• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Finite-time ?∞filtering for Markov jump systems with uniform quantization

    2023-12-02 09:22:22JingjingDong董敬敬XiaofengMa馬曉峰XiaoqingZhang張曉慶JianpingZhou周建平andZhenWang王震
    Chinese Physics B 2023年11期
    關鍵詞:王震建平

    Jingjing Dong(董敬敬), Xiaofeng Ma(馬曉峰), Xiaoqing Zhang(張曉慶),Jianping Zhou(周建平),?, and Zhen Wang(王震)

    1School of Computer Science&Technology,Anhui University of Technology,Ma’anshan 243032,China.

    2College of Mathematics&Systems Science,Shandong University of Science and Technology,Qingdao 266590,China

    Keywords: Markov jump system,filter design,finite-time ?∞performance,uniform quantization

    1.Introduction

    A Markov jump system (MJS) is a distinctive type of hybrid system comprising a collection of continuous-time(or discrete-time) subsystems, which are mathematically described by differential (or difference) equations, as well as a Markov process that governs the transitions occurring between these subsystems.MJSs are particularly useful for analyzing complex dynamic systems that are susceptible to unpredictable changes in parameters or structures caused by component or link failures.[1]The origins of theoretical research on these systems can be found in the 1960s.In 1961,Krasovskii and Lidskii[2]presented an initial model of MJSs and provided the corresponding control design scheme.Subsequently,Rishel[3]applied the dynamic programming method to discuss the optimal control problem of MJSs.Costa and do Val[4]further studied some fundamental issues of MJSs, including observability and measurability.In recent years,more topics related to MJSs, ranging from almost sure stability,[5]state estimation,[6]fault detection,[7]and dissipativity-based stabilization,[8]to sampled-data synchronization,[9]have been extensively investigated in the automation community.

    Disturbances are often unavoidable in dynamic systems.Filtering,a specific type of state estimation,provides a means to estimate unmeasurable state variables while mitigating the impact of external disturbances.Broadly speaking, there are two categories of filtering methods: infinite-horizon filtering and finite-time filtering(FTF).The former focuses on the asymptotic stability of the filtering error system(FES)over an infinite time horizon,while the latter emphasizes the boundedness within a fixed time interval.[10]When faced with application scenarios where excessively large values arise during the state evolution, the FTF becomes a more suitable choice.[11]For MJSs, the investigation of FTF has emerged as an attractive research subject.In Ref.[12], Wuet al.explored a stochastic MJS and proposed an optimization-based FTF method.Heet al.[13]established criteria to ensure the existence of finite-timel2-l∞filters for discrete-time MJSs.In Ref.[14], Saravananet al.examined the finite-time?∞filtering (FTHF) issue of delayed MJSs and presented a design methodology based on linear matrix inequalities(LMIs).It is noteworthy that the filter designs in these studies require the modes of the MJS and the filter to be fully matched, limiting their applicability to some degree.

    The filtering strategies in the majority of existing studies are based on a traditional point-to-point architecture.With the rapid advancement of communication technology, signals between the sensor and the filter of a MJS can be transmitted through a wired or wireless network,forming a networked FES.The introduction of communication networks reduces wiring between the sensor and the filter, enabling data transmission across long distances.This results in cost savings and enhanced system flexibility.[15]Due to the limited communication bandwidth and network throughput, the measurement signals are often quantized to mitigate the communication load.[16]Two common types of quantization discussed in the literature on network-based filtering are logarithmic quantization and uniform quantization.In comparison to logarithmic quantization,uniform quantization,which utilizes fixed-point number representation, is considered easier to implement.[17]During the last few years, a number of attempts have been made on FTF for MJSs with logarithmic quantization.[18–20]However, to our knowledge, no research has been published on the FTF or FTHF for MJSs with uniform quantization effects.

    Motivated by the above discussion,this paper revisits the FTHF issue for MJSs with signal quantization.The goal is to design quantized mode-dependent filters to ensure that the FES is not only mean-square finite-time bounded (MSFTB)but also has a prescribed finite-time?∞performance(FTHP)index.First,we consider the case where the switching modes of the filter align with those of the MJS.An LMIs-based filter design approach is put forward to achieve a predefined FTHP for the FES utilizing a mode-dependent Lyapunov function,Schur’s complement, and Dynkin’s formula.Then, we explore a more complex scenario where the switching modes of the filter are allowed to differ from those of the MJS.To address this, a mode-mismatched filter design method is developed by leveraging a hidden Markov model(HMM)to describe the asynchronous mode switching and the double expectation formula.Finally, we utilize a spring system model subject to a Markov chain to validate the quantized filter design approaches for the mode-matched and mode-mismatched cases,respectively.

    The main contributions of this paper can be summarized as follows:

    (i) Unlike previous studies on FTF for MJSs with signal quantization, the present work employs a uniform quantizer,designed as a piecewise function,to quantize the measurement output before transmission to the filter.

    (ii) In contrast to the works of Refs.[12–14], which focused solely on the mode-matched filtering scenario, the present study encompasses both mode-matched and modemismatched filtering cases, and proposes the corresponding filter design approaches.

    2.Preliminaries

    In this section, we first describe the MJS model under consideration, explicitly formulate the FTHF issue, and then prepare some necessary lemmas.The notations involved throughout are standard unless explicitly stated otherwise.

    2.1.Markov jump system model

    We consider a continuous-time MJS described by

    whereχ(t)∈Rnχ,ξ(t)∈Rnξ, andζ(t)∈Rnζrepresent the system state, performance output signal to be estimated, and measurement output, respectively;ω(t)∈Rnωis the external disturbance,which,as in Refs.[21,22],satisfies

    within whichdis a given positive parameter and [0,Tf] is a fixed finite-time interval.In addition,Ams(t),Dχms(t),Cξms(t),Dξms(t),Cζms(t),andDζms(t)represent the given parameter matrices subject to a Markov chain{ms(t)}that takes values in set Sm={1,...,m}and is characterized by transition rate matrix?=(msr1r2)m×mwith

    2.2.Uniform quantization

    As shown in Fig.1,the measurement outputζ(t)is quantized using a uniform quantizer before being transmitted to the filter to reduce the communication load.The quantizerQ(·)is defined as

    whereQv(ζv(t))(v ∈{1,...,nζ})are designed as the following piecewise function:

    in which?·」is the round-down operation, andEb/2>0 andTs> 0 represent the error bound and saturation threshold level,respectively.Clearly,for anyv ∈{1,...,nζ},Qv(ζv(t))satisfies the following properties

    holds when all quantizersQ1(ζ1(t)),...,Qnζ(ζnζ(t)) are not saturated.

    Fig.1.The framework of filter design for MJS with uniform quantization.

    2.3.Mode-dependent filter

    The form of the mode-dependent filter is presented as follows:

    whereχf(t)∈Rnχis the filter state,ξf(t)∈Rnξis the filter output signal,{mf(t)}denotes the modes of the filter,andAfmf(t),Bfmf(t),Cfmf(t), andDfmf(t)represent the filter gains to be determined.

    2.4.Filtering error system

    We can further obtain from Eqs.(2)and(6)that

    Remark 1In contrast to prior studies on FTF for MJSs with signal quantization, the present work employs the uniform quantizer, designed as a piecewise function, to quantize the measurement output before transmitting it to the filter.However, this will result in the estimation of a timeindependent upper bound for the quantization error, which poses challenges in handling.To tackle such an issue,inspired by Refs.[25,26],the quantization error is regarded as an additional disturbance term.

    2.5.Problem statement

    The definitions related to mean-square finite-time boundedness and FTHP are presented as follows.

    Definition 1[27]Given scalarsη1,η2, andTfwith 0<η1<η2and a matrixH>0, the FES is said to be MSFTB with regard to(η1,η2,Tf,H)if

    holds under the zero initial condition(i.e.,(0)=0).

    Now, the objective of this paper can be explicitly expressed as follows: to design a quantized mode-dependent filter (7) for MJS (1) such that the FES in Eq.(8) is not only MSFTB but also has a prescribed FTHP index

    2.6.Necessary lemmas

    To facilitate the establishment of the subsequent results,we introduce two lemmas.

    Lemma 1[29](Dynkin’s formula)For any stopping times 0≤t0≤t1,ifV(χ(t),ms(t))and?V(χ(t),ms(t))are bounded ont ∈[t0,t1],then we have

    Lemma 2[30](Double expectation formula)For any random variables?andN,

    holds, where E{?|N}is the conditional expectation givenN.

    3.Mode-matched filter design

    This section considers a simple mode-dependent filter referred to as the mode-matched filter, in which the switching modes of the filter are the same as those of MJS (1) (i.e.,mf(t)≡ms(t)).The mode-matched filter is described as follows:

    A mode-matched filter design approach, which guarantees both mean-square finite-time boundedness and FTHP of FES(12),is provided in the following theorem.

    Theorem 1 Given scalarsγ>0,α>0,β1,andβ2>0,suppose that,forr1∈Sm,there exist scalarsρ1>0 andρ2>0 and matricesP1r1> 0 andP2r1> 0 such that the following LMIs hold:

    By means of Schur’s complement in Ref.[31],we deduce from inequality(17)that

    Consider the following mode-dependent Lyapunov function

    Define?by the weak infinitesimal generator.Then, we have the following expression:

    It follows from Eqs.(3),(20),and(21)that

    4.Mode-mismatched filter design

    In networked systems, it is common for the modes of the filter and system not to fully match due to networkinduced constrains,such as data dropouts[32]and transmission delays.[33]Consequently,in this section we further explore the design of mode-mismatched filters.Specifically, the modemismatched filter model we consider is described by Eq.(7),where{mf(t)}is another stochastic process correlated with the Markov process{ms(t)}, which is characterized by a conditional probability matrix(CPM)Λ=(mfr1r3)m×nwith

    Remark 3 The switching modes of filter are represented by the stochastic process{mf(t)}, which is distinct from the Markov process{ms(t)}but hinges on it through the CPM.Motivated by Refs.[34–36], an HMM({ms(t)},{mf(t)},?,Λ) is employed to characterize the mode-mismatched behavior between MJS (1) and filter (7).Note that when CPMΛis an identity matrix, the switching modes of filter(7)align with those of MJS(1).

    Theorem 2 Given scalarsγ>0,α>0,β1,andβ2>0,suppose that,forr1∈Smandr3∈Sn,there exist scalarsρ1>0 andρ2>0 and matricesP1r1>0,P2>0,Rr1r3,andGr1r3such that LMIs(14),(15),and

    which, in conjunction withmfr1r3> 0 (r1∈Sm,r3∈Sn),yields that

    Remark 4 Theorem 2 further proposes a modemismatched filter design approach to ensure that FES (8) is MSFTB and has the FTHP indexThis design approach allows the switching modes of the filter to differ from those of the system while depending on it through conditional probabilities.To tackle the mode-mismatched filter design issue,as in Ref.[36],we introduce two decision variablesRr1r3andGr1r3to separate inequality(40)from the conditional probabilitymfr1r3.However,this may bring some conservatism,which will be verified in Section 5.

    5.Example

    In this section, we utilize the spring system model in Ref.[37]to illustrate the effectiveness of the proposed modematched and mode-mismatched filter design approaches.In Fig.2,k1andk2denote the spring constants, andM1ms(t)andM2ms(t)represent the masses subject to a Markov chain{ms(t)},which can take values 1 or 2.

    Fig.2.Spring system model.

    Furthermore, the coefficient of friction between objects A, B, and the horizontal surface is denoted byc.The spring system model can be described by Eq.(1),and its system matrices are given by

    The uniform quantization and finite-time performance parameters are set asTs=10,Eb=0.05,η1=1,η2=36,d=8,Tf=20,andH=I,respectively.

    We first consider the mode-matched scenario.In this case, the existing literature on filtering under uniform quantization (see,e.g., Refs.[38–40]) cannot be applied to find finite-time filters, while the design approaches proposed in Theorems 1 and 2 are applicable.In what follows, we take transition rate matrix as

    and set the CPMΛto be an identity matrix.It should be noted that the smaller the FTHP indexthe better the performance of FES.Table 1 provides the minimum allowable FTHP indexfor different values ofβ1andβ2by solving the LMIs in Theorems 1 and 2, respectively.It can be observed from the table that adjusting the values ofβ1andβ2can influence the minimum allowable FTHP index significantly.Furthermore, in comparison with the quantized filter design approach presented in Theorem 2,the one in Theorem 1 always achieves a better minimum allowable FTHP indexThis outcome can be attributed to the introduction of additional variablesRr1r3andGr1r3in Theorem 2, which induce extra conservatism.

    Table 1.Minimum allowable FTHP index for different values of β1 and β2.

    ˉγmin β1=-0.05 β1=0.95 β1=1.95 β1=2.95 β1=3.95 β2=0.06 β2=1.06 β2=2.06 β2=3.06 β2=4.06 Theorem 1 0.9772 1.0745 1.2260 1.3240 1.3961 Theorem 2 0.9891 1.0949 1.2959 1.4708 1.6378

    Next, we consider a mode-mismatched scenario where the CPM is set as

    In this situation,the quantized filter design approach given in Theorem 1 is not applicable,while the approach presented in Theorem 2 can be utilized to ensure the mean-square finitetime boundedness and FTHP of the FES.In fact, if we setβ1=1.5 andβ2=2, then by using Theorem 2, we can obtain the minimum allowable FTHP index=0.9215 and the corresponding filter gains as follows:

    In this simulation,the external disturbance is given by

    and the initial values are set asχ(0)=[-0.4-0.2 0.4 0.1]Tandχf(0)=[-0.5-0.1 0.3 0.2]T.

    Figures 3 and 4 show the switching modes of the Markov jump system and the filter, respectively, revealing the mode-mismatch behavior.Figure 5 shows the trajectories of the measurement output and the corresponding quantized measurement output.Figure 6 depicts the trajectory ofClearly,throughout the time interval[0,20],the value ofconsistently remains lower thanη2=36, which indicate that the FES is MSFTB.Lastly, we define the following equation

    Then,figure 7 shows the trajectory ofγ(t)under the zero initial condition.We can find that the values ofγ(t)always stay below the minimum allowable FTHP index=0.9215.This shows the designed quantized mode-mismatched filter can ensure the FTHP of the FES.

    Fig.3.Switching modes of the system.

    Fig.4.Switching modes of filter.

    Fig.5.Trajectories of ζ(t)and Q(ζ(t)).

    Fig.7.Trajectory of γ(t).

    6.Conclusion

    This work investigated the FTHF problem for MJSs with uniform quantization by considering two different modedependent filters.First, the case where the filter modes were the same as the system modes was considered.A modematched filter design method was given in Theorem 1 for MJS (1) to ensure that the FES is not only MSFTB but also satisfies a prescribed FTHP by employing a mode-dependent Lyapunov function, Schur’s complement, and Dynkin’s formula.Then, in order to solve the situation that the switching modes of the filter may differ from those of the MJS in practical systems, a mode-mismatched filter design approach was further proposed in Theorem 2 by leveraging an HMM to characterize the asynchronous mode switching between MJS (1)and filter (7) and the double expectation formula.Finally, a spring system model was utilized to validate the proposed filter design methods for the mode-matched and mode-mismatched cases,respectively.

    Acknowledgement

    Project supported by the Natural Science Foundation of the Anhui Higher Education Institutions (Grant Nos.KJ2020A0248 and 2022AH050310).

    Fig.6.Trajectory of E(t)Ht).

    猜你喜歡
    王震建平
    Her dream came true她的夢想成真了
    Spectroscopic study of B2Σ+–X1 2Π1/2 transition of electron electric dipole moment candidate PbF
    復韻母歌
    “要是”的作用
    什么是“羊雜粹”?
    Preface
    搶著去邊疆的王震
    “辦”“為”和解
    “慌”與“沒有慌”
    The Effect of Grammar Teaching on Writing in China
    卷宗(2016年3期)2016-05-10 07:41:06
    97超级碰碰碰精品色视频在线观看| 日日爽夜夜爽网站| 久久人妻熟女aⅴ| 久热这里只有精品99| 亚洲国产精品合色在线| 久久午夜综合久久蜜桃| 国产av又大| 极品教师在线免费播放| 99re在线观看精品视频| 亚洲国产精品999在线| 亚洲成人免费电影在线观看| 国产精品一区二区在线不卡| 国产97色在线日韩免费| 一级,二级,三级黄色视频| 人人妻人人爽人人添夜夜欢视频| 国产一区二区三区视频了| 两个人看的免费小视频| 精品无人区乱码1区二区| 电影成人av| 女性生殖器流出的白浆| 亚洲片人在线观看| ponron亚洲| 精品福利观看| 精品第一国产精品| 在线av久久热| 久久久久国内视频| 淫秽高清视频在线观看| 80岁老熟妇乱子伦牲交| 嫩草影视91久久| 夜夜看夜夜爽夜夜摸 | 午夜免费鲁丝| 高清在线国产一区| 日韩一卡2卡3卡4卡2021年| 桃红色精品国产亚洲av| 中文字幕另类日韩欧美亚洲嫩草| 免费av毛片视频| 亚洲成人免费av在线播放| 亚洲欧美日韩另类电影网站| 国产成人精品久久二区二区免费| 高清av免费在线| 午夜老司机福利片| 交换朋友夫妻互换小说| 视频区欧美日本亚洲| 亚洲 国产 在线| 亚洲在线自拍视频| 国产精品亚洲av一区麻豆| 亚洲狠狠婷婷综合久久图片| 精品人妻1区二区| 久久伊人香网站| 18禁裸乳无遮挡免费网站照片 | 国产伦人伦偷精品视频| 中文字幕人妻丝袜一区二区| 一级a爱片免费观看的视频| 欧美亚洲日本最大视频资源| 欧美精品啪啪一区二区三区| 热re99久久国产66热| 色尼玛亚洲综合影院| 最新在线观看一区二区三区| 国产欧美日韩一区二区精品| 一级片免费观看大全| 久久久国产精品麻豆| 另类亚洲欧美激情| 女人高潮潮喷娇喘18禁视频| 天堂俺去俺来也www色官网| 国产伦一二天堂av在线观看| 黄片播放在线免费| 99久久综合精品五月天人人| 男人操女人黄网站| 亚洲国产精品一区二区三区在线| 黄色视频不卡| 亚洲激情在线av| 午夜免费成人在线视频| 日本黄色视频三级网站网址| av电影中文网址| 黄色a级毛片大全视频| 国产单亲对白刺激| 亚洲人成电影免费在线| 麻豆av在线久日| 51午夜福利影视在线观看| 国产精品九九99| 黄片小视频在线播放| 日本欧美视频一区| 99国产极品粉嫩在线观看| 不卡一级毛片| 欧美精品亚洲一区二区| 搡老熟女国产l中国老女人| 淫妇啪啪啪对白视频| 国产人伦9x9x在线观看| 淫妇啪啪啪对白视频| 国产在线精品亚洲第一网站| 日韩大尺度精品在线看网址 | 最近最新中文字幕大全电影3 | 91在线观看av| 国产精品成人在线| 电影成人av| 久久天躁狠狠躁夜夜2o2o| 大香蕉久久成人网| 交换朋友夫妻互换小说| 久久亚洲真实| 久久亚洲真实| 超色免费av| 欧美日韩视频精品一区| 别揉我奶头~嗯~啊~动态视频| 如日韩欧美国产精品一区二区三区| 高清毛片免费观看视频网站 | 精品久久久久久成人av| 亚洲成a人片在线一区二区| 很黄的视频免费| 成人亚洲精品av一区二区 | 好男人电影高清在线观看| 国产精品1区2区在线观看.| 国产精品98久久久久久宅男小说| 久久精品亚洲精品国产色婷小说| 麻豆一二三区av精品| 久久国产精品人妻蜜桃| 男女高潮啪啪啪动态图| 国产av又大| 成人免费观看视频高清| 日日干狠狠操夜夜爽| 久久99一区二区三区| 久久精品亚洲av国产电影网| 老司机亚洲免费影院| 精品国产乱子伦一区二区三区| 国产精品一区二区免费欧美| 久久影院123| www.精华液| √禁漫天堂资源中文www| 黑人猛操日本美女一级片| 黄色丝袜av网址大全| 日本三级黄在线观看| 久久热在线av| 黄色怎么调成土黄色| 黄片播放在线免费| 精品一区二区三区av网在线观看| 国产精品一区二区免费欧美| 我的亚洲天堂| 精品国产乱子伦一区二区三区| 可以在线观看毛片的网站| 日日摸夜夜添夜夜添小说| 久久久久久久久中文| 9191精品国产免费久久| 午夜91福利影院| 18禁观看日本| 免费av毛片视频| 日日干狠狠操夜夜爽| 51午夜福利影视在线观看| 日韩有码中文字幕| 黄色丝袜av网址大全| a级毛片黄视频| 国产男靠女视频免费网站| 欧美黑人精品巨大| 免费在线观看完整版高清| 黄色视频,在线免费观看| 男人操女人黄网站| 欧美乱妇无乱码| 一级片'在线观看视频| 国产免费男女视频| 在线观看www视频免费| 老汉色∧v一级毛片| 成人国产一区最新在线观看| 日韩欧美一区二区三区在线观看| 一级a爱片免费观看的视频| 男女做爰动态图高潮gif福利片 | 国内久久婷婷六月综合欲色啪| 亚洲男人的天堂狠狠| 国产激情久久老熟女| √禁漫天堂资源中文www| 国产成人啪精品午夜网站| 人妻丰满熟妇av一区二区三区| 怎么达到女性高潮| 麻豆一二三区av精品| 久久精品国产综合久久久| 欧美乱码精品一区二区三区| 一二三四在线观看免费中文在| 黑人巨大精品欧美一区二区mp4| 999久久久精品免费观看国产| 亚洲自拍偷在线| 亚洲成av片中文字幕在线观看| 亚洲精品国产精品久久久不卡| 日本黄色日本黄色录像| 欧美日本中文国产一区发布| 亚洲熟妇熟女久久| 琪琪午夜伦伦电影理论片6080| 国产成人精品在线电影| 国产精品自产拍在线观看55亚洲| 嫩草影院精品99| 极品教师在线免费播放| 国产伦人伦偷精品视频| 亚洲七黄色美女视频| 久久精品国产亚洲av高清一级| а√天堂www在线а√下载| 欧美日韩福利视频一区二区| 成人手机av| 精品熟女少妇八av免费久了| bbb黄色大片| 首页视频小说图片口味搜索| 91麻豆av在线| 伦理电影免费视频| 精品第一国产精品| 丁香六月欧美| 欧美日韩av久久| 纯流量卡能插随身wifi吗| 国产亚洲精品第一综合不卡| 国产欧美日韩一区二区三| 国产一区二区激情短视频| 中文字幕人妻丝袜制服| 18美女黄网站色大片免费观看| 欧美乱妇无乱码| 国产精品美女特级片免费视频播放器 | 99在线人妻在线中文字幕| 男女床上黄色一级片免费看| 成年人免费黄色播放视频| 精品福利永久在线观看| 三级毛片av免费| 精品久久久久久成人av| 国产伦一二天堂av在线观看| 老司机靠b影院| 亚洲精品在线观看二区| 国产真人三级小视频在线观看| 黄色女人牲交| 成年人免费黄色播放视频| a级毛片在线看网站| 久久久久久亚洲精品国产蜜桃av| 中文字幕最新亚洲高清| 亚洲午夜理论影院| 黄网站色视频无遮挡免费观看| 国产男靠女视频免费网站| 女生性感内裤真人,穿戴方法视频| 免费观看人在逋| www.www免费av| 亚洲成国产人片在线观看| 国产99久久九九免费精品| 757午夜福利合集在线观看| 一区二区三区激情视频| 精品国产一区二区三区四区第35| 久久国产精品男人的天堂亚洲| 久久精品国产亚洲av香蕉五月| 啦啦啦 在线观看视频| а√天堂www在线а√下载| 亚洲欧美激情综合另类| 久久午夜综合久久蜜桃| 丁香六月欧美| 国产亚洲精品久久久久久毛片| 日韩成人在线观看一区二区三区| 亚洲精品国产精品久久久不卡| 99香蕉大伊视频| 久久人妻av系列| 动漫黄色视频在线观看| 免费在线观看完整版高清| 黄片大片在线免费观看| 精品久久久久久成人av| 91大片在线观看| 亚洲av片天天在线观看| 侵犯人妻中文字幕一二三四区| 免费看a级黄色片| 亚洲,欧美精品.| 天天添夜夜摸| 亚洲五月天丁香| 精品一区二区三区四区五区乱码| 欧美久久黑人一区二区| 国产精品久久久久成人av| 中文亚洲av片在线观看爽| 日韩精品青青久久久久久| 日韩欧美一区视频在线观看| 国产亚洲欧美在线一区二区| 国产精品 国内视频| 久久久精品国产亚洲av高清涩受| 丰满人妻熟妇乱又伦精品不卡| 脱女人内裤的视频| 老熟妇乱子伦视频在线观看| 精品人妻1区二区| 国产91精品成人一区二区三区| 俄罗斯特黄特色一大片| 青草久久国产| 欧美一级毛片孕妇| 窝窝影院91人妻| 欧美日韩av久久| 国产深夜福利视频在线观看| 精品人妻在线不人妻| 午夜福利在线免费观看网站| 久久久久久久精品吃奶| 99香蕉大伊视频| 欧美另类亚洲清纯唯美| 久久青草综合色| 欧美不卡视频在线免费观看 | 欧美精品啪啪一区二区三区| 悠悠久久av| 80岁老熟妇乱子伦牲交| 黑丝袜美女国产一区| 国产欧美日韩一区二区精品| 久久精品国产99精品国产亚洲性色 | av中文乱码字幕在线| 黄片小视频在线播放| 欧美日韩乱码在线| 很黄的视频免费| 精品久久久久久久久久免费视频 | 国产高清国产精品国产三级| 国产亚洲精品综合一区在线观看 | 久久久久国产精品人妻aⅴ院| 丝袜在线中文字幕| 亚洲国产毛片av蜜桃av| 黄色视频不卡| 国产成人影院久久av| 亚洲成国产人片在线观看| 窝窝影院91人妻| 国产精品亚洲一级av第二区| 在线视频色国产色| 十八禁网站免费在线| 99国产精品一区二区蜜桃av| 无人区码免费观看不卡| 久久影院123| 一边摸一边抽搐一进一出视频| 欧美一区二区精品小视频在线| avwww免费| 欧美日韩乱码在线| 国产极品粉嫩免费观看在线| 黄色丝袜av网址大全| 欧美乱色亚洲激情| 欧美日韩黄片免| 亚洲精品在线观看二区| 宅男免费午夜| 久久精品国产亚洲av高清一级| 黄色片一级片一级黄色片| 级片在线观看| 高清欧美精品videossex| 每晚都被弄得嗷嗷叫到高潮| 在线永久观看黄色视频| 免费观看人在逋| 很黄的视频免费| 日日夜夜操网爽| 亚洲三区欧美一区| 精品人妻在线不人妻| 欧美日韩亚洲综合一区二区三区_| 成年人黄色毛片网站| 国产人伦9x9x在线观看| 97人妻天天添夜夜摸| 午夜影院日韩av| 亚洲人成77777在线视频| 在线观看免费午夜福利视频| 黄片播放在线免费| 亚洲 欧美 日韩 在线 免费| 欧美黑人精品巨大| 精品免费久久久久久久清纯| aaaaa片日本免费| 国产激情欧美一区二区| 黄色 视频免费看| 日本精品一区二区三区蜜桃| 久久精品亚洲av国产电影网| 搡老乐熟女国产| 国产精品98久久久久久宅男小说| 在线观看一区二区三区| 男女之事视频高清在线观看| 久久久久久亚洲精品国产蜜桃av| 久久久久久久久中文| 久久久久亚洲av毛片大全| 男女下面插进去视频免费观看| 亚洲国产中文字幕在线视频| 欧美成人午夜精品| av在线播放免费不卡| 久久中文字幕一级| 99久久精品国产亚洲精品| 国产亚洲精品综合一区在线观看 | 国产精品亚洲一级av第二区| 精品一品国产午夜福利视频| 热re99久久国产66热| 一进一出抽搐gif免费好疼 | 精品第一国产精品| 在线观看免费视频日本深夜| 黄色女人牲交| 久久精品成人免费网站| 高清在线国产一区| 国产精品99久久99久久久不卡| 99re在线观看精品视频| 亚洲黑人精品在线| 午夜久久久在线观看| 老熟妇乱子伦视频在线观看| 在线观看一区二区三区| 亚洲aⅴ乱码一区二区在线播放 | 女人精品久久久久毛片| 亚洲av片天天在线观看| 国产男靠女视频免费网站| 少妇裸体淫交视频免费看高清 | 国产一区二区三区在线臀色熟女 | 曰老女人黄片| 天天影视国产精品| 免费女性裸体啪啪无遮挡网站| www国产在线视频色| 无限看片的www在线观看| 国产男靠女视频免费网站| 国产精品自产拍在线观看55亚洲| aaaaa片日本免费| 午夜日韩欧美国产| 亚洲伊人色综图| 天堂中文最新版在线下载| 久久久国产一区二区| 一区二区三区激情视频| 男女床上黄色一级片免费看| 最新在线观看一区二区三区| 国产精品亚洲一级av第二区| 国产三级黄色录像| x7x7x7水蜜桃| 激情在线观看视频在线高清| 美女高潮喷水抽搐中文字幕| bbb黄色大片| 美女国产高潮福利片在线看| 一二三四社区在线视频社区8| bbb黄色大片| 欧美黑人欧美精品刺激| 欧美乱妇无乱码| 日日摸夜夜添夜夜添小说| 国产真人三级小视频在线观看| 日韩大码丰满熟妇| av国产精品久久久久影院| 欧美日本亚洲视频在线播放| 欧美成人性av电影在线观看| 多毛熟女@视频| 色哟哟哟哟哟哟| 日本a在线网址| 级片在线观看| 少妇粗大呻吟视频| 国产精品日韩av在线免费观看 | 99riav亚洲国产免费| 免费观看精品视频网站| 日本免费一区二区三区高清不卡 | 午夜福利免费观看在线| 两人在一起打扑克的视频| 亚洲国产精品合色在线| 99国产精品免费福利视频| 日本一区二区免费在线视频| 免费在线观看视频国产中文字幕亚洲| 久久国产精品男人的天堂亚洲| 久久精品成人免费网站| 男男h啪啪无遮挡| 国产在线观看jvid| 一区二区三区精品91| 真人做人爱边吃奶动态| av视频免费观看在线观看| 色婷婷av一区二区三区视频| 成人三级做爰电影| 精品高清国产在线一区| 色在线成人网| 日韩大码丰满熟妇| 咕卡用的链子| 他把我摸到了高潮在线观看| 日本vs欧美在线观看视频| 一二三四在线观看免费中文在| 国产成人精品在线电影| 成人亚洲精品av一区二区 | 99国产精品一区二区蜜桃av| 亚洲在线自拍视频| av天堂在线播放| 高清毛片免费观看视频网站 | 夜夜看夜夜爽夜夜摸 | 久久这里只有精品19| 久久精品亚洲熟妇少妇任你| 99国产精品免费福利视频| 很黄的视频免费| 日韩国内少妇激情av| 亚洲成人国产一区在线观看| 无人区码免费观看不卡| 亚洲一区中文字幕在线| 一二三四社区在线视频社区8| 亚洲avbb在线观看| 国产av在哪里看| 午夜免费激情av| 国产精品一区二区精品视频观看| 国产黄a三级三级三级人| 色婷婷av一区二区三区视频| 在线观看免费视频日本深夜| 精品久久久久久久毛片微露脸| 日韩欧美在线二视频| 每晚都被弄得嗷嗷叫到高潮| 交换朋友夫妻互换小说| 一级毛片精品| av欧美777| 后天国语完整版免费观看| 搡老熟女国产l中国老女人| 免费av毛片视频| 97超级碰碰碰精品色视频在线观看| 九色亚洲精品在线播放| 亚洲av日韩精品久久久久久密| 天堂影院成人在线观看| 涩涩av久久男人的天堂| 十八禁人妻一区二区| 又黄又粗又硬又大视频| 91精品三级在线观看| 欧美成人免费av一区二区三区| 午夜视频精品福利| 亚洲国产欧美一区二区综合| 好看av亚洲va欧美ⅴa在| 岛国视频午夜一区免费看| 可以免费在线观看a视频的电影网站| 老汉色∧v一级毛片| 亚洲七黄色美女视频| 国产精品电影一区二区三区| 一进一出好大好爽视频| 免费不卡黄色视频| 国产又爽黄色视频| 别揉我奶头~嗯~啊~动态视频| 精品福利观看| 叶爱在线成人免费视频播放| 淫妇啪啪啪对白视频| 国产免费av片在线观看野外av| 久久久国产成人精品二区 | 中文字幕人妻丝袜制服| 91精品国产国语对白视频| 国产91精品成人一区二区三区| 欧美中文日本在线观看视频| 女人被躁到高潮嗷嗷叫费观| 久久精品91无色码中文字幕| 免费在线观看视频国产中文字幕亚洲| 国产黄a三级三级三级人| 久久伊人香网站| 在线观看一区二区三区激情| www国产在线视频色| 久久久国产欧美日韩av| 在线观看日韩欧美| 日本黄色视频三级网站网址| 交换朋友夫妻互换小说| 香蕉久久夜色| 黑丝袜美女国产一区| 国产成人精品久久二区二区免费| 日本黄色日本黄色录像| 最新美女视频免费是黄的| 国产在线观看jvid| 精品国产一区二区久久| 欧美日韩黄片免| 国产黄色免费在线视频| 中文字幕精品免费在线观看视频| 久久久水蜜桃国产精品网| 成人亚洲精品av一区二区 | 香蕉丝袜av| 黄色a级毛片大全视频| 精品一区二区三卡| 亚洲欧美激情综合另类| 精品日产1卡2卡| 精品国产亚洲在线| 日韩av在线大香蕉| 欧美精品啪啪一区二区三区| 免费观看人在逋| netflix在线观看网站| 长腿黑丝高跟| 欧美大码av| 国产蜜桃级精品一区二区三区| 国产成人欧美在线观看| 日韩精品青青久久久久久| 两性夫妻黄色片| 国产视频一区二区在线看| 交换朋友夫妻互换小说| 中文字幕精品免费在线观看视频| 国产精品日韩av在线免费观看 | 久久伊人香网站| 久久国产精品男人的天堂亚洲| 日本撒尿小便嘘嘘汇集6| 老熟妇仑乱视频hdxx| 男人的好看免费观看在线视频 | 亚洲三区欧美一区| av超薄肉色丝袜交足视频| 精品久久久精品久久久| 视频区欧美日本亚洲| 久久青草综合色| 88av欧美| 国产人伦9x9x在线观看| 精品一品国产午夜福利视频| 久久久久国产一级毛片高清牌| 黑人巨大精品欧美一区二区蜜桃| 波多野结衣一区麻豆| 丰满饥渴人妻一区二区三| 久久久久国内视频| 黄色成人免费大全| 啪啪无遮挡十八禁网站| 女性被躁到高潮视频| 日日干狠狠操夜夜爽| av电影中文网址| 天天添夜夜摸| 91在线观看av| 大陆偷拍与自拍| 韩国av一区二区三区四区| 淫秽高清视频在线观看| 一级毛片高清免费大全| 啦啦啦 在线观看视频| 亚洲精品久久午夜乱码| 国产欧美日韩精品亚洲av| 丰满迷人的少妇在线观看| 久久精品国产清高在天天线| 久久久久精品国产欧美久久久| 国产精品久久久人人做人人爽| www.精华液| 久久亚洲精品不卡| 国产激情久久老熟女| 亚洲片人在线观看| 黑人猛操日本美女一级片| 国产精品久久久人人做人人爽| 在线观看www视频免费| 两性夫妻黄色片| 动漫黄色视频在线观看| 久久精品亚洲av国产电影网| 黄网站色视频无遮挡免费观看| 国产色视频综合| 精品国产超薄肉色丝袜足j| 桃红色精品国产亚洲av| 亚洲精品在线美女| 真人一进一出gif抽搐免费| 欧美日韩黄片免| 中文字幕人妻熟女乱码| 少妇粗大呻吟视频| 男人舔女人的私密视频| 久久九九热精品免费| 日韩精品青青久久久久久| 国产精品亚洲av一区麻豆| 男女下面进入的视频免费午夜 | 丝袜美足系列| av在线天堂中文字幕 | 97碰自拍视频| 日韩一卡2卡3卡4卡2021年|