧美| 久久精品夜色国产| 国产精品嫩草影院av在线观看| 亚洲欧美日韩另类电影网站| 一区二区三区激情视频| 妹子高潮喷水视频| 午夜精品国产一区二区电影| 国产又色又爽无遮挡免| 国产又色又爽无遮挡免| 狠狠婷婷综合久久久久久88av| 精品福利永久在线观看| 中文欧美无线码| 另类亚洲欧美激情| 黑人巨大精品欧美一区二区蜜桃| 另类亚洲欧美激情| 成年美女黄网站色视频大全免费| 91aial.com中文字幕在线观看| 免费观看a级毛片全部| 久久久久久久久久久免费av| 岛国毛片在线播放| 女性生殖器流出的白浆| 男女免费视频国产| 久久99精品国语久久久| 国产一区二区三区av在线| 午夜日本视频在线| 亚洲av中文av极速乱| 女性生殖器流出的白浆| 在线天堂中文资源库| 赤兔流量卡办理| 男人舔女人的私密视频| 久久精品夜色国产| 亚洲成人一二三区av| 丝袜脚勾引网站| 国语对白做爰xxxⅹ性视频网站| 色吧在线观看| 伦理电影免费视频| 欧美中文综合在线视频| av一本久久久久| 国产精品女同一区二区软件| 日本爱情动作片www.在线观看| 国产成人av激情在线播放| videossex国产| www日本在线高清视频| 亚洲,一卡二卡三卡| 女人精品久久久久毛片| 欧美日韩一级在线毛片| 少妇的丰满在线观看| 菩萨蛮人人尽说江南好唐韦庄| 精品国产一区二区久久| 男女啪啪激烈高潮av片| 国产福利在线免费观看视频| 肉色欧美久久久久久久蜜桃| 国产精品一区二区在线观看99| 久久久久久久久久人人人人人人| 亚洲经典国产精华液单| 丝袜喷水一区| 国产深夜福利视频在线观看| 国产爽快片一区二区三区| 三上悠亚av全集在线观看| 精品卡一卡二卡四卡免费| 三级国产精品片| 成年动漫av网址| 成年女人在线观看亚洲视频| 一个人免费看片子| 日韩欧美一区视频在线观看| 精品人妻熟女毛片av久久网站| 亚洲人成77777在线视频| 国产一区二区激情短视频 | 久热久热在线精品观看| 国产一级毛片在线| 精品一区二区三卡| 亚洲在久久综合| 亚洲精品,欧美精品| 香蕉国产在线看| 国产成人一区二区在线| 久久久欧美国产精品| 日本免费在线观看一区| 精品人妻偷拍中文字幕| 日本色播在线视频| 日本av免费视频播放| 精品国产一区二区久久| 国产精品 欧美亚洲| 国产av国产精品国产| 在现免费观看毛片| 在线观看www视频免费| 一级爰片在线观看| 久久av网站| 亚洲经典国产精华液单| 丝袜人妻中文字幕| 菩萨蛮人人尽说江南好唐韦庄| av天堂久久9| 9191精品国产免费久久| 一区二区三区乱码不卡18| 欧美成人精品欧美一级黄| 欧美在线黄色| 日韩人妻精品一区2区三区| 欧美另类一区| 黄网站色视频无遮挡免费观看| 欧美黄色片欧美黄色片| 中文字幕人妻熟女乱码| 亚洲欧美清纯卡通| 午夜福利一区二区在线看| 视频在线观看一区二区三区| 卡戴珊不雅视频在线播放| 久久久久久久国产电影| 欧美激情高清一区二区三区 | 久久韩国三级中文字幕| 欧美av亚洲av综合av国产av | 18禁裸乳无遮挡动漫免费视频| 高清欧美精品videossex| 亚洲第一av免费看| 汤姆久久久久久久影院中文字幕| 少妇猛男粗大的猛烈进出视频| 欧美成人精品欧美一级黄| 国产精品一区二区在线观看99| 亚洲一级一片aⅴ在线观看| 9热在线视频观看99| 考比视频在线观看| 最黄视频免费看| 国产精品久久久久久av不卡| 亚洲国产毛片av蜜桃av| 2022亚洲国产成人精品| 久久韩国三级中文字幕| 两个人免费观看高清视频| 国产一区二区激情短视频 | 成人午夜精彩视频在线观看| 亚洲色图 男人天堂 中文字幕| 午夜福利视频精品| 国产精品久久久av美女十八| 久久99精品国语久久久| 一本久久精品| 在线观看人妻少妇| 亚洲一区二区三区欧美精品| 免费观看性生交大片5| 熟妇人妻不卡中文字幕| 欧美日韩综合久久久久久| 搡女人真爽免费视频火全软件| 午夜老司机福利剧场| 精品亚洲成国产av| 亚洲av中文av极速乱| 最近中文字幕高清免费大全6| 熟妇人妻不卡中文字幕| 日韩av不卡免费在线播放| 美女xxoo啪啪120秒动态图| 国产精品一二三区在线看| 国产精品.久久久| 国产精品亚洲av一区麻豆 | 人妻 亚洲 视频| 91国产中文字幕| 国精品久久久久久国模美| 久久久a久久爽久久v久久| 欧美精品人与动牲交sv欧美| av在线播放精品| 新久久久久国产一级毛片| 久久av网站| 国产精品无大码| 成人国产av品久久久| 久久精品亚洲av国产电影网| 精品午夜福利在线看| 色婷婷久久久亚洲欧美| 在线观看一区二区三区激情| 亚洲第一区二区三区不卡| 色吧在线观看| av国产久精品久网站免费入址| 晚上一个人看的免费电影| 国产探花极品一区二区| 亚洲,欧美,日韩| 视频在线观看一区二区三区| 夫妻午夜视频| 久久久久网色| 在线观看一区二区三区激情| 亚洲第一区二区三区不卡| 在线观看三级黄色| 曰老女人黄片| 午夜精品国产一区二区电影| 久久久久久久久久久免费av| 欧美日韩成人在线一区二区| 亚洲精品久久午夜乱码| av线在线观看网站| 成人毛片60女人毛片免费| 亚洲精品乱久久久久久| 免费在线观看视频国产中文字幕亚洲 | 亚洲国产毛片av蜜桃av| 永久网站在线| 国产麻豆69| 午夜91福利影院| av女优亚洲男人天堂| 黄色视频在线播放观看不卡| 美女国产高潮福利片在线看| 日韩 亚洲 欧美在线| 又黄又粗又硬又大视频| 免费在线观看视频国产中文字幕亚洲 | 日本猛色少妇xxxxx猛交久久| 欧美国产精品一级二级三级| 日韩大片免费观看网站| 日韩三级伦理在线观看| 国产一区二区在线观看av| 亚洲av.av天堂| 午夜激情久久久久久久| 色哟哟·www| 菩萨蛮人人尽说江南好唐韦庄| 各种免费的搞黄视频| 日韩av免费高清视频| √禁漫天堂资源中文www| 亚洲av电影在线观看一区二区三区| 丰满乱子伦码专区| 久久人人爽人人片av| 日本黄色日本黄色录像| 日韩一本色道免费dvd| 精品午夜福利在线看| 热99国产精品久久久久久7| 欧美在线黄色| 久久久久久久久久久久大奶| 一边亲一边摸免费视频| 欧美日韩国产mv在线观看视频| 极品少妇高潮喷水抽搐| 午夜福利影视在线免费观看| a 毛片基地| 91成人精品电影| 欧美日韩一区二区视频在线观看视频在线| 桃花免费在线播放| 久久午夜福利片| 精品国产一区二区三区久久久樱花| 午夜福利视频精品| 久久精品国产亚洲av天美| 色网站视频免费| 中文精品一卡2卡3卡4更新| 午夜91福利影院| 国产在线一区二区三区精| 成年人免费黄色播放视频| 日本色播在线视频| 最新中文字幕久久久久| 久久人人爽av亚洲精品天堂| 欧美日韩国产mv在线观看视频| 另类亚洲欧美激情| 免费女性裸体啪啪无遮挡网站| 性少妇av在线| 多毛熟女@视频| 国产欧美亚洲国产| 菩萨蛮人人尽说江南好唐韦庄| 夜夜骑夜夜射夜夜干| 午夜福利乱码中文字幕| 精品人妻偷拍中文字幕| 制服人妻中文乱码| 日韩制服丝袜自拍偷拍| 纵有疾风起免费观看全集完整版| av网站在线播放免费| 亚洲成人一二三区av| 亚洲国产日韩一区二区| 男人操女人黄网站| 啦啦啦视频在线资源免费观看| 伊人久久国产一区二区| 亚洲第一区二区三区不卡| 一本色道久久久久久精品综合| 大码成人一级视频| 国产亚洲午夜精品一区二区久久| 日韩欧美精品免费久久| videos熟女内射| videosex国产| 99热网站在线观看| 久久影院123| 一级黄片播放器| 久久精品久久久久久久性| 在线精品无人区一区二区三| 国产精品秋霞免费鲁丝片| 成人影院久久| 国产成人欧美| 黑丝袜美女国产一区| 中国三级夫妇交换| 丝袜脚勾引网站| 国产又爽黄色视频| 日本av免费视频播放| 国产av国产精品国产| 欧美精品高潮呻吟av久久| 午夜免费男女啪啪视频观看| 亚洲美女视频黄频| 日韩免费高清中文字幕av| 日韩电影二区| 免费观看在线日韩| 日韩av免费高清视频| 少妇熟女欧美另类| 黄片小视频在线播放| 视频区图区小说| 日本爱情动作片www.在线观看| 亚洲国产欧美日韩在线播放| 人人妻人人澡人人爽人人夜夜| 亚洲av.av天堂| 99久久精品国产国产毛片| 日韩电影二区| 亚洲美女黄色视频免费看| 中文字幕精品免费在线观看视频| 欧美97在线视频| 香蕉丝袜av| 各种免费的搞黄视频| 日本av手机在线免费观看| 亚洲av在线观看美女高潮| 在线天堂最新版资源| 黑人猛操日本美女一级片| 十八禁高潮呻吟视频| 中文天堂在线官网| 最近中文字幕高清免费大全6| 少妇精品久久久久久久| 人人妻人人澡人人爽人人夜夜| 又大又黄又爽视频免费| 夜夜骑夜夜射夜夜干| 高清在线视频一区二区三区| 肉色欧美久久久久久久蜜桃| 亚洲情色 制服丝袜| 精品国产超薄肉色丝袜足j| 高清黄色对白视频在线免费看| 男女国产视频网站| 欧美亚洲日本最大视频资源| 久久国产精品大桥未久av| 啦啦啦在线观看免费高清www| 亚洲精品日本国产第一区| 一区二区日韩欧美中文字幕| 成人国产麻豆网| 最近手机中文字幕大全| 国产成人午夜福利电影在线观看| 国产97色在线日韩免费| 欧美日韩精品网址| 国产伦理片在线播放av一区| 国产精品国产三级专区第一集| 在线 av 中文字幕| 亚洲精品一二三| 制服诱惑二区| av一本久久久久| 久热久热在线精品观看| 日韩av在线免费看完整版不卡| 一边亲一边摸免费视频| 久久久久久人人人人人| 中文字幕人妻丝袜制服| 国产成人精品婷婷| 国产乱人偷精品视频| 亚洲精品日韩在线中文字幕| 不卡av一区二区三区| 久久久国产精品麻豆| 国产亚洲最大av| 女人高潮潮喷娇喘18禁视频| 久久久亚洲精品成人影院| 欧美中文综合在线视频| 久久久久久人人人人人| 成人毛片60女人毛片免费| 久久影院123| 波多野结衣av一区二区av| 你懂的网址亚洲精品在线观看| 国产精品欧美亚洲77777| 亚洲精品中文字幕在线视频| av有码第一页| 国产精品免费大片| 中文字幕亚洲精品专区| 美女脱内裤让男人舔精品视频| 国产一区亚洲一区在线观看| 国产亚洲一区二区精品| 90打野战视频偷拍视频| 亚洲国产av新网站| 99久久综合免费| 国产精品久久久久久精品古装| 国产熟女欧美一区二区| 午夜激情久久久久久久| 国产一级毛片在线| 满18在线观看网站| 亚洲 欧美一区二区三区| 一级爰片在线观看| 亚洲美女黄色视频免费看| 午夜福利影视在线免费观看| 国产毛片在线视频| 日日撸夜夜添| 777久久人妻少妇嫩草av网站| 伦理电影大哥的女人| 国产人伦9x9x在线观看 | av在线观看视频网站免费| 国产高清国产精品国产三级| 青草久久国产| 天堂8中文在线网| 国产成人精品一,二区| 亚洲精品久久久久久婷婷小说| 最近手机中文字幕大全| 精品少妇黑人巨大在线播放| 十分钟在线观看高清视频www| 丝袜在线中文字幕| 欧美精品人与动牲交sv欧美| 一区二区三区乱码不卡18| 九草在线视频观看| 国产成人精品婷婷| 天天躁夜夜躁狠狠躁躁| 女性生殖器流出的白浆| 国产一区亚洲一区在线观看| 久热久热在线精品观看| 人成视频在线观看免费观看| 久久久久久久精品精品| tube8黄色片| 国产极品天堂在线| 99久久精品国产国产毛片| 国产精品二区激情视频| 日韩精品有码人妻一区| 亚洲欧美一区二区三区久久| 欧美激情 高清一区二区三区| 一本—道久久a久久精品蜜桃钙片| 在线免费观看不下载黄p国产| 亚洲成人av在线免费| 午夜免费鲁丝| 黑人巨大精品欧美一区二区蜜桃| 亚洲av欧美aⅴ国产| av国产久精品久网站免费入址| 亚洲成av片中文字幕在线观看 | 在线观看美女被高潮喷水网站| 久久毛片免费看一区二区三区| 国产日韩一区二区三区精品不卡| 亚洲久久久国产精品| 色视频在线一区二区三区| 精品人妻熟女毛片av久久网站| 一二三四中文在线观看免费高清| 精品国产乱码久久久久久男人| 国产精品嫩草影院av在线观看| 精品人妻偷拍中文字幕| 韩国高清视频一区二区三区| 最新中文字幕久久久久| 欧美av亚洲av综合av国产av | 国产成人aa在线观看| 欧美亚洲 丝袜 人妻 在线| 蜜桃国产av成人99| 极品人妻少妇av视频| videos熟女内射| 自拍欧美九色日韩亚洲蝌蚪91| 午夜福利一区二区在线看| 精品第一国产精品| 岛国毛片在线播放| 王馨瑶露胸无遮挡在线观看| 免费观看在线日韩| 亚洲精品成人av观看孕妇| 波多野结衣一区麻豆| 欧美成人午夜免费资源| 亚洲一级一片aⅴ在线观看| 日韩精品免费视频一区二区三区| 国产日韩一区二区三区精品不卡| 国产精品.久久久| 亚洲精品国产av成人精品| 欧美精品一区二区大全| 麻豆精品久久久久久蜜桃| 99香蕉大伊视频| 黑人巨大精品欧美一区二区蜜桃| 欧美精品国产亚洲| 1024香蕉在线观看| 美女福利国产在线| 丝袜美腿诱惑在线| 日日啪夜夜爽| 亚洲人成电影观看| 国产精品久久久久久久久免| 亚洲色图 男人天堂 中文字幕| 三级国产精品片| 婷婷色麻豆天堂久久| 一级a爱视频在线免费观看| av网站免费在线观看视频| 黄色毛片三级朝国网站| 人人妻人人澡人人爽人人夜夜| 久久精品国产综合久久久| 精品国产一区二区三区久久久樱花| 午夜老司机福利剧场| 免费观看在线日韩| 婷婷色综合www| 国产高清不卡午夜福利| 王馨瑶露胸无遮挡在线观看| 国产福利在线免费观看视频| 最近2019中文字幕mv第一页| 日韩av在线免费看完整版不卡| 麻豆乱淫一区二区| 波多野结衣一区麻豆| 天天躁夜夜躁狠狠躁躁| 国产国语露脸激情在线看| 三上悠亚av全集在线观看| 精品一区二区三区四区五区乱码 | 美女主播在线视频| 女的被弄到高潮叫床怎么办| 搡女人真爽免费视频火全软件| 97在线人人人人妻| 国产一区亚洲一区在线观看| kizo精华| 久久97久久精品| 欧美日韩综合久久久久久| 精品少妇内射三级| 男女下面插进去视频免费观看| 国产日韩欧美视频二区| 美女主播在线视频| 日韩制服丝袜自拍偷拍| 黄片无遮挡物在线观看| 精品少妇一区二区三区视频日本电影 | 黄色怎么调成土黄色| 国产精品.久久久| av电影中文网址| 一级毛片黄色毛片免费观看视频| av电影中文网址| 在线天堂最新版资源| 国产 精品1| 最近最新中文字幕大全免费视频 | 青春草视频在线免费观看| 国产精品久久久久久久久免| 性高湖久久久久久久久免费观看| 免费观看a级毛片全部| 麻豆av在线久日| 国语对白做爰xxxⅹ性视频网站| 国产又色又爽无遮挡免| 国产精品秋霞免费鲁丝片| 国产成人欧美| 天天躁夜夜躁狠狠久久av| 亚洲av免费高清在线观看| 黄片小视频在线播放| 国产精品三级大全| 精品亚洲成a人片在线观看| 国产欧美日韩综合在线一区二区| 久久精品夜色国产| 中文天堂在线官网| 在线 av 中文字幕| 免费高清在线观看日韩| 校园人妻丝袜中文字幕| 久久久精品免费免费高清| 少妇的丰满在线观看| 亚洲伊人色综图| 亚洲熟女精品中文字幕| 久久久精品区二区三区| 永久免费av网站大全| 久久综合国产亚洲精品| 亚洲精华国产精华液的使用体验| 一级毛片电影观看| 狠狠精品人妻久久久久久综合| 欧美精品一区二区免费开放| 美女脱内裤让男人舔精品视频| 国产高清国产精品国产三级| 亚洲av在线观看美女高潮| 亚洲国产欧美在线一区| 亚洲视频免费观看视频| √禁漫天堂资源中文www| 中文字幕人妻丝袜一区二区 | 成人手机av| 新久久久久国产一级毛片| 高清av免费在线| 人妻一区二区av| 精品卡一卡二卡四卡免费| 99国产综合亚洲精品| 亚洲欧美清纯卡通| 视频在线观看一区二区三区| 人妻系列 视频| 哪个播放器可以免费观看大片| 最近手机中文字幕大全| 91午夜精品亚洲一区二区三区| 国产无遮挡羞羞视频在线观看| 亚洲伊人久久精品综合| 青春草视频在线免费观看| 啦啦啦视频在线资源免费观看| 老鸭窝网址在线观看| 欧美成人午夜免费资源| 成人影院久久| 狠狠婷婷综合久久久久久88av| 超碰97精品在线观看| 18禁裸乳无遮挡动漫免费视频| 中文字幕人妻丝袜一区二区 | 日韩精品免费视频一区二区三区| 国产成人免费无遮挡视频| 一级,二级,三级黄色视频| 日日啪夜夜爽| 久久久久久久久免费视频了| 寂寞人妻少妇视频99o| 欧美亚洲日本最大视频资源| 日韩av免费高清视频| 久久久国产精品麻豆| 亚洲精品成人av观看孕妇| 99久久中文字幕三级久久日本| 国产精品二区激情视频| a级毛片黄视频| 99香蕉大伊视频| 80岁老熟妇乱子伦牲交| 天天躁日日躁夜夜躁夜夜| 欧美精品一区二区免费开放| 男人添女人高潮全过程视频| 啦啦啦在线免费观看视频4| 亚洲精品aⅴ在线观看| 国产精品蜜桃在线观看| 欧美另类一区| 在线天堂最新版资源| 欧美亚洲日本最大视频资源| 午夜久久久在线观看| 国产成人精品福利久久| 国产成人aa在线观看| 亚洲av男天堂| 国产午夜精品一二区理论片| 咕卡用的链子| 日本色播在线视频| 两个人免费观看高清视频| 一区二区三区乱码不卡18| 哪个播放器可以免费观看大片| 一区二区日韩欧美中文字幕| 性色avwww在线观看| av免费观看日本| 赤兔流量卡办理| 中文字幕精品免费在线观看视频| 99香蕉大伊视频| 免费看不卡的av| 日本欧美国产在线视频| 美女主播在线视频| 国产又色又爽无遮挡免| 不卡av一区二区三区| 亚洲欧美成人综合另类久久久| 亚洲,欧美精品.| 美女国产高潮福利片在线看| 少妇人妻久久综合中文| 亚洲国产精品999| 免费日韩欧美在线观看| 精品国产一区二区久久| 国产精品二区激情视频| 欧美精品亚洲一区二区| 成人国产av品久久久| 亚洲av欧美aⅴ国产| 97在线人人人人妻| 久久青草综合色|