• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Large spatial shifts of reflected light beam off biaxial hyperbolic materials

    2023-12-02 09:22:36JiaGuoShen沈加國(guó)SyedulhasnainBakhtiar哈思內(nèi)恩HaoYuanSong宋浩元ShengZhou周勝ShuFangFu付淑芳XuanZhangWang王選章XuanWang王暄andQiangZhang張強(qiáng)
    Chinese Physics B 2023年11期
    關(guān)鍵詞:淑芳張強(qiáng)

    Jia-Guo Shen(沈加國(guó)), Syed-ul-hasnain Bakhtiar(哈思內(nèi)恩), Hao-Yuan Song(宋浩元), Sheng Zhou(周勝),Shu-Fang Fu(付淑芳),,?, Xuan-Zhang Wang(王選章), Xuan Wang(王暄), and Qiang Zhang(張強(qiáng)),?

    1Key Laboratory for Photonic and Electronic Bandgap Materials,Chinese Ministry of Education,and School of Physics and Electronic Engineering,Harbin Normal University,Harbin 150025,China

    2School of Integrated Circuits,Engineering Research Center for Functional Ceramics,Wuhan National Laboratory for Optoelectronics,Huazhong University of Science and Technology,Wuhan 430030,China

    3Key Laboratory of Engineering Dielectrics and Its Application,Ministry of Education,Harbin University of Science and Technology,Harbin 150080,China

    Keywords: Goos–H¨anchen shift,Imbert–Fedorov shift,α-MoO3

    1.Introduction

    A number of studies have shown that when a paraxial light beam interacts with the surface of the materials under specific conditions,the reflective beams show a relatively small shift from their geometrically/symmetrically incidence position.[1,2]The shift that occurs in the plane of the incoming light is referred to as the Goos–H¨anchen(GH)shift,which was first observed by Goos and later confirmed experimentally by H¨anchen.[3,4]While the shift normal to the plane of incident light is called the Imbert–Fedorov (IF) shift,[5,6]which further originates from the spin–orbit interaction of incident light.[7]The GH shift length is usually nearly the vacuum wavelength when the light–beam interacts with the conventional dielectrics, while the IF shift only indicates a small fraction of the vacuum wavelength.[2,8]It has been observed that the GH shift (in the case of the total internal reflection) is highly related to the medium-anisotropy.[3,5]Because of their excellent performance in micro-nano optics and device technology, these two phenomena have aroused wide interest of researchers.They used several materials to improve the spatial shifts of reflected light beam on the material surface, starting with the original work on isotropic and anisotropic mediums, such as the polar crystal,[9]photonic crystals,[8,10]metamaterials,[11]metasurfaces,[12]topological material,[13]magnetic media,[14]and quasibound states in the continuum.[15,16]When facing a small GH shift and IF shift,the quantum weak measurement can be used to detect this phenomenon veraciously, since it uses the precise measurement of the physical parameters of the material, such as dielectric function and permeability.[17]It accurately captures the shift produced on the surface of the material, opening up a broad window for the potential application of IF and GH shifts in sensing technology.

    Hyperbolic materials (HMs) are materials with hyperbolic isofrequency contours, featuring having both positive sign and negative sign in their principal components of the dielectric permittivity tensor.[18–20]These materials have been utilized in various areas,including negative refraction,[21]hyperlens effect,[22]thermal emission engineering,[23]and other novelty optical devices.[24,25]Traditional HMs are based on meta-materials, which require careful design of the cells that make up a unit to obtain the characteristic hyperbolic permittivity tensor.[11]Despite the potential benefits of these strategies, their implementation poses significant challenges due to the complex and precise nano-fabrication and lithography processes required to create a unit cell that can effectively manipulate light waves.Moreover, for the effective medium approximation to be valid, the unit cell must be considerably smaller than the wavelength of light.As a result, researchers have turned to explore natural biaxial hyperbolic material (NBHM), which possesses structural anisotropy resulting in hyperbolic permittivity without the need for lithography techniques.[26,27]For example,hexagonal boron nitride(hBN)has remarkable optical performance, featuring extremely low loss and two hyperbolic reststrahlen bands (HRBs) in the infrared range.[28,29]However, owing to its uniaxial optical response, it is unsuitable for in-plane anisotropy.On the other hand,α-molybdenum trioxide (α-MoO3) exhibits phonondriven NBHM behaviour in the long-wavelength mid-infrared range, making it a promising candidate for creating optical components with superior efficiency.[30,31]

    α-MoO3,a type of van der Waals crystal with orthorhombic unit cells, shows a biaxial hyperbolic anisotropy in the mid-infrared part of the electromagnetic spectrum.[32,33]The inherent anisotropy ofα-MoO3, arising from its distinctive crystalline structure, results in natural in-plane hyperbolic characteristics that stem from the interplay between the lattice modes and three crystal directions that are orthogonal to each other.Thus,this presents a novel possibility in the utilization of photonic tools that rely on the angle-dependent polarization,and opens the way for exploring polarization-based filters and reflectors.[34,35]Scholars have discovered thatα-MoO3possesses various unique physical phenomena and applications.Huet al.[36]documented the identification of both topological polaritons and photonic magic-angle in bi-layeredα-MoO3.Dereshgi and colleagues introduced a new approach to constructing IR polarization converters by usingα-MoO3flakes,which does not involve lithography and purely relies on the use of orthogonal in-plane phonons.[37]

    In this paper, we take the advantages ofα-MoO3biaxial hyperbolicity and strong in-plane anisotropy to achieve an effective improvement of spatial shift.Meanwhile, we utilize the hBN as a substrate.As a natural hyperbolic material, the reststrahlen bands (RBs) of hBN partly overlap the RBs ofα-MoO3, and both the two hyperbolic materials exhibit hyperbolic dispersion characteristics in their frequencyresponse regions.Therefore,compared with ordinary isotropic and anisotropic materials,the hBN has a great ability to modulate the beam shifts.

    2.Theoretical description

    The setup comprises two distinct components:the surface layer,i.e.,theα-MoO3film with thickness denoted byd,and the substrate that is a semi-infinite hBN crystal with its optical axis(OA)perpendicular to its surface.The schematic diagram of coordinate system and configuration can be found in Fig.1,which shows that the orientation of the structure’s surface is aligned with thex–yplane,while the plane of incidence is situated in thex–zplane.a,b,andcdenote the[100],[010],and[001]principal-axis directions ofα-MoO3, respectively.Theaaxis lies in the surface plane atθrelative to thexaxis,whereθcan also be used to indicate the orientation of the incident plane.A Gaussian beam incident on the surface at angleβproduces the shifts of reflected beam along thexaxis andyaxis,called GH and IF shifts,respectively.

    Fig.1.Schematic illustrating geometry and coordination system, with β denoting the incident angle, θ the angle between incident plane and a–b plane,and d the thickness of α-MoO3 layer.

    In theo–abccoordination system, the dielectric permittivity ofα-MoO3crystal is a diagonal matrix with elementsεa,εb, andεc, which is an important characteristic of biaxial hyperbolic crystal.Nevertheless, the effective permittivity in theo–xyzcoordinate system can be defined as

    whereεxx=εacos2θ+εbsin2θ,εyy=εbcos2θ+εasin2θ,andεxy=(εb-εa)cosθsinθ.The three dielectric constants can be collectively expressed as[19,38]

    The permittivity tensor is denoted byεj, whileε∞,jrefers to the dielectric constant at high frequencies.In addition,there are damping constantΓj,longitudinal optical phonon frequencyωLO,j,and transverseωTO,joptical phonon frequency which are associated with the system.The parameters used in Eq.(2)are reproduced from Ref.[30].

    For theα-MoO3layer,the induced electric field satisfies the following equation(based on Maxwell equations):

    wheref=μ0ε0ω2.Equation (3) has nontrivial solutions only when the det(M)=0,it provides the well-known Fresnel’s equation for biaxial medium,a quadratic equation,in the squaredzcomponent of the wave vector,kz,which is the two wave branches in theα-MoO3.Its solutionskzread as

    where superscript I represents the incident light and R represents the reflection light, where the common factor exp(ikxx-iωt) is omitted for simplicity,koandkedenote the usual light wave vector and unusual light wave vector in the hBN,respectively.Meanwhile,the magnetic fields can be achieved with the Maxwell equation in the different spaces.Subsequently, the boundary conditions are introduced, which stipulate that the in-plane segments of the magnetic field and electric field must be seamless across the film’s surface, located atz=0 andd.The electric field’s amplitude is determined by

    with

    The amplitude of the electric field for the transverse electric (TE) wave with s-polarization is represented byERy,while in the reflected beam, the two components of the field amplitude for the transverse magnetic (TM) wave with ppolarization are denoted byERxandERz.The reflective electric field is expressed as a matrix form in theo–xyzcoordinate system.To resolve the GH shift and IF shift in the reflective beam,it is essential to employ rotational transformations on both the incident and reflective central waves.According to the geometric correlation, the transformation relationship between the incident electric field and reflected electric field can be obtained as follows:EIx=EIpcos(β),EIy=EIs,EIz=-EIpsin(β),ERp=-ERxcos(β)-ERzsin(β),ERs=ERy,andERz=cot(β)ERx.As result,the correlation equation for the incident field and reflective field in the beam coordinate system can be written as

    The subscripts “s” and “p” indicate the s-polarization and ppolarization of the incident and reflected central waves, respectively.While the results mentioned earlier are obtained by using the central plane wave; if we consider the paraxial wave,the incident beam is limited to a narrow range of plane waves around the central wave in momentum space.We assume the incident beam to be a Gaussian beam,which does not comply with the law of reflection Eq.(8)and provides two indications: firstly,the use ofα-MoO3results in a non-diagonal matrix relationship between the incident electric field and reflected electric field, and secondly, all elements of the reflection coefficient matrix are dependent onθandβ.If this arises from the anisotropy of theα-MoO3layer,it can be anticipated that the GH and IF shift may exist for a linearly-polarized incident beam.In this case, the expression for the GH shift should be derived.To do so, we can expand the elements of the coefficient-matrix to the first order ofβpin Eq.(8) and solely considerβpwhile ignoringθs.The relative reflection may be expressed as

    First,We focus our attention on deriving the IF shift formula.The polarization orientation of the incident or reflected beam is directly changed by a slight adjustment in the incident plane’s orientation.The matrix components in Eq.(8),where onlyθsis considered andβpis omitted,are also affected.For smaller rotationθs,the reflected electric field can be written as

    If the surface layer and substrate are replayed by an isotropic material, the matrix elements of Eq.(8) will becomea12=a21=0,a11=-fp, anda22=fs(wherefpandfsare the reflective coefficients of the p and s waves).For the highsymmetry configurations(θ=0,90?),the same results can be obtained:a12=a21=0,a11=-fp, anda22=fs.Likewise,the expression of GH and IF shifts in the isotropic medium can be obtained with the same method.Consequently, equations(10)and(12)can be simplified into a well-known result,which is cited from Ref.[1].

    3.Numerical calculations and discussion

    To find out the spatial shift of the surface of theα-MoO3crystal,we first illustrate the permittivity of the monolayerα-MoO3crystal as depicted in Fig.2(a),whereεa,εb,andεcrepresent the three elements of dielectric permittivity ofα-MoO3crystal in thea,b,andcdirections,respectively.If there exists an frequency interval where the signs of dielectric functions are opposite,this frequency interval is called an HRB.For the NBHM,if one element has a positive dielectric function value and the other two elements have negative dielectric function values, it is called a type-II hyperbolic material, otherwise it is a type-I hyperbolic.Therefore,we can see the five HRBs ofα-MoO3with different colors,as listed in Table 1.

    Table 1.Frequency regions, properties and relations among εa, εb, and εc of types α-MoO3.

    The physical parameters of the hBN crystal are presented in Ref.[11].Its permittivity values are illustrated in Fig.2(b),where the red part corresponds to the HRB-I, and the green part refers to the HRB-II.Furthermore, we can observe that the HRB-I of hBN and the second HRB ofα-MoO3partly overlap in a frequency response space.Both materials exhibit unique properties in this common region,so we will focus our attention on this area.

    Fig.2.(a)Permittivity of monolayer α-MoO3,with solid,dashed,and dotted lines denoting the permittivity in different crystal directions,and different areas relating to different HRBs.(b) Permittivity of the bulk hBN, with solid and dashed lines referring to the permittivity parallel and vertical to OA, and red and green areas indicating HRBs respectively.

    To comprehend the shift spectrum in the reflected beam spectra,it is necessary to revisit the reflection and transmission that occur at the interface between air and an isotropic polar crystal with a relative permittivityε.Whenkzbecomes imaginary,the total reflection is observed,and the transmitted wave transforms into an evanescent wave.Then,the critical angle is determined by the equation sin2βc=ε,where 0<ε<1.The Brewster angle can be determined byRp=0.For the present structure,a similar definition for the critical or Brewster angle can still be achieved.

    Fig.3.Curves of reflectivity corresponding to (a) linearly-polarized incident beam and (b) circularly-polarized incident beam at different frequencies and thickness values of α-MoO3.In panel (a), the green dashed line is related to the s-polarization incident beam,and the solid line corresponds to the p-incident beam.The inset illustrates the reflective ratio when d<30 nm for p-polarized incident beam.

    Figure 3 shows the curves of reflectance of the ppolarized, s-polarized, and circularly polarized beams.The black solid line or dash line in Fig.3(a) indicates the reflectivity of the surface of semi-infinite hBN material without theα-MoO3film for p-or s-polarized incident beam.It is not difficult to find that the reflectivity of p-polarized incident beam changes significantly with frequency, while the reflectivity of s-polarized incident beam remains basically unchanged.After placing theα-MoO3film on hBN, two dips are observed atω ≈820 cm-1and 840 cm-1, respectively.In addition, the reflectivity of p-polarized incident beam approaches to zero atω ≈840 cm-1,where the incident angle should be the Brewster’s angle.Normally,the spatial shifts,such as GH shift and IF shift,can be enhanced greatly at critical angle or Brewster’s angle.[12]An inset about the reflectivity atω ≈840 cm-1is plotted in order to further examine the effect of the thickness ofα-MoO3film on the reflectivity.It is clear to find that the reflectivity will be larger than 1% once the the thickness ofα-MoO3film is less than 30 nm.It can be predicted that if the larger GH or IF shift is expected,the thickness ofα-MoO3film should be larger than 30 nm.On the other hand,the reflectivity for s-polarized incident beam remains unchanged with the frequency even if theα-MoO3film is placed on the surface of hBN,while the reflectivity increases slightly with the thickness ofα-MoO3film increasing.Comparing with Fig.2(b),it also can be found that the permittivity of hBNεpis just equal to 1.0 atω ≈40 cm-1for p-polarized incident beam,which is located near the epsilon being nearly zero of HRB-I.Therefore,we will focus our attention on the GH or IF shift of p-polarized incident beam in the following discussions.Figure 3(b) displays the curves of reflectivity of leftc-polarized incident beam forα-MoO3films with different thickness values.Only one dip appears atω ≈1007 cm-1where the reflectivity gradually decreases with the increase ofα-MoO3film increasing.

    Initially, we concentrate on two highly symmetric configurations, namely, geometry-I (θ=0?) with theaaxis ofα-MoO3along thexaxis,and geometry-II(θ=90?)with theaaxis perpendicular to thexaxis.For the highly symmetric configurations,εxy=0 in Eq.(4) which leads to an analytical expression fork±.k2±=εyy f2-k2xfor s-polarized incident beam andεzzk2±=εxxεzz f2-εxxk2xfor p-polarized incident beam.In geometry-I,εxx=εa,εyy=εb,and in geometry-II,εxx=εb,εyy=εa.Figure 4 illustrates the curves of GH shift versus frequency for the different thickness in the geometry-I and geometry-II.The GH shift on the surface of hBN is presented in Fig.4(a), which is about 5λ0atω=841.5 cm-1.With the increase of the thickness ofα-MoO3film,the influence of thickness on GH shift becomes more pronounced.The GH shift reaches a negative maximum value of about 39λ0atd=90 nm.Of course,if the positive GH shift is required we have to consider the situation atd=120 nm.The corresponding frequency is located on the left border of the overlapping region of HRBs.In Fig.4(b),a noticeable peak for GH shift is present in geometry-II,where a maximum GH shift can reach 86λ0and rapidly changes from negative to positive.It further proves that the GH shift can be enhanced significantly at the Brewster angle since a phase gradient of the corresponding reflection coefficient will experience a sharp variation due to the high in-plane anisotropy.For both geometries,it can be found that the GH shift generated on the the surface ofα-MoO3-hBN is much larger than the one excited on the surface of the semiinfinite hBN.As is well known,according to the discussion of Eq.(12)the IF shift cannot be generated for linearly polarized incident beam at the interface between two isotropic media.However,theα-MoO3layer leads to the off-diagonal relationship between the incident electric field and reflective field as demonstrated in Eq.(9).We can predict that the IF shift will be generated not only by the circularly polarized beam but also by the linearly polarized beam,which is caused mainly by the in-plane anisotropy ofα-MoO3layer.In order to investigate the IF shift for p-polarized incident beam, we illustrate the variation of IF shift in theθ–ωplane atβ=12?as shown in Fig.4(c).It is obvious that the larger IF shift exits in the region of 13?<θ<50?where the incident frequency is fixed at about 825 cm-1.Moreover,the largest IF shift can be about 0.07λ0atθ=33?.Whenθ=0?and 90?,the off-diagonal elements of the reflection coefficient matrix become zero, which will cause the reflected beam to become a single s-or p-polarized beam.Thus, the IF shift still cannot be observed at the two highly symmetric structures, which can also be illustrated by Fig.4(c).

    Fig.5.Curves of IF shift of reflective beam of α-MoO3 with various thicknesses in HRBs in(a)geometry-I and(b)geometry-II for the circularly polarized incident beams with β =12?.

    In the previous discussion, we described in detail the GH and IF shifts of p-polarized incident beam.Generally speaking, the generation of IF shift is attributed to the conservation of spin–orbit angular momentum.Therefore, we choose the left circularly-polarized incident beam to simulate the IF shift.In Fig.5, the peak of the IF shift can be seen atω=1007 cm-1, corresponding toεc=0.In addition, as the thickness ofα-MoO3increases,the maximum value of the IF shift first increases and then decreases.Whend=1700 nm,the maximum IF shift can reach about 2.7λ0.This pattern can also be seen in geometry-II as shown in Fig.5(b).When the thickness is 900 nm, the peak of the IF shift is about 1.4λ0.In order to analyze the peak of the IF shift,which is taken for example,we simulate the reflectivity of the s-and p-polarized incident beams in geometry-II whend= 900 nm, which is shown in the inset of Fig.5(b).A dip ofRpis observed which just intersects withRsatω=1007 cm-1.Based on the discussions in Ref.[11],the conditions reaching the maximum value of IF shift should be satisfied at this frequency.

    4.Conclusions

    To sum up, our investigation focuses on analyzing the shift of the reflected beam from theα-MoO3with a finite thickness on a bulk hBN substrate.We observed that the interplay between anisotropic hyperbolic polaritons inα-MoO3plates and hBN crystal results in intricate changes in the GH and IF spectra.They are not like the reflected beam from the bulk hBN crystal surface nor the infinite thicknessα-MoO3surface.Especially for geometry-II, the GH shift can reach 86λ0withd=90 nm, which lies in the Brewster angle.By comparing the GH shift of the added MoO3flakes with that of the semi-infinite hBN structure,adding MoO3flakes with a certain thickness can effectively increase the GH shift of the surface in this frequency interval.For the circularly-polarized incident beam,the IF shift is 2.7λ0when the NBHM thickness is 1700 nm.Meanwhile,both materials are NBHM,which are easier to prepare and have simpler structures.These findings pave the way for future research into modulating the GH and IF shifts,which can be used to create novel micro-optical devices and biosensors.

    Acknowledgements

    Project supported by the Natural Science Foundation of Heilongjiang Province, China (Grant No.LH2020A014),the Fund from the Education Commission of Heilongjiang Province, China (Grant No.2020-KYYWF352), the Fund from the Key Laboratory of Engineering Dielectrics and Its Application (Harbin University of Science and Technology),Ministry of Education, China (Grant Nos.KFM202005 and KF20171110), and the Harbin Normal University Postgraduate Innovative Research Project,Heilongjiang Province,China(Grant Nos.HSDSSCX2022-53 and HSDSSCX2022-49).

    猜你喜歡
    淑芳張強(qiáng)
    Spin splitting of vortex beams on the surface of natural biaxial hyperbolic materials
    Anomalous Hall effect of facing-target sputtered ferrimagnetic Mn4N epitaxial films with perpendicular magnetic anisotropy
    Visual Storytelling and Globalization
    攝影《黃河左岸》 魏淑芳
    91歲開(kāi)畫(huà)展
    張強(qiáng)、肖龍飛招貼作品
    ChineseStudents’PerceptionofEnglishLanguageLearningActivitiesintheclass
    春雪(攝影)
    藏到夢(mèng)里
    王夭一先勝?gòu)垙?qiáng)
    棋藝(2016年4期)2016-09-20 05:41:04
    首页视频小说图片口味搜索| 久久精品国产综合久久久| 久久国产精品影院| 久久精品熟女亚洲av麻豆精品| 一二三四社区在线视频社区8| 亚洲精品中文字幕一二三四区| 在线观看免费午夜福利视频| 久久国产亚洲av麻豆专区| 亚洲精品一卡2卡三卡4卡5卡| 一级黄色大片毛片| 国产精品影院久久| 国产xxxxx性猛交| 亚洲熟妇熟女久久| 久久久久久久久久久久大奶| 久久精品国产99精品国产亚洲性色 | 不卡一级毛片| 国产一区二区三区综合在线观看| 免费看十八禁软件| 久久久久久久久免费视频了| 久久久久久免费高清国产稀缺| 热99久久久久精品小说推荐| 黄片大片在线免费观看| 国产aⅴ精品一区二区三区波| 欧美人与性动交α欧美软件| 精品一区二区三区视频在线观看免费 | 精品第一国产精品| 精品少妇一区二区三区视频日本电影| 国产91精品成人一区二区三区| 在线看a的网站| 成人精品一区二区免费| 国产精品自产拍在线观看55亚洲 | 日韩欧美在线二视频 | 国产97色在线日韩免费| 亚洲第一青青草原| 久久国产精品影院| 50天的宝宝边吃奶边哭怎么回事| 18禁裸乳无遮挡动漫免费视频| 久久久久视频综合| 国产极品粉嫩免费观看在线| 国产麻豆69| 操美女的视频在线观看| 久久这里只有精品19| 亚洲人成伊人成综合网2020| 久久人妻福利社区极品人妻图片| 精品少妇一区二区三区视频日本电影| 怎么达到女性高潮| 欧美一级毛片孕妇| 久久久久国内视频| 国产午夜精品久久久久久| 每晚都被弄得嗷嗷叫到高潮| 777久久人妻少妇嫩草av网站| 王馨瑶露胸无遮挡在线观看| 亚洲欧美日韩高清在线视频| 久久热在线av| 亚洲成人免费电影在线观看| 黄片小视频在线播放| 老鸭窝网址在线观看| 成人免费观看视频高清| 19禁男女啪啪无遮挡网站| 亚洲中文av在线| 国产一区二区三区综合在线观看| 99热只有精品国产| 黑人巨大精品欧美一区二区蜜桃| 成人18禁在线播放| 国产高清激情床上av| 老司机福利观看| 欧美日韩亚洲综合一区二区三区_| av有码第一页| 久久久水蜜桃国产精品网| 久热这里只有精品99| 久久国产精品大桥未久av| 一级作爱视频免费观看| 人妻丰满熟妇av一区二区三区 | 亚洲成人国产一区在线观看| 国产精华一区二区三区| x7x7x7水蜜桃| 两性午夜刺激爽爽歪歪视频在线观看 | 男人的好看免费观看在线视频 | 欧美老熟妇乱子伦牲交| 午夜福利欧美成人| 十八禁高潮呻吟视频| 999精品在线视频| 日韩精品免费视频一区二区三区| а√天堂www在线а√下载 | 成人免费观看视频高清| 久久久久久亚洲精品国产蜜桃av| 在线十欧美十亚洲十日本专区| 在线视频色国产色| 久久天躁狠狠躁夜夜2o2o| 高清av免费在线| 国产精品乱码一区二三区的特点 | 99国产极品粉嫩在线观看| 亚洲精品国产精品久久久不卡| 亚洲熟女精品中文字幕| 日本wwww免费看| 国产精品香港三级国产av潘金莲| 成年人黄色毛片网站| 又大又爽又粗| 又大又爽又粗| 麻豆av在线久日| 亚洲精华国产精华精| 久久久久久久久久久久大奶| 69av精品久久久久久| 精品久久久久久久毛片微露脸| 日韩 欧美 亚洲 中文字幕| 欧美日韩亚洲高清精品| a级毛片黄视频| 操美女的视频在线观看| 久99久视频精品免费| 母亲3免费完整高清在线观看| av国产精品久久久久影院| 在线观看免费午夜福利视频| 99re6热这里在线精品视频| 岛国在线观看网站| 国内久久婷婷六月综合欲色啪| 欧美日韩成人在线一区二区| 亚洲成人免费电影在线观看| 黄色怎么调成土黄色| 中文字幕人妻丝袜一区二区| 美女视频免费永久观看网站| 中文字幕高清在线视频| 制服人妻中文乱码| 怎么达到女性高潮| 午夜日韩欧美国产| 久久精品国产综合久久久| 韩国av一区二区三区四区| 亚洲成人免费av在线播放| 精品亚洲成国产av| 黄色毛片三级朝国网站| 深夜精品福利| 乱人伦中国视频| 亚洲成人手机| 91麻豆av在线| 在线观看日韩欧美| 国产亚洲精品久久久久5区| 国产亚洲精品久久久久5区| 夜夜爽天天搞| 欧美精品一区二区免费开放| 欧美日韩成人在线一区二区| 国精品久久久久久国模美| 久久久久久久国产电影| 亚洲欧美一区二区三区黑人| 久久午夜综合久久蜜桃| 亚洲精品中文字幕在线视频| 黄色视频,在线免费观看| 欧美一级毛片孕妇| 美女视频免费永久观看网站| 51午夜福利影视在线观看| 国产欧美日韩综合在线一区二区| 国产成人免费观看mmmm| 一区在线观看完整版| 男女床上黄色一级片免费看| 好看av亚洲va欧美ⅴa在| 婷婷丁香在线五月| 国产精品av久久久久免费| 亚洲av熟女| 69精品国产乱码久久久| 免费在线观看亚洲国产| 欧美成人免费av一区二区三区 | 在线视频色国产色| 麻豆国产av国片精品| netflix在线观看网站| 天天影视国产精品| 亚洲一区二区三区欧美精品| 亚洲av成人一区二区三| 国产一区在线观看成人免费| 青草久久国产| 王馨瑶露胸无遮挡在线观看| 丰满的人妻完整版| 国产精品秋霞免费鲁丝片| 欧美 亚洲 国产 日韩一| 黄色女人牲交| bbb黄色大片| 韩国av一区二区三区四区| 80岁老熟妇乱子伦牲交| 91精品国产国语对白视频| 亚洲国产毛片av蜜桃av| 后天国语完整版免费观看| 色综合婷婷激情| 国产成人系列免费观看| 国产精品成人在线| 午夜91福利影院| 亚洲精品久久成人aⅴ小说| a级毛片在线看网站| 亚洲精品国产色婷婷电影| 精品卡一卡二卡四卡免费| 色婷婷av一区二区三区视频| 成人三级做爰电影| 50天的宝宝边吃奶边哭怎么回事| 精品国产国语对白av| 亚洲精品在线美女| 亚洲国产毛片av蜜桃av| 国产免费现黄频在线看| 三级毛片av免费| 久久久久国产一级毛片高清牌| 在线观看免费高清a一片| 午夜影院日韩av| 黑丝袜美女国产一区| 久久精品亚洲av国产电影网| 两个人看的免费小视频| 欧美精品啪啪一区二区三区| 免费看a级黄色片| 国产精品.久久久| av福利片在线| 亚洲情色 制服丝袜| 久热爱精品视频在线9| 免费少妇av软件| 国产有黄有色有爽视频| 在线观看免费日韩欧美大片| 国产精品欧美亚洲77777| 9191精品国产免费久久| 午夜视频精品福利| 久久精品国产清高在天天线| 久久99一区二区三区| 亚洲综合色网址| 美国免费a级毛片| 成人av一区二区三区在线看| avwww免费| 国产一区二区激情短视频| av福利片在线| 丁香六月欧美| 三上悠亚av全集在线观看| 国产三级黄色录像| 成人手机av| 50天的宝宝边吃奶边哭怎么回事| 丰满饥渴人妻一区二区三| 日韩视频一区二区在线观看| 黄色a级毛片大全视频| 精品人妻1区二区| 女人久久www免费人成看片| 在线观看免费午夜福利视频| 精品高清国产在线一区| 身体一侧抽搐| 热99久久久久精品小说推荐| 99在线人妻在线中文字幕 | av线在线观看网站| 国产蜜桃级精品一区二区三区 | 久久久久国产精品人妻aⅴ院 | 可以免费在线观看a视频的电影网站| 人妻丰满熟妇av一区二区三区 | 国产午夜精品久久久久久| 两人在一起打扑克的视频| 国内久久婷婷六月综合欲色啪| 男人的好看免费观看在线视频 | 人妻久久中文字幕网| 黄色a级毛片大全视频| 超碰成人久久| 国产蜜桃级精品一区二区三区 | 欧美成人免费av一区二区三区 | 亚洲 国产 在线| 日韩精品免费视频一区二区三区| 人成视频在线观看免费观看| 免费久久久久久久精品成人欧美视频| 国产精品1区2区在线观看. | 老鸭窝网址在线观看| 欧美亚洲 丝袜 人妻 在线| 午夜免费成人在线视频| 在线视频色国产色| 精品一品国产午夜福利视频| 国产精品免费一区二区三区在线 | 女性生殖器流出的白浆| 香蕉丝袜av| 免费在线观看黄色视频的| 精品久久久久久久久久免费视频 | 少妇猛男粗大的猛烈进出视频| 国产成人欧美| 亚洲久久久国产精品| 国产精品偷伦视频观看了| 久久ye,这里只有精品| 黑人巨大精品欧美一区二区mp4| 免费少妇av软件| 夜夜爽天天搞| 免费av中文字幕在线| 丰满饥渴人妻一区二区三| 久久精品国产a三级三级三级| 国产不卡一卡二| 日韩熟女老妇一区二区性免费视频| 久久午夜亚洲精品久久| 两个人看的免费小视频| 黑人巨大精品欧美一区二区mp4| 丝瓜视频免费看黄片| 国产精品亚洲一级av第二区| 中文亚洲av片在线观看爽 | 婷婷精品国产亚洲av在线 | 最新美女视频免费是黄的| 亚洲av片天天在线观看| 极品少妇高潮喷水抽搐| 久久99一区二区三区| 国产精品永久免费网站| 在线观看www视频免费| 国产成人精品在线电影| 免费在线观看黄色视频的| 久久国产亚洲av麻豆专区| 精品一区二区三区视频在线观看免费 | 亚洲欧洲精品一区二区精品久久久| 热re99久久精品国产66热6| 久久精品人人爽人人爽视色| 18禁裸乳无遮挡动漫免费视频| 女人爽到高潮嗷嗷叫在线视频| 国产深夜福利视频在线观看| 丰满饥渴人妻一区二区三| 日韩免费av在线播放| 欧美黄色片欧美黄色片| 亚洲欧美一区二区三区黑人| 中出人妻视频一区二区| 一级毛片高清免费大全| 美女视频免费永久观看网站| 19禁男女啪啪无遮挡网站| 性少妇av在线| 一边摸一边抽搐一进一出视频| av视频免费观看在线观看| 黄片大片在线免费观看| 日日摸夜夜添夜夜添小说| 男女午夜视频在线观看| 久久久国产成人免费| 国产精品98久久久久久宅男小说| 亚洲国产欧美一区二区综合| 国产精品国产高清国产av | 午夜91福利影院| 女人久久www免费人成看片| 法律面前人人平等表现在哪些方面| 亚洲专区中文字幕在线| 高清视频免费观看一区二区| 久久午夜亚洲精品久久| 欧美日韩一级在线毛片| 女警被强在线播放| 在线观看免费日韩欧美大片| 亚洲人成伊人成综合网2020| 搡老乐熟女国产| 黄色 视频免费看| av有码第一页| 亚洲精品国产一区二区精华液| 成人av一区二区三区在线看| 免费女性裸体啪啪无遮挡网站| 91麻豆av在线| 999久久久精品免费观看国产| 久久久久久久午夜电影 | 久久久久视频综合| 中文亚洲av片在线观看爽 | 亚洲欧美一区二区三区久久| 巨乳人妻的诱惑在线观看| 1024视频免费在线观看| 一级毛片精品| 日韩欧美国产一区二区入口| 亚洲熟妇熟女久久| 久久精品国产亚洲av高清一级| 又大又爽又粗| www.精华液| 九色亚洲精品在线播放| 午夜福利乱码中文字幕| 这个男人来自地球电影免费观看| 亚洲成国产人片在线观看| 91精品国产国语对白视频| 91字幕亚洲| 一个人免费在线观看的高清视频| 18禁黄网站禁片午夜丰满| 亚洲自偷自拍图片 自拍| avwww免费| 国产极品粉嫩免费观看在线| 国产精品一区二区精品视频观看| 欧美日韩中文字幕国产精品一区二区三区 | 久久精品国产a三级三级三级| 国产成人影院久久av| 午夜日韩欧美国产| 天堂动漫精品| 免费久久久久久久精品成人欧美视频| 日韩欧美国产一区二区入口| 国产成人影院久久av| av电影中文网址| 99国产精品免费福利视频| 熟女少妇亚洲综合色aaa.| 欧美精品啪啪一区二区三区| 黑丝袜美女国产一区| 国产99久久九九免费精品| 在线观看免费视频网站a站| 免费在线观看黄色视频的| 动漫黄色视频在线观看| 国产免费现黄频在线看| 人妻丰满熟妇av一区二区三区 | 大香蕉久久成人网| 国产精品乱码一区二三区的特点 | 岛国在线观看网站| 国产精品国产av在线观看| 精品国产一区二区三区四区第35| 国内毛片毛片毛片毛片毛片| a在线观看视频网站| 久久国产精品人妻蜜桃| 老司机在亚洲福利影院| 欧美在线黄色| 精品久久久久久久毛片微露脸| 91国产中文字幕| 王馨瑶露胸无遮挡在线观看| 国产蜜桃级精品一区二区三区 | 免费在线观看黄色视频的| 成人精品一区二区免费| av中文乱码字幕在线| 黑丝袜美女国产一区| 欧美黑人欧美精品刺激| 视频区图区小说| 老汉色∧v一级毛片| 久久中文字幕一级| 久久国产亚洲av麻豆专区| 欧美激情 高清一区二区三区| 日韩一卡2卡3卡4卡2021年| 亚洲中文字幕日韩| 满18在线观看网站| 久久影院123| 国产一卡二卡三卡精品| 亚洲色图综合在线观看| 精品国产一区二区三区久久久樱花| 国产激情欧美一区二区| 无遮挡黄片免费观看| 欧美在线一区亚洲| 美国免费a级毛片| 国产一区有黄有色的免费视频| 视频在线观看一区二区三区| 999精品在线视频| 99香蕉大伊视频| ponron亚洲| 国产欧美日韩综合在线一区二区| 精品亚洲成国产av| 欧美国产精品一级二级三级| 99re6热这里在线精品视频| 一级毛片精品| 少妇裸体淫交视频免费看高清 | 韩国av一区二区三区四区| 男女之事视频高清在线观看| 变态另类成人亚洲欧美熟女 | 精品福利永久在线观看| 一区二区三区激情视频| 人人妻人人澡人人看| 99国产极品粉嫩在线观看| 国产国语露脸激情在线看| videos熟女内射| 亚洲第一欧美日韩一区二区三区| 午夜福利一区二区在线看| 精品久久久久久久久久免费视频 | cao死你这个sao货| 日本黄色视频三级网站网址 | 精品一区二区三卡| 亚洲精品国产色婷婷电影| 99国产精品免费福利视频| 中文字幕高清在线视频| 高清黄色对白视频在线免费看| 久久国产精品影院| 日韩有码中文字幕| 波多野结衣av一区二区av| 欧洲精品卡2卡3卡4卡5卡区| 深夜精品福利| 91在线观看av| 99国产精品一区二区蜜桃av | 日本撒尿小便嘘嘘汇集6| 新久久久久国产一级毛片| 成年女人毛片免费观看观看9 | 精品欧美一区二区三区在线| 婷婷精品国产亚洲av在线 | 国产精品亚洲一级av第二区| 日韩欧美国产一区二区入口| 黄片大片在线免费观看| av免费在线观看网站| 大陆偷拍与自拍| 熟女少妇亚洲综合色aaa.| 国产成人系列免费观看| 欧美日韩一级在线毛片| 黄色 视频免费看| 成人黄色视频免费在线看| 一级黄色大片毛片| 满18在线观看网站| 欧美 亚洲 国产 日韩一| 黄色视频,在线免费观看| 好看av亚洲va欧美ⅴa在| 电影成人av| 飞空精品影院首页| 十分钟在线观看高清视频www| 日韩制服丝袜自拍偷拍| 国产成人av教育| 国产深夜福利视频在线观看| 亚洲欧美激情综合另类| 日本五十路高清| 精品无人区乱码1区二区| 嫩草影视91久久| 美女 人体艺术 gogo| 午夜精品国产一区二区电影| 午夜精品在线福利| 黄色 视频免费看| 国产av又大| 999久久久精品免费观看国产| 久久九九热精品免费| 黄色成人免费大全| 亚洲av欧美aⅴ国产| 高清欧美精品videossex| 精品国产乱码久久久久久男人| 在线国产一区二区在线| 国产成人精品在线电影| 欧美乱码精品一区二区三区| 国产伦人伦偷精品视频| 日韩免费高清中文字幕av| 日本a在线网址| 亚洲国产精品合色在线| 狠狠狠狠99中文字幕| 免费在线观看视频国产中文字幕亚洲| 国产亚洲精品久久久久5区| 欧美日韩瑟瑟在线播放| 丝袜美腿诱惑在线| 搡老熟女国产l中国老女人| 叶爱在线成人免费视频播放| 又黄又粗又硬又大视频| 亚洲av第一区精品v没综合| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品免费一区二区三区在线 | 侵犯人妻中文字幕一二三四区| 99riav亚洲国产免费| 身体一侧抽搐| 国产精品秋霞免费鲁丝片| 十八禁高潮呻吟视频| 久久久国产成人精品二区 | 亚洲精品美女久久久久99蜜臀| 国产成人av激情在线播放| 视频区欧美日本亚洲| 韩国av一区二区三区四区| 男女免费视频国产| 精品福利观看| 亚洲黑人精品在线| 水蜜桃什么品种好| 亚洲aⅴ乱码一区二区在线播放 | 亚洲成人手机| 久久国产精品大桥未久av| 日韩免费高清中文字幕av| 亚洲av第一区精品v没综合| 9热在线视频观看99| 大型av网站在线播放| 少妇 在线观看| 国产精品偷伦视频观看了| 国产欧美日韩一区二区三区在线| 三级毛片av免费| 村上凉子中文字幕在线| 欧美一级毛片孕妇| 久久亚洲精品不卡| xxx96com| 成人免费观看视频高清| 又黄又粗又硬又大视频| av超薄肉色丝袜交足视频| 老熟妇乱子伦视频在线观看| 久久久久国内视频| 成人特级黄色片久久久久久久| 日韩熟女老妇一区二区性免费视频| 亚洲成人手机| 国产亚洲精品久久久久5区| 又黄又爽又免费观看的视频| 在线观看午夜福利视频| 少妇粗大呻吟视频| 99热国产这里只有精品6| 天天躁夜夜躁狠狠躁躁| 欧美日韩一级在线毛片| 99国产极品粉嫩在线观看| 久久草成人影院| 又黄又爽又免费观看的视频| 欧美激情 高清一区二区三区| 脱女人内裤的视频| 亚洲精品一二三| 国产在线精品亚洲第一网站| 日韩熟女老妇一区二区性免费视频| 美国免费a级毛片| 夜夜爽天天搞| 999久久久精品免费观看国产| 人人妻人人澡人人看| 在线视频色国产色| 日韩欧美在线二视频 | 精品少妇久久久久久888优播| 老司机影院毛片| 激情在线观看视频在线高清 | 建设人人有责人人尽责人人享有的| 中文欧美无线码| 欧美 日韩 精品 国产| 老司机午夜十八禁免费视频| tube8黄色片| 成人18禁在线播放| 亚洲熟妇中文字幕五十中出 | 日韩免费高清中文字幕av| 亚洲黑人精品在线| 久久久久久免费高清国产稀缺| 一区在线观看完整版| 建设人人有责人人尽责人人享有的| 在线观看免费午夜福利视频| 天天躁狠狠躁夜夜躁狠狠躁| 欧美精品av麻豆av| 黄色视频不卡| 一本大道久久a久久精品| 免费人成视频x8x8入口观看| 激情视频va一区二区三区| 美女 人体艺术 gogo| 精品国产一区二区三区四区第35| √禁漫天堂资源中文www| 精品国产美女av久久久久小说| 亚洲情色 制服丝袜| 视频区欧美日本亚洲| 欧美精品啪啪一区二区三区| 中文欧美无线码| 亚洲成人免费av在线播放| 免费av中文字幕在线| 成年人免费黄色播放视频| 脱女人内裤的视频| 狠狠婷婷综合久久久久久88av| 欧美日韩精品网址| 国产欧美日韩综合在线一区二区| 搡老岳熟女国产| 法律面前人人平等表现在哪些方面| 99在线人妻在线中文字幕 | 叶爱在线成人免费视频播放| 侵犯人妻中文字幕一二三四区| 99热国产这里只有精品6| 美女午夜性视频免费| 黄色a级毛片大全视频| 亚洲九九香蕉| 国产精品国产高清国产av |