• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    InGaAs/AlGaAs quantum well intermixing induced by Si impurities under multi-variable conditions

    2023-12-01 05:50:28LIUCuicuiLINNanMAXiaoyuZHANGYuemingLIUSuping
    中國光學(xué) 2023年6期
    關(guān)鍵詞:藍移點缺陷外延

    LIU Cui-cui,LIN Nan,MA Xiao-yu ,ZHANG Yue-ming,LIU Su-ping

    (1.National Innovation Center of Radiation Application,China Institute of Atomic Energy, Beijing 102413, China;2.National Engineering Research Center for Optoelectronics Devices,Institute of Semiconductors, CAS, Beijing 100083, China;3.College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101408, China;4.Hitachi High-tech Scientific Solutions (Beijing) Co., Ltd., Beijing 100012, China)

    Abstract: Catastrophic Optical Mirror Damage (COMD) on the cavity surface is the key factor limiting the threshold output power of high-power quantum well semiconductor laser diodes.To improve the output power of the laser diode,the band gap width of the active material in the cavity surface of the semiconductor laser diode can be adjusted by the quantum well intermixing technology to form a non-absorbing window transparent to the output laser.Based on the primary epitaxial wafers of InGaAs/AlGaAs high power quantum well semiconductor laser diode,using the single crystal Si dielectric layer grown by Metal Oxide Chemical Vapor Deposition (MOCVD) as the diffusion source,the research on Si impurity induced quantum well intermixing was carried out by using the Rapid Thermal Annealing (RTA) process.The effects of growth characteristics of Si dielectric layer,the temperature and time of RTA on the intermixing process were investigated.The experimental results show that the epitaxial 50 nm Si dielectric layer at 650 °C combined with 875 °C/90 s RTA treatment can obtain about 57 nm wavelength blue shift while maintaining the photoluminescence spectrum shape and the primary epitaxial wafers.It is found that the diffusion of Si impurities into the waveguide layer on the primary epitaxial wafer is the key to the remarkable effect of quantum well intermixing by the energy spectrum measurement technique.

    Key words: semiconductor lasers;quantum well intermixing;rapid thermal annealing;blue shift;photoluminescence spectra

    1 Introduction

    In 1966,shortly after the advent of semiconductors,COOPERet al.[1]discovered that increasing the output power of GaAs homojunction semiconductor lasers to a certain level would result in Catastrophic Optical Damage (COD) and failure.In 1977,CHINONEet al.[2]discovered that an Al-GaAs/GaAs double heterojunction semiconductor laser operated continuously for a certain period resulted in Catastrophic Optical Mirror Damage (COMD)on its cavity surface.Using Scanning Electron Microscope (SEM) observation,it was found that high power density light output and cavity surface oxidation were important factors leading to its COMD[3].

    For InGaAs/AlGaAs high-power Quantum Well(QW) semiconductor lasers,COMD suppression should start from its induced mechanism[4].According to test results,methods such as reducing non-radiative recombination at the cavity surface,suppressing light absorption of the cavity surface material,lowering the carrier concentration at the cavity surface,and improving the heat dissipation capacity at the cavity surface[5]can significantly suppress COMD.The preparation of non-absorbing windows based on Quantum Well Intermixing (QWI) technology is a low-cost and effective method to suppress the light absorption of cavity materials[6-7].Commonly used QWI methods include Impurity Induced Disordering (IID),Impurity Free Vacancy Induced Disordering (IFVD),Laser Induced Disordering (LID),etc.[8-11].Among them,in IID technique,a large number of point defects are induced by introducing impurities,and in combination with thermal annealing and other methods,the impurities and point defects are activated to obtain diffusion kinetic energy,ultimately causing changes in the composition and structure of quantum wells.In the 1980 s,LAIDIG[12]first found that QWI phenomenon occurred in AlAs/GaAs superlattice structures with the introduction of Zn impurities and heat treatment,and the heat treatment temperature in this method was only 575 °C,far below the temperature required for impurity free induced disordering.Until 1985,KALISKI[13]found that the effect of Si impurity inducing AlGaAs/GaAs superlattice QWI was better than that of other impurities.In 1987,MEIet al.[14]used Secondary Ion Mass Spectroscopy(SIMS) to test and found that the diffusion coefficient of Al atoms in AlGaAs materials increased significantly with the diffusion of Si impurities.Comprehensive research results show that Si impurities can form defect pairs with larger diffusion coefficients with Al atoms,and Si impurities can also increase the density of point defects in the QW system,thus effectively promoting the QWI of the AlAs/GaAs superlattice structure[6,15].

    This paper presents a Non-Absorbing Window(NAW) preparation scheme for InGaAs/AlGaAs high-power QW semiconductor lasers using the method of Si impurity induced QWI.This method is based on the principle that the Si impurity is used as an induction source,which can efficiently induce the atomic interdiffusion between the materials in the QW and the materials in the barrier of the In-GaAs/AlGaAs semiconductor QW laser,eventually broadening the band gap of the active region material and suppressing its absorption of the self-generated laser.The preparation of NAW using the Si IID method not only reduces the optical absorption at the cavity surface of the laser,but also serves as an N-type doping element to form a non-carrier injection region at the cavity surface of the device,thus reducing the non-radiative composite here.This design does not require expensive equipment or complex processing,and can effectively increase the COMD threshold triggering power of the laser without changing its characteristic parameters.

    2 Simulation analysis of QWI

    2.1 Chip development and performance analysis

    The primary epitaxial wafers of the InGaAs/Al-GaAs QW laser used in this paper were grown by Metal Oxide Chemical Vapor Deposition (MOCVD),with a reaction chamber growth temperature of 550-700 °C and a pressure of 5 kPa[16].The substrate is n-GaAs with a (100) plane offset [111]A-crystal-orientation of 15°.The schematic diagram of the ridge laser structure formed based on this primary epitaxial wafer is shown in Figure 1(color online).

    Fig.1 Epitaxial structure of InGaAs/AlGaAs QW laser diode圖1 InGaAs/AlGaAs 量子阱激光器的外延結(jié)構(gòu)

    For In(1-x-y)GaxAlyAs quaternary compound semiconductor material,its band gap is shown in formula (1),so the increase of Al component will lead to the increase ofEg.Therefore,we determine whether QWI has occurred in the material by the central wavelength position.If a QWI occurs,it is proved that the Al component has entered the QWI material,and the band gap becomes wider,which is shown by the change of the luminescence wavelength toward the short wavelength,that is,the blue shift occurs.

    Photoluminescence (PL) spectroscopy test is a commonly used method to obtain the central wavelength of lasers.The original PL test results of the primary epitaxial wafer of InGaAs/AlGaAs QW lasers in this paper are shown in Figure 2.According to the mapping scan results,the luminescence intensity is uniform,indicating that the composition of each layer of the epitaxial wafer is uniform.From the single-point PL signal peak,it can be seen that the peak center wavelength is 1 002.2 nm,and the Full Width at Half Maximum (FWHM) is about 23 nm.

    Fig.2 The PL spectrum of InGaAs/AlGaAs QW primary epitaxial wafer圖2 InGaAs/AlGaAs 量子阱初級外延片的PL 譜測試結(jié)果

    2.2 The effect of temperature on QWI

    The existence of point defects in crystals leads to the breaking of the perfect arrangement rules of lattice atoms,changes the vibration frequency of atoms around the defects,increases entropy,and deteriorates the thermodynamic stability[4].By combining the diffusion coefficient equation of group III atomic point defects,it can be concluded that:

    whereAis a function related to the vibration entropyS fand vacancy,Bis a function related to the vibration entropyS fand interstitial atoms,EIis the energy required to form a interstitial atom,f1andf2are constants,is the diffusion coefficient of Group III vacancies,is the diffusion coefficient of Group III interstitial atoms,KBis the Boltzmann constant,and its value is 1.38×10-23J/K.Under the thermal equilibrium state,approximation can be considered as:A f1=Bf2,and2EV=E1,and the relationship curve between the relative interdiffusion coefficient of group III atoms and temperature can be fitted qualitatively according to formula (2),as shown in Figure 3.It can be seen that the diffusion coefficient of point defects in the group III-V material system is exponentially positively correlated with temperature,indicating that increasing the temperature is very beneficial for promoting the diffusion of point defects and enhancing the effect of QWI.

    Fig.3 The relationship between relative interdiffusion coefficient and temperature圖3 III 族原子相對互擴散系數(shù)與溫度的關(guān)系

    2.3 The effect of stress on QWI

    At the interface of two materials with high lattice mismatch,there will be a certain amount of stress,which will cause compressive or tensile stress on the surface of the material.The surface compressive stress will cause the GaAs lattice atoms to be squeezed,and some atoms,especially Ga atoms,will be squeezed out of the interface,leaving a certain number of vacancy defects on the GaAs surface[17].To study the interface deformation during annealing process,the COMSOL multi-physical field modeling software was used to simulate the stress-strain behavior of GaAs with Si dielectric layers after annealing.

    It is assumed that the epitaxial wafers are annealed at 850 °C,and stress is released when the annealing temperature drops to 200 °C,and finally stable deformation occurs at room temperature.The relevant parameters used in the calculation are shown in Table 1.The substrate material of the primary epitaxial wafer is 450 μm n-GaAs,the total thickness of the epitaxial wafer is approximately 4.5 μm,and both contain a large proportion of Ga and As components.To avoid calculation errors caused by excessive relative tolerance,the simulated substrate and epitaxial wafer are both 25-μm GaAs,with a dielectric layer of 200-nm Si.The simulation results based on COMSOL and magnified by 100 times are shown in Figure 4 (color online).It can be seen that the surface of GaAs undergoes compression caused by compressive stress after annealing,indicating that the Si dielectric layer will provide compressive stress to the GaAs surface and induce more Ga vacancies in GaAs,which is conducive to the QWI process.

    Tab.1 Young's modulus,Poisson’s ratio,density and coefficient of thermal expansion of related materials表1 相關(guān)材料的楊氏模量、泊松比、密度及熱膨脹系數(shù)

    Fig.4 Deformation results of primary epitaxial wafer simulated by COMSOL after annealing圖4 退火后初級外延片形變的COMSOL 模擬結(jié)果

    3 Experiment and result analysis

    3.1 Research on the effect factors of QWI

    3.1.1 Effect of cover layer

    During the annealing process,covering with GaAs cover plates not only reduces surface contamination,but also provides a certain pressure for As concentration,which can inhibit the decomposition and volatilization of As on the surface of the epitaxial wafer to some extent.The surface morphology of the primary epitaxial wafer at 875 °C/90 s RTA is shown in Figure 5 (color online).Figures 5(a) and 5 (b) show the surface morphology of primary epitaxial wafers with and without GaAs cover plates,respectively.Similar to the predicted results,the surface of epitaxial wafers with GaAs covers is smoother,and there are fewer ablative holes generated during annealing,indicating that the GaAs covers have a certain protective effect on the surface of the Si dielectric layer.Therefore,subsequent RTAs were conducted in the environment with GaAs covers.

    Fig.5 Surface morphology (a) with and (b) without epitaxial wafers after RTA圖5 (a)有、(b)無蓋片退火后外延片的表面形貌

    3.1.2 The effect of temperature

    The calculation results show that temperature has a significant effect on the diffusion coefficients of impurities and point defects.Therefore,the effect of temperature on QWI is investigated first.By using MOCVD,a 20-nm single crystal Si was grown on the surface of GaAs primary epitaxial wafers at the growth temperature of 800 °C.Then,a 90 s Rapid Thermal Annealing (RTA) was performed in the interval of 775 to 900 °C,and the PL results after annealing are shown in Figure 6 (color online).It can be seen that the effect of wavelength blue shift increases with the increase of heat treatment temperature.Compared to the original primary epitaxial wafers,a maximum wavelength blue shift of about 90 nm was obtained at 900 °C,but at this point,the FWHM was significantly widened and the waveform was severely deteriorated,indicating significant material damage.At 875 °C,the wavelength blue shift is about 57 nm,and the FWHM is well maintained.Therefore,it is believed that heat treatment at 875 °C can achieve a good QWI effect while also ensuring the lattice quality of the material.

    Fig.6 Effect of RTA temperature on wavelength blue shift of primary epitaxial wafers圖6 RTA 溫度對初級外延片波長藍移的影響

    3.1.3 The effect of heat treatment time

    The effect of heat treatment time on QWI is further investigated.The annealing temperature is always 875 °C,and the annealing time is set to 60 s,90 s,and 120 s respectively.The PL results of the primary epitaxial wafers after annealing are shown in Figure 7 (color online).As the annealing time increases,the wavelength blue shift of the primary epitaxial wafer introducing Si impurities also gradually increases.However,when the annealing time reaches 120 s,the peak of the PL spectrum is already deformed.It indicates that after 90 s RTA treatment,a good blue shift effect can be achieved,and the peak intensity of the PL spectrum and the FWHM remain good.

    Fig.7 Effect of RTA time on wavelength blue shift of primary epitaxial wafers圖7 RTA 時間對初級外延片波長藍移的影響

    3.1.4 The effect of the properties of the dielectric layer

    If the Si grown on the epitaxial wafer surface is too thick,the lattice mismatch and the difference in coefficient of thermal expansion will be amplified,which will trigger the stress release during thermal annealing.The ability of a thinner Si layer to suppress the decomposition and outward volatilization of Ga and As atoms in the GaAs ohmic contact layer will also be weakened,so it is necessary to consider the effect of Si characteristics.The Si dielectric layer grown by MOCVD equipment is single crystal,and its lattice quality and density are affected by the reaction source,growth temperature and other conditions,so the Si dielectric layer grown under different conditions will also affect the QWI effect.Therefore,three types of Si epitaxial layers were prepared: 20 nm high-temperature Si grown at 800 °C,20 nm low-temperature Si grown at 650 °C,and 50 nm low-temperature Si,set as # 1,# 2,and # 3,respectively,to investigate the optimal growth conditions for Si dielectric layers that induce best QWI effect.

    Similarly,a single RTA treatment at 875 °C/90 s was applied to the group of the primary epitaxial wafers,and the PL spectra of the primary epitaxial wafers were tested after heat treatment,as shown in Figure 8 (color online).It can be seen that the difference of QWI effect caused by the three types of Si layers is relatively small.For Si layers with the same thickness,the effect of Si layer growth temperature on wavelength blue shift is relatively small,but the FWHM is narrower for the high-temperature Si layers.For Si layers with the same growth conditions,thicker Si layers cause more wavelength blue shifts,reaching about 57 nm,but their FWHM is also larger,indicating that the material quality is greatly affected.

    Fig.8 Effect of different silicon layers on wavelength blue shift of primary epitaxial wafers圖8 Si 介質(zhì)層對初級外延片波長藍移的影響

    3.2 Microscopic characterization of QWI effect

    In order to accurately understand the diffusion depth of Si atoms,EDS was used to test the element distribution at different depths on the epitaxial wafer.The Si IID primary epitaxial wafers treated with 875 °C/90 s RTA were carried out Si layer removal treatment,and then corroded for 0 s,15 s,30 s,and 45 s using a special solution.The test results are shown in Figure 9 (color online).Experience shows that the corrosion rate of the corrosive solution is about 25-35 nm/s,so the surface of the etched epitaxial wafer corresponds to different depths.From the EDS results,it can be seen that the p-type doping element of the primary epitaxial wafer is C,so the element C content is ligher when the surface layer of GaAs is not corroded moreover,the element Si content is also higher,and The content of both in the same order of magnitude;with the corrosion time increases to 15 s,the element C content gradually decreases,and the element Si content decreases significantly;when the corrosion time reaches 30 s,i.e.,when the corrosion depth reaches approximately the upper limiting layer,the Si content has decreased to 22.2% of the original Si content in the surface layer;when the corrosion time further increases to 45 s,i.e.,when the corrosion depth reaches approximately the upper waveguide layer or near the QW region,the Si content basically decreases to 0.This result shows that the Si impurities can diffuse into the upper waveguide layer of the primary epitaxial wafer after 875 °C/90 s RTA treatment,and then produce an effective QWI induction effect.

    Fig.9 Surface EDS results of element composition at different corrosion times of primary epitaxial wafers after 875 °C/90 s RTA.(a) Untreated sammple;(b) corrosion for 15 s;(c) corrosion for 30 s;(d) corrosion for 45 s圖9 EDS 測試875 °C/90 s RTA 處理后初級外延片不同腐蝕時長的元素組成。(a)未處理樣品;(b)腐蝕15 s;(c)腐蝕30 s;(d)腐蝕45 s

    4 Conclusion

    In order to comprehensively improve the performance index of InGaAs/AlGaAs semiconductor QW lasers,a feasible scheme for Si impurity induced QWI is investigated in this paper.The relationship between the effect of Si impurity-induced QWI and the nature of dielectric layer and heat treatment conditions was investigated by using the variable-controlling method with multiple sets of control conditions.The PL test results show that growing a 50 nm Si epitaxial dielectric layer at 650 °C

    ——中文對照版——

    1 引言

    半導(dǎo)體問世不久的1966 年,COOPER 等人[1]in combination with 875 °C/90 s RTA heat treatment results in a wavelength blue shift of about 57 nm.Combined with EDS test,it is found that Si impurity atoms can diffuse into the upper waveguide layer or QW of the InGaAs/AlGaAs semiconductor QW laser primary epitaxial layer after 875 °C/90 s RTA,resulting in a significant QWI effect.In the future,Si impurity induced QWI NAW can be prepared by combining epitaxial growth technology and RTA technology to suppress CODs and continuously improve the output power of InGaAs/Al-GaAs semiconductor QW lasers.發(fā)現(xiàn),當GaAs 同質(zhì)結(jié)半導(dǎo)體激光器的輸出功率升高到一定值時便會產(chǎn)生光學(xué)災(zāi)變損傷(Catastrophic Optical Damage,COD)并失效。1977 年,CHINONE 等人[2]發(fā)現(xiàn)AlGaAs/GaAs 雙異質(zhì)結(jié)半導(dǎo)體激光器連續(xù)工作一定時間后,在其腔面處將產(chǎn)生了腔面光學(xué)災(zāi)變損傷(Catastrophic Optical Mirror Damage,COMD)。使用掃描電子顯微鏡(Scanning Electron Microscope,SEM)觀測發(fā)現(xiàn),高功率密度光輸出及腔面氧化是導(dǎo)致其發(fā)生COMD 的重要因素[3]。

    對于InGaAs/AlGaAs 高功率量子阱(Quantum Well,QW)半導(dǎo)體激光器,抑制COMD 應(yīng)從研究其誘發(fā)機理入手[4]。經(jīng)檢驗,通過減少腔面處的非輻射復(fù)合、抑制腔面材料的光吸收、降低腔面處載流子濃度、提高腔面處散熱能力等方法[5],均可顯著抑制COMD。基于量子阱混雜(Quantum Well Intermixing,QWI)制備非吸收窗口是一種成本較低、效果顯著的抑制腔面材料光吸收的方法[6-7]。常用的量子阱混雜方法包括雜質(zhì)誘導(dǎo)量子阱混雜(Impurity Induced Disordering,IID)、無雜質(zhì)誘導(dǎo)量子阱混雜(Impurity Free Vacancy Induced Disordering,IFVD)、激光誘導(dǎo)量子阱混雜(Laser Induced Disordering,LID)等[8-11]。其中,IID 技術(shù)是通過引入雜質(zhì)誘生大量點缺陷,并結(jié)合熱退火等工藝使雜質(zhì)及點缺陷激活并獲得擴散的動能,最終造成量子阱組分及結(jié)構(gòu)的變化。上世紀80 年代,LAIDIG[12]最先發(fā)現(xiàn)引入Zn 雜質(zhì)并經(jīng)熱處理的AlAs/GaAs 超晶格結(jié)構(gòu)發(fā)生了量子阱混雜現(xiàn)象,且此方法中的熱處理溫度僅575 °C,遠低于無雜質(zhì)誘導(dǎo)混雜所需溫度。直到1985 年,KALISKI[13]發(fā)現(xiàn)Si 雜質(zhì)誘導(dǎo)AlGaAs/GaAs 超晶格量子阱混雜的效果比其他雜質(zhì)更好。1987 年,MEI 等人[14]利用二次離子質(zhì)譜(Secondary Ion Mass Spectrometry,SIMS)測試發(fā)現(xiàn)在AlGaAs 材料中Al 原子的擴散系數(shù)會隨著Si 雜質(zhì)的擴散顯著上升。綜合研究認為,Si 雜質(zhì)能與Al 原子形成擴散系數(shù)較大的缺陷對,且Si 雜質(zhì)也可增加量子阱體系中點缺陷的密度,進而有效促進AlAs/GaAs 超晶格結(jié)構(gòu)的量子阱混雜[6-15]。

    本文利用Si 雜質(zhì)誘導(dǎo)量子阱混雜的方法為通過InGaAs/AlGaAs 高功率量子阱半導(dǎo)體激光器提供非吸收窗口(Non-Absorption Window,NAW)。主要原理是采用Si 雜質(zhì)作為誘導(dǎo)源,高效地誘導(dǎo)InGaAs/AlGaAs 半導(dǎo)體量子阱激光器的量子阱區(qū)材料與壘區(qū)材料發(fā)生原子互擴散,最終使有源區(qū)材料禁帶寬度變寬,抑制其對自身產(chǎn)生的激光的吸收。利用Si 雜質(zhì)誘導(dǎo)量子混雜方法制備非吸收窗口不僅可以減少激光器腔面處的光吸收,也可以作為N 型摻雜元素在器件腔面處形成非載流子注入?yún)^(qū),減少此處的非輻射復(fù)合。這種設(shè)計不需高成本的設(shè)備或復(fù)雜的處理過程,在不改變激光器特征參數(shù)的同時,可有效提高其COMD 閾值觸發(fā)功率。

    2 量子阱混雜的模擬分析

    2.1 芯片研制及性能分析

    本文所使用的InGaAs/AlGaAs 量子阱激光器初級外延片采用金屬氧化物化學(xué)氣相沉積(Metal Oxide Chemical Vapor Deposition,MOCVD)生長,反應(yīng)室生長溫度為550~700 °C,反應(yīng)室壓強為5 kPa[16]。襯底為(100)面偏[111]A 晶向15°的 n-GaAs,基于該初級外延片形成的脊型激光器結(jié)構(gòu)示意圖如圖1 所示。

    對于In(1-x-y)GaxAlyAs 四元化合物半導(dǎo)體材料,其禁帶寬度如公式(1)所示,故Al 組分增多會導(dǎo)致Eg增大。因此,本研究通過中心波長位置判定材料是否發(fā)生了量子阱混雜。若發(fā)生了量子阱混雜,證明量子阱材料中有了Al 組分,禁帶寬度變寬,表現(xiàn)為發(fā)光波長朝短波長變化,即藍移。

    光致發(fā)光(Photoluminescence,PL)光譜測試是獲得激光器中心波長的常用方法,本文中In-GaAs/AlGaAs 量子阱激光器初級外延片的原始PL 測試結(jié)果如圖2。由其映射掃描結(jié)果可知其發(fā)光強度均勻。說明外延片各層成分均勻。由單點PL 信號峰可知峰值中心波長為1 002.2 nm,半高全寬(Full Width at Half Maximum,FWHM)約為23 nm。

    2.2 溫度對量子阱混雜的影響

    晶體中點缺陷的存在導(dǎo)致晶格原子的完美排列規(guī)則被打破,缺陷周圍的原子振動頻率發(fā)生改變,熵值增大,熱力學(xué)穩(wěn)定性變差[4]。結(jié)合III 族原子點缺陷互擴散系數(shù)方程可得:

    其中,A是與振動熵S f及空位相關(guān)的函數(shù),B是與振動熵S f及填隙原子相關(guān)的函數(shù),EI為形成一個填隙原子所需要的能量,f1、f2是常數(shù),是III族空位的擴散系數(shù),是III 族間隙原子的擴散系數(shù),KB為玻爾茲曼常數(shù),其值為 1.38×10-23J/K。熱平衡狀態(tài)下可考慮存在以下近似:A f1=Bf2,2EV=E1。根據(jù)公式(2)定性擬合出III 族原子相對互擴散系數(shù)與溫度的關(guān)系曲線,如圖3 所示??梢?,III-V 族材料體系內(nèi)點缺陷的擴散系數(shù)與溫度呈指數(shù)型正相關(guān)。證明升高溫度非常有利于促進點缺陷的擴散,提升量子阱混雜的效果。

    2.3 應(yīng)力對量子阱混雜的影響

    在兩種晶格失配度較大的材料界面處會存在一定應(yīng)力,從而使材料表面存在壓應(yīng)力或張應(yīng)力。而表面壓應(yīng)力會使GaAs 晶格原子受到擠壓,部分原子,尤其是Ga 原子會被擠壓出界面而在GaAs 表面留下一定數(shù)量的空位缺陷[17]。為了研究退火過程中的界面形變,使用COMSOL 多物理場建模軟件模擬了帶有Si 介質(zhì)層的GaAs 退火后的應(yīng)力應(yīng)變情況。

    假設(shè)外延片經(jīng)過850 °C 高溫退火,在退火溫度降到200 °C 時產(chǎn)生應(yīng)力釋放,并最終在室溫下產(chǎn)生穩(wěn)定形變,計算使用的相關(guān)參數(shù)見表1。初級外延片襯底材料為450 μm 的n-GaAs,外延片總厚度約為4.5 μm,且均含大比例Ga、As 組分。為避免相對容差過大產(chǎn)生的計算錯誤,選用襯底及外延片為25 μm GaAs,介質(zhì)層為200 nm Si 用于模擬分析?;贑OMSOL 并放大100 倍后的模擬結(jié)果如圖4(彩圖見期刊電子版)所示。可見,退火后GaAs 表面出現(xiàn)了由壓應(yīng)力帶來的縮緊現(xiàn)象,這表明Si 介質(zhì)層會為GaAs 表面提供壓應(yīng)力,誘導(dǎo)GaAs 內(nèi)產(chǎn)生更多Ga 空位,這有利于量子阱混雜過程的進行。

    3 實驗及結(jié)果分析

    3.1 量子阱混雜的影響因素研究

    3.1.1 蓋片層的影響

    在熱退火過程中,加蓋GaAs 蓋片不僅能減少表面沾污,還能提供一定濃度As 壓。這可在一定程度上抑制外延片表面As 的分解及揮發(fā)。經(jīng)875 °C/90 s RTA 退火后的初級外延片表面形貌見圖5(彩圖見期刊電子版)。圖5(a)、5(b)分別為有、無GaAs 蓋片的初級外延片表面形貌。與預(yù)測結(jié)果相同,有GaAs 蓋片的外延片表面更加光潔。這是因為退火產(chǎn)生的燒蝕孔較少。說明GaAs 蓋片對Si 介質(zhì)層表面起到了一定的保護作用,故后續(xù)RTA 均在有GaAs 蓋片環(huán)境下進行。

    3.1.2 溫度的影響

    由計算可知,溫度對雜質(zhì)及點缺陷的擴散系數(shù)影響極大,故首先研究溫度對量子阱混雜的影響。利用MOCVD 在初級外延片GaAs 表面生長20 nm 單晶Si,生長溫度為800 °C。然后,在775~900 °C 區(qū)間進行90 s 快速熱退火(Rapid Treatment Annealing,RTA)處理,退火后的PL 結(jié)果如圖6(彩圖見期刊電子版)所示??梢姡ㄩL藍移的效果隨熱處理溫度升高而增大。對比原始初級外延片,在900 °C 時獲得約90 nm 的最大波長藍移量,但此時FWHM 顯著加寬,波形嚴重惡化,說明材料損傷較大。而在875 °C 時波長藍移量約為57 nm,且FWHM 保持較好。故認為875 °C熱處理溫度可在獲得良好量子阱混雜效果的同時保證材料的晶格質(zhì)量。

    3.1.3 熱處理時間的影響

    繼續(xù)研究熱處理時間對量子阱混雜的影響。退火溫度均為875 °C,退火時間分別設(shè)為60s、90s、120s,退火后初級外延片的PL 結(jié)果如圖7(彩圖見期刊電子版)所示??梢姡S著退火時間延長,引入Si 雜質(zhì)的初級外延片波長藍移也逐漸增加,但退火時間達到120s 時PL 譜峰已經(jīng)變形。圖7 表明經(jīng)90s RTA 處理可獲得較好的藍移效果,PL 譜峰值強度、FWHM 均保持較好。

    3.1.4 介質(zhì)層性質(zhì)的影響

    如果外延片表面生長的Si 過厚,則晶格失配及熱膨脹系數(shù)的差別會被放大,會觸發(fā)熱退火過程中的應(yīng)力釋放。而較薄的Si 層抑制GaAs 歐姆接觸層中Ga、As 原子分解和向外揮發(fā)的能力也會減弱,因此需要考慮Si 特性的影響。MOCVD設(shè)備所生長的Si 介質(zhì)層為單晶材料,其晶格質(zhì)量和致密度受到反應(yīng)源、生長溫度等條件的影響,故不同條件下生長的Si 介質(zhì)層也會影響量子阱混雜效果。因此,制備了3 種Si 外延層:800 °C下生長的20 nm 高溫Si、650 °C 下生長的20 nm-Si 和50 nm 低溫Si,分別設(shè)為#1,#2,#3,用于尋找誘導(dǎo)量子阱混雜效果最佳的Si 介質(zhì)層生長條件。

    同樣,對該組初級外延片進行875 °C/90 s 單次RTA 處理,并在熱處理后測試初級外延片的PL 譜,見圖8(彩圖見期刊電子版)。可見,3 種類型的Si 層所引起的量子阱混雜效果差別較小。結(jié)果表明對于厚度相同的Si 層,Si 層生長溫度對波長藍移量的影響較小,但帶有高溫Si 層的FWHM 更窄。對于生長條件相同的Si 層,較厚的Si 層所引起的波長藍移更多,達到了57 nm 左右,但此時其FWHM 也較大,說明材料質(zhì)量受影響較大。

    3.2 量子阱混雜效果的微觀表征

    為了更準確地了解Si 原子的擴散深度,使用EDS 測試了外延片不同深度處的元素分布。先對875 °C/90 s RTA 處理的Si IID 初級外延片進行去Si 層處理,再使用特制溶液分別腐蝕0 s、15 s、30 s、45 s,測試結(jié)果見圖9(彩圖見期刊電子版)。經(jīng)驗表明:腐蝕液的腐蝕速度約為25~35 nm/s,腐蝕后的外延片表面對應(yīng)不同深度的區(qū)域。由EDS 結(jié)果可見,該初級外延片的p 型摻雜元素為C,故表層GaAs 未被腐蝕時C 元素含量較高,而Si 元素的含量也較高,且二者的含量在同一量級;隨腐蝕時間增加至15 s,C 元素含量逐漸減少,Si 元素含量則大幅度下降;當腐蝕時間為30 s,約腐蝕到上限制層時,Si 含量已下降至表層的22.2%;當腐蝕時間為45 s 時,約腐蝕到上波導(dǎo)層或接近量子阱區(qū),此時Si 含量基本下降為0。該結(jié)果證明了經(jīng)875 °C/90 s RTA 處理,Si 雜質(zhì)可以擴散到初級外延片的上波導(dǎo)層區(qū),進而產(chǎn)生有效的量子阱混雜誘導(dǎo)效果。

    4 結(jié)論

    為了全方面提高InGaAs/AlGaAs 半導(dǎo)體量子阱激光器的性能指數(shù),本文研究了Si 雜質(zhì)誘導(dǎo)量子阱混雜的可行方案。利用控制變量法,設(shè)置了多組對照條件,研究了Si 雜質(zhì)誘導(dǎo)量子阱混雜 效果與介質(zhì)層性質(zhì)、熱處理條件等因素的關(guān)系。PL 測試結(jié)果顯示,在650 °C 下生長50 nm Si 外 延介質(zhì)層結(jié)合875 °C/90 s RTA 熱處理,可獲得 約57 nm 的波長藍移量。結(jié)合EDS 測試發(fā)現(xiàn),875 °C/90 s RTA 后Si 雜質(zhì)原子可擴散到In-GaAs/AlGaAs 半導(dǎo)體量子阱激光器初級外延片 的上波導(dǎo)層或量子阱,因而產(chǎn)生顯著的量子阱混 雜效果。未來,可結(jié)合外延生長技術(shù)、RTA 技術(shù) 制備Si 雜質(zhì)誘導(dǎo)量子阱混雜非吸收窗口,抑制光 學(xué)災(zāi)變發(fā)生,持續(xù)提升InGaAs/AlGaAs 半導(dǎo)體量 子阱激光器的輸出功率。

    猜你喜歡
    藍移點缺陷外延
    金紅石型TiO2中四種點缺陷態(tài)研究
    The danger of living close to a black hole
    Fe-Cr-Ni合金中點缺陷形成及相互作用的第一性原理研究
    GaN中質(zhì)子輻照損傷的分子動力學(xué)模擬研究
    關(guān)于工資內(nèi)涵和外延界定的再認識
    入坑
    意林(2016年13期)2016-08-18 22:38:36
    愛情的內(nèi)涵和外延(短篇小說)
    可調(diào)諧三維超材料管的研究
    模式耦合對反常氫鍵系統(tǒng)中振動頻率藍移的影響
    1060鋁箔表面白點缺陷的分析
    青草久久国产| 在线观看一区二区三区| 人妻制服诱惑在线中文字幕| 亚洲人成网站在线播| 精品欧美国产一区二区三| 最近视频中文字幕2019在线8| 欧美午夜高清在线| 久久热精品热| 国产老妇女一区| 国产精品人妻久久久久久| 久久国产精品人妻蜜桃| 国产精品伦人一区二区| 精品欧美国产一区二区三| 夜夜爽天天搞| 俄罗斯特黄特色一大片| 亚洲片人在线观看| 国产精品久久久久久亚洲av鲁大| 免费看光身美女| 美女被艹到高潮喷水动态| 久久久久精品国产欧美久久久| 首页视频小说图片口味搜索| 亚洲成av人片免费观看| 一区二区三区四区激情视频 | 国产午夜精品论理片| 中文字幕久久专区| 九色国产91popny在线| 亚洲欧美精品综合久久99| 在线免费观看不下载黄p国产 | 毛片女人毛片| 国产精品久久视频播放| 欧美日韩乱码在线| 波多野结衣高清作品| 国产精品,欧美在线| 99国产极品粉嫩在线观看| 日本黄色视频三级网站网址| 午夜福利在线观看免费完整高清在 | 久久久久久久午夜电影| 97人妻精品一区二区三区麻豆| 人妻夜夜爽99麻豆av| 99久久九九国产精品国产免费| 午夜视频国产福利| 国产高清三级在线| 国产v大片淫在线免费观看| 午夜精品久久久久久毛片777| 亚洲七黄色美女视频| 久久精品综合一区二区三区| 久久婷婷人人爽人人干人人爱| 久久人人精品亚洲av| 老熟妇仑乱视频hdxx| 亚洲 欧美 日韩 在线 免费| 又黄又爽又免费观看的视频| 免费av观看视频| 免费av不卡在线播放| 成人毛片a级毛片在线播放| 91av网一区二区| 亚洲精品色激情综合| 国产黄a三级三级三级人| 国产一区二区激情短视频| 亚洲国产欧洲综合997久久,| 久久亚洲真实| 午夜激情福利司机影院| 啦啦啦韩国在线观看视频| 国产视频一区二区在线看| 国内少妇人妻偷人精品xxx网站| 国产野战对白在线观看| 床上黄色一级片| 国模一区二区三区四区视频| 国产69精品久久久久777片| 国产激情偷乱视频一区二区| 国产精品亚洲一级av第二区| 3wmmmm亚洲av在线观看| 我要看日韩黄色一级片| 十八禁人妻一区二区| 色av中文字幕| 熟妇人妻久久中文字幕3abv| 日本免费一区二区三区高清不卡| 亚洲av.av天堂| 一区二区三区四区激情视频 | 欧美成人一区二区免费高清观看| 夜夜夜夜夜久久久久| 窝窝影院91人妻| 欧美日韩综合久久久久久 | 欧美区成人在线视频| 国产午夜精品久久久久久一区二区三区 | 男女视频在线观看网站免费| 午夜精品在线福利| 在线免费观看不下载黄p国产 | 国产91精品成人一区二区三区| 一夜夜www| 在线看三级毛片| 日韩欧美在线乱码| 精品一区二区三区视频在线观看免费| 精品一区二区免费观看| 国产黄色小视频在线观看| 欧美黄色淫秽网站| 特级一级黄色大片| av中文乱码字幕在线| 一进一出好大好爽视频| 国产黄色小视频在线观看| 99久久精品国产亚洲精品| 国产又黄又爽又无遮挡在线| 99久久九九国产精品国产免费| 午夜福利在线在线| 久久久久久国产a免费观看| 亚洲欧美日韩高清专用| 夜夜躁狠狠躁天天躁| 成人特级黄色片久久久久久久| 我的女老师完整版在线观看| 波野结衣二区三区在线| 日韩成人在线观看一区二区三区| 综合色av麻豆| 18禁黄网站禁片午夜丰满| 日日摸夜夜添夜夜添小说| 欧美不卡视频在线免费观看| 欧美bdsm另类| 九九久久精品国产亚洲av麻豆| 床上黄色一级片| 国产欧美日韩一区二区精品| 一本精品99久久精品77| 亚洲专区国产一区二区| 精品人妻视频免费看| av在线天堂中文字幕| 午夜激情福利司机影院| 人人妻人人看人人澡| 又粗又爽又猛毛片免费看| 波多野结衣高清作品| 俺也久久电影网| www.熟女人妻精品国产| 婷婷亚洲欧美| 男人舔女人下体高潮全视频| 精品免费久久久久久久清纯| 欧美丝袜亚洲另类 | 久久草成人影院| 免费av观看视频| 欧美日本亚洲视频在线播放| 日本免费a在线| 亚洲欧美清纯卡通| 亚洲avbb在线观看| 亚洲经典国产精华液单 | 在现免费观看毛片| 亚洲欧美日韩高清在线视频| 国产免费一级a男人的天堂| 国产高清视频在线观看网站| 最近最新免费中文字幕在线| 免费黄网站久久成人精品 | 成人午夜高清在线视频| 国产成人欧美在线观看| 99久久精品一区二区三区| 999久久久精品免费观看国产| 午夜a级毛片| 综合色av麻豆| 非洲黑人性xxxx精品又粗又长| 免费一级毛片在线播放高清视频| 在线观看免费视频日本深夜| 97人妻精品一区二区三区麻豆| 丰满乱子伦码专区| 午夜亚洲福利在线播放| 精品欧美国产一区二区三| 乱码一卡2卡4卡精品| 特级一级黄色大片| 婷婷精品国产亚洲av在线| 美女黄网站色视频| 国产高清有码在线观看视频| 熟女人妻精品中文字幕| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 亚洲一区二区三区色噜噜| 一a级毛片在线观看| 国产精品自产拍在线观看55亚洲| 真人一进一出gif抽搐免费| 日本三级黄在线观看| 久久久久国产精品人妻aⅴ院| 亚洲美女黄片视频| 啪啪无遮挡十八禁网站| 人妻丰满熟妇av一区二区三区| 欧美三级亚洲精品| 在线免费观看的www视频| 免费大片18禁| 99久久无色码亚洲精品果冻| 国产美女午夜福利| 国产在线精品亚洲第一网站| 欧美绝顶高潮抽搐喷水| 色哟哟哟哟哟哟| 国产av在哪里看| 久久精品影院6| 性插视频无遮挡在线免费观看| 老司机福利观看| 国产精品人妻久久久久久| 国产午夜福利久久久久久| 久久精品久久久久久噜噜老黄 | 夜夜看夜夜爽夜夜摸| 午夜福利欧美成人| 国产一区二区激情短视频| 国产欧美日韩一区二区精品| 久久伊人香网站| 国产精品乱码一区二三区的特点| 午夜免费成人在线视频| 久久人人爽人人爽人人片va | 看片在线看免费视频| 不卡一级毛片| 亚洲精品粉嫩美女一区| 美女高潮的动态| 欧美区成人在线视频| 亚洲狠狠婷婷综合久久图片| 99热这里只有是精品50| 色在线成人网| 亚洲人成电影免费在线| 欧美日韩综合久久久久久 | 丝袜美腿在线中文| 直男gayav资源| 亚洲av二区三区四区| 日韩成人在线观看一区二区三区| 少妇丰满av| 日本a在线网址| 禁无遮挡网站| 国产精品美女特级片免费视频播放器| 丰满人妻熟妇乱又伦精品不卡| 亚洲欧美日韩东京热| 国产精品久久久久久亚洲av鲁大| 亚洲狠狠婷婷综合久久图片| 精品人妻熟女av久视频| 国产色婷婷99| 国产午夜福利久久久久久| 免费电影在线观看免费观看| 欧美成人a在线观看| 成人亚洲精品av一区二区| 国产成+人综合+亚洲专区| 免费无遮挡裸体视频| 欧美又色又爽又黄视频| 成年女人永久免费观看视频| 麻豆成人午夜福利视频| 高潮久久久久久久久久久不卡| 在线观看66精品国产| 久久亚洲精品不卡| 99国产精品一区二区蜜桃av| 色综合欧美亚洲国产小说| 国产白丝娇喘喷水9色精品| 久久99热这里只有精品18| 亚洲国产精品成人综合色| 欧美日韩亚洲国产一区二区在线观看| 日韩精品中文字幕看吧| 深爱激情五月婷婷| 99久久精品一区二区三区| 黄色女人牲交| 老司机福利观看| 成人国产一区最新在线观看| www.www免费av| 欧美激情国产日韩精品一区| 欧美一区二区国产精品久久精品| 亚洲在线观看片| 精华霜和精华液先用哪个| 99在线视频只有这里精品首页| 亚洲av五月六月丁香网| 精品乱码久久久久久99久播| 久久久色成人| av专区在线播放| 精品一区二区三区视频在线观看免费| 天堂√8在线中文| 能在线免费观看的黄片| 波多野结衣巨乳人妻| 日韩欧美 国产精品| 十八禁网站免费在线| 国产真实乱freesex| 一本精品99久久精品77| 动漫黄色视频在线观看| 午夜a级毛片| 中亚洲国语对白在线视频| 国产精品久久电影中文字幕| 网址你懂的国产日韩在线| 欧美午夜高清在线| 男人和女人高潮做爰伦理| 日韩欧美在线乱码| 亚洲av成人av| 日本在线视频免费播放| 久久精品夜夜夜夜夜久久蜜豆| 97超级碰碰碰精品色视频在线观看| 亚洲中文字幕日韩| 亚洲精品久久国产高清桃花| 亚洲色图av天堂| 嫩草影院精品99| 尤物成人国产欧美一区二区三区| 国产精品av视频在线免费观看| 首页视频小说图片口味搜索| 亚洲精品一区av在线观看| 欧美成狂野欧美在线观看| 激情在线观看视频在线高清| 欧美成人性av电影在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 我要搜黄色片| 在线国产一区二区在线| 有码 亚洲区| 国产高清三级在线| 黄片小视频在线播放| 免费黄网站久久成人精品 | 亚洲欧美激情综合另类| 亚洲 国产 在线| 久久九九热精品免费| av福利片在线观看| 啪啪无遮挡十八禁网站| 亚洲色图av天堂| 亚洲av一区综合| 少妇的逼水好多| 久久人人爽人人爽人人片va | 国产不卡一卡二| 桃色一区二区三区在线观看| 波多野结衣高清无吗| 午夜精品在线福利| 不卡一级毛片| 好男人在线观看高清免费视频| 一个人看的www免费观看视频| 一个人免费在线观看电影| 国产在线男女| 午夜福利免费观看在线| 在线国产一区二区在线| 亚洲最大成人av| 亚洲三级黄色毛片| 天堂动漫精品| 成人美女网站在线观看视频| 久久久久久久久久黄片| 亚洲av成人精品一区久久| 久久这里只有精品中国| 丰满人妻熟妇乱又伦精品不卡| 五月伊人婷婷丁香| 亚洲欧美精品综合久久99| 国产野战对白在线观看| 成人鲁丝片一二三区免费| 久久热精品热| 无人区码免费观看不卡| 1000部很黄的大片| 1024手机看黄色片| av在线蜜桃| 十八禁人妻一区二区| 波野结衣二区三区在线| 国模一区二区三区四区视频| 久久香蕉精品热| 精品久久久久久久末码| av天堂中文字幕网| 男女视频在线观看网站免费| 欧美最新免费一区二区三区 | 好看av亚洲va欧美ⅴa在| 国产一区二区亚洲精品在线观看| 成人精品一区二区免费| 嫩草影院精品99| 中文字幕高清在线视频| 露出奶头的视频| 国产伦精品一区二区三区四那| 国产国拍精品亚洲av在线观看| 亚洲av成人精品一区久久| 国产精品免费一区二区三区在线| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 99热这里只有是精品在线观看 | 如何舔出高潮| 一区福利在线观看| 国内久久婷婷六月综合欲色啪| 久久精品夜夜夜夜夜久久蜜豆| 欧美极品一区二区三区四区| 男女做爰动态图高潮gif福利片| 亚洲人成网站在线播| 欧美bdsm另类| 国产精品永久免费网站| 国产精品免费一区二区三区在线| 成熟少妇高潮喷水视频| 日本免费一区二区三区高清不卡| 日本 av在线| 国产欧美日韩一区二区三| 成年人黄色毛片网站| 91九色精品人成在线观看| 久久久成人免费电影| 日本黄色片子视频| 免费av不卡在线播放| 精品久久国产蜜桃| 久久久国产成人精品二区| 精品不卡国产一区二区三区| АⅤ资源中文在线天堂| 午夜福利成人在线免费观看| av天堂中文字幕网| 成年女人永久免费观看视频| 亚洲av不卡在线观看| 成人av一区二区三区在线看| а√天堂www在线а√下载| 免费观看精品视频网站| 精品人妻视频免费看| 午夜老司机福利剧场| 亚洲成av人片在线播放无| 草草在线视频免费看| 亚洲欧美激情综合另类| 国产精品久久久久久久电影| 日韩亚洲欧美综合| 成人国产一区最新在线观看| 欧美3d第一页| 久久精品夜夜夜夜夜久久蜜豆| 国产久久久一区二区三区| 一级a爱片免费观看的视频| 人妻久久中文字幕网| 欧美bdsm另类| 一本精品99久久精品77| 哪里可以看免费的av片| 久久久久久久久中文| 99国产综合亚洲精品| 熟妇人妻久久中文字幕3abv| 男女视频在线观看网站免费| 亚洲电影在线观看av| 真人一进一出gif抽搐免费| 老熟妇仑乱视频hdxx| 国产中年淑女户外野战色| 午夜免费成人在线视频| 色综合欧美亚洲国产小说| av欧美777| 亚洲国产精品久久男人天堂| 国产成年人精品一区二区| 啦啦啦观看免费观看视频高清| 国产国拍精品亚洲av在线观看| 国产精品野战在线观看| 我要看日韩黄色一级片| 国产毛片a区久久久久| 亚洲黑人精品在线| 一区二区三区激情视频| 99精品久久久久人妻精品| 日本免费一区二区三区高清不卡| 美女高潮的动态| eeuss影院久久| 内地一区二区视频在线| 欧美黑人欧美精品刺激| 少妇的逼水好多| 日本精品一区二区三区蜜桃| 久久伊人香网站| 亚洲综合色惰| 十八禁国产超污无遮挡网站| 久久99热这里只有精品18| 女人被狂操c到高潮| 男女下面进入的视频免费午夜| 精品人妻一区二区三区麻豆 | 9191精品国产免费久久| 两个人视频免费观看高清| 亚洲经典国产精华液单 | 国产男靠女视频免费网站| 国产精品久久久久久久久免 | 女人被狂操c到高潮| 欧美bdsm另类| 久久久久久久亚洲中文字幕 | 国产精品影院久久| 中文亚洲av片在线观看爽| 国产高清有码在线观看视频| 久久久久免费精品人妻一区二区| 亚洲无线在线观看| 看片在线看免费视频| 99在线人妻在线中文字幕| 黄色丝袜av网址大全| 亚洲精品成人久久久久久| 日本黄色片子视频| av中文乱码字幕在线| 在线看三级毛片| 欧美日本亚洲视频在线播放| 成年免费大片在线观看| 免费看a级黄色片| 国产精品美女特级片免费视频播放器| 日本黄色视频三级网站网址| 一夜夜www| 亚洲中文日韩欧美视频| 亚洲精品色激情综合| 亚洲不卡免费看| 免费看a级黄色片| 日韩亚洲欧美综合| 波野结衣二区三区在线| 少妇裸体淫交视频免费看高清| 日日摸夜夜添夜夜添小说| 亚洲av免费在线观看| 直男gayav资源| 在线观看一区二区三区| 蜜桃亚洲精品一区二区三区| 欧美又色又爽又黄视频| 精品熟女少妇八av免费久了| 欧美区成人在线视频| 欧美成人a在线观看| 黄色配什么色好看| 亚洲av一区综合| 免费av观看视频| 国产一区二区激情短视频| 欧美最黄视频在线播放免费| 国产精品,欧美在线| 精品久久久久久久久久久久久| 草草在线视频免费看| 高潮久久久久久久久久久不卡| 听说在线观看完整版免费高清| 亚洲av五月六月丁香网| 麻豆国产av国片精品| 午夜免费成人在线视频| 日本在线视频免费播放| 国产一区二区亚洲精品在线观看| 欧美日韩瑟瑟在线播放| 精品欧美国产一区二区三| 欧美日本亚洲视频在线播放| 天堂影院成人在线观看| 国产亚洲欧美在线一区二区| 黄色一级大片看看| 欧美成狂野欧美在线观看| 亚洲精品一区av在线观看| 丰满人妻熟妇乱又伦精品不卡| 精品久久久久久久久av| 国内精品一区二区在线观看| 久久久色成人| 搡老岳熟女国产| 国产在线精品亚洲第一网站| 一级毛片久久久久久久久女| 在线天堂最新版资源| 亚洲人成伊人成综合网2020| 久久99热这里只有精品18| 99久久精品一区二区三区| 岛国在线免费视频观看| 我的老师免费观看完整版| 国产单亲对白刺激| 88av欧美| 国产探花极品一区二区| 欧美乱妇无乱码| 久久国产乱子伦精品免费另类| 中文在线观看免费www的网站| 亚洲国产欧美人成| 国产白丝娇喘喷水9色精品| 别揉我奶头~嗯~啊~动态视频| 精华霜和精华液先用哪个| 淫妇啪啪啪对白视频| 超碰av人人做人人爽久久| 一级黄色大片毛片| 精品无人区乱码1区二区| 男女做爰动态图高潮gif福利片| 日日摸夜夜添夜夜添小说| 久久久久久久精品吃奶| 久久久久久九九精品二区国产| 亚洲av电影不卡..在线观看| 亚洲熟妇熟女久久| 黄色配什么色好看| 国产人妻一区二区三区在| 中文字幕人成人乱码亚洲影| 欧美一级a爱片免费观看看| 观看美女的网站| 成年女人看的毛片在线观看| 一级av片app| 国产高清视频在线观看网站| 亚洲欧美日韩东京热| 99在线视频只有这里精品首页| 亚洲成人中文字幕在线播放| 国产探花在线观看一区二区| 丝袜美腿在线中文| 91午夜精品亚洲一区二区三区 | 色综合婷婷激情| 国产精品久久视频播放| 99视频精品全部免费 在线| 午夜福利在线观看吧| 黄色日韩在线| 午夜影院日韩av| 两个人视频免费观看高清| 成人高潮视频无遮挡免费网站| 最近中文字幕高清免费大全6 | 一级a爱片免费观看的视频| 亚洲成人久久爱视频| 日本黄大片高清| 亚洲精品影视一区二区三区av| 日韩精品中文字幕看吧| 中国美女看黄片| 国产精品一区二区性色av| 51国产日韩欧美| 色在线成人网| 国产精品久久电影中文字幕| 我的女老师完整版在线观看| 亚洲av成人精品一区久久| 琪琪午夜伦伦电影理论片6080| 亚洲一区二区三区不卡视频| 91久久精品国产一区二区成人| 一级黄色大片毛片| 麻豆国产av国片精品| av中文乱码字幕在线| 亚洲av不卡在线观看| 亚洲av.av天堂| 脱女人内裤的视频| 国产精品精品国产色婷婷| 欧美精品啪啪一区二区三区| 在线观看午夜福利视频| 国产免费一级a男人的天堂| 很黄的视频免费| 国产不卡一卡二| av在线老鸭窝| 琪琪午夜伦伦电影理论片6080| 欧美+日韩+精品| 国产视频一区二区在线看| x7x7x7水蜜桃| 亚洲自偷自拍三级| 少妇高潮的动态图| 国内精品久久久久久久电影| 美女高潮喷水抽搐中文字幕| 黄色一级大片看看| 国内精品久久久久久久电影| 欧美黑人欧美精品刺激| 看十八女毛片水多多多| 99热这里只有是精品在线观看 | 欧美日本视频| 国产亚洲精品久久久com| 国产不卡一卡二| 9191精品国产免费久久| 久久午夜亚洲精品久久| 久久亚洲精品不卡| 亚洲无线观看免费| 午夜精品久久久久久毛片777| 精品一区二区免费观看| 欧美激情国产日韩精品一区| 国产精品美女特级片免费视频播放器| 91麻豆精品激情在线观看国产| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品美女特级片免费视频播放器| 我的女老师完整版在线观看| 欧美日韩瑟瑟在线播放| 老司机午夜十八禁免费视频| 国产欧美日韩精品亚洲av| 变态另类成人亚洲欧美熟女| 成年女人毛片免费观看观看9| 精品久久国产蜜桃| 亚洲中文字幕日韩|