• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A sliding-mode control of a Dual-PMSMs synchronization driving method

    2023-12-01 05:50:22SONGXiaoliZHANGChiGUOYawei
    中國(guó)光學(xué) 2023年6期

    SONG Xiao-li ,ZHANG Chi,3,GUO Ya-wei,3

    (1.National Astronomical Observatories/Nanjing Institute of Astronomical Optics & Technology,Chinese Academy of Sciences, Nanjing 210042, China;2.CAS Key Laboratory of Astronomical Optics & Technology, Nanjing Institute of Astronomical Optics & Technology, Nanjing 210042, China;3.University of Chinese Academy of Sciences, Beijing 100049, China)

    Abstract: Speed synchronization performance and anti-interference are important factors that affect the synchronous operation dynamic response and steady-state accuracy of dual Permanent Magnet Synchronous Motors’ (Dual-PMSMs).By introducing cross-coupling control as the framework,an integral sliding mode speed tracking controller based on an improved bi-power reaching method is proposed to reduce the speed error between two motors.A load torque observer is designed to bring the observed value into the Sliding Mode Control (SMC) reaching method that enhances the anti-disturbance performance of the system.Meanwhile,a synchronous controller is designed using a Fuzzy-Proportional-Integral-Derivative (FPID) control to improve the synchronization of the Dual-PMSMs.The results show that compared with the traditional PI algorithm as the target speed is 800 r/min,the proposed control method can decrease the two motors’ speed synchronization error from 25 r/min to 12 r/min under a no-load startup and reduce the speed synchronization error from 7 r/min to 2.2 r/min with sudden load torque,improving the synchronization and disturbance rejection.

    Key words: sliding mode control;cross-coupling control;improved bi-power reaching method;observer;Dual-PMSMs

    1 Introduction

    Permanent Magnet Synchronous Motors (PMSM) with high torque,power densities,simple structures,reliable operation and other outstanding advantages,has been widely used in many fields such as new energy,CNC machine tools,aerospace,ship propulsion etc.However,in a high-power transmission system,it is difficult for the single PMSM to meet the high demands for power due to its limitation in volume and some other factors,which makes the dual-or multi-motor cooperative drive load method a widely researched topic.

    The PMSM is a nonlinear,multi-variable and strongly coupled system.It is sensitive to external disturbances which brings significant challenges to Dual-PMSM synchronous drive control performance.Traditional PID control is widely used in PMSM speed regulation systems for its simple structure and high reliability.However,it is difficult to meet demands for accurate control in the face of external disturbances[1,2].Recently,various nonlinear algorithms have been introduced to PMSM control systems such as fuzzy control[3,4],neural network control[5],adaptive control[6],sliding mode control[7,8]and mode predictive control[9-10]etc.Sliding mode control is widely used in PMSM control systems because of its insensitivity to parameters and external disturbances,fast response speed and robustness[11-12].

    The common Dual-PMSM synchronous control structures mainly include[13]: Master-Slave Control,Master Reference Control,Cross-Coupling Control,etc.In Ref.[14],the concept of Cross-Coupling Control is proposed and rotational speed cross-coupling control is realized to eliminate the synchronization error of a two-motor system,but it requires additional hardware to be implemented to a cross-coupled system.In Ref.[15],Shih proposed Relative Cross-Coupling Control to reduce the position error in Bi-axis motion.In Ref.[16],to overcome the defects of the conventional relative crosscoupling control strategy,the speed weight coefficient reflects the importance of each motor’s speed in the improved relative cross-coupling control strategy,which mostly achieves the decoupling of the system’s synchronization and tracking performance but all motors use the same speed controller.Reference [17] analyzed the cross-coupling inherent characteristics of IMs and studied four control strategies to determine the effect of several operating parameters over stator currents cross-coupling.However,it did not mention the speed synchronization error of two-motor operation.In Ref.[18],a Master-Slave control structure is proposed with no coupling between two motors and thus there is no feedback between them.If one of the motors is disturbed,the other motor cannot compensate.This structure cannot effectively adjust the synchronization error.

    To ensure the speed synchronization performance in anti-internal and external interference,this paper proposes a novel reaching method based on a sliding-mode control for a Dual-PMSM system.An integral sliding mode speed tracking controller based on the improved bi-power reaching method is designed to replace the traditional PID speed tracking controller to mitigate the external disturbance of the dual-motor speed control system.A load torque observer is built to bring the observed value into the sliding mode control law to enhance the anti-disturbance performance of the system.At the same time,the speed synchronization controller uses the fuzzy PI control,which can adjust the PI parameters online in real time according to the synchronization error,so that the system has adaptive adjustment ability when facing external disturbances.

    2 PMSM mathematical model

    The mathematical model of PMSM is derived under the assumption that saturation from the eddy current high-order harmonic components is negligible,the stator windings are symmetric in space and the stator currents produce sinusoidal magnetic motive forces.According to these assumptions,the voltage equation of PMSM can be obtained as (1) in thed-q(Direct axis Quadrature axis) synchronous rotating reference coordinate when the PMSM is in a steady state.

    whereudanduqare voltage components of the d and q axes,respectively;idandiqare current components of thedandqaxes,respectively;LdandLqare thedandqaxes’ inductance;Rsis the stator resistance;andωeis the mechanical angular velocity of the motor.

    The electromagnetic torque equation can be expressed as

    wherepis the number of stator pole pairs;ψis the permanent magnet’s magnetic flux;Teis electromagnetic torque,andTLis the load torque.

    If the motor is an SPMSM (Surface Permanent Magnet Synchronous Motor),soLd=Lq=L,the torque equation can be simplified as

    The motion equation of the PMSM is

    whereJis the moment inertia;Bis the friction coefficient.ω is the mechanical angular velocity of the mirror.

    3 Design of the sliding mode speed tracking controller

    Sliding Mode Control (SMC) is essentially a kind of nonlinear control,which is a control algorithm based on variable structure control.It uses the switching function to make the controlled system continuously change and forces the controlled system to continuously approach the sliding mode surface in the dynamic process.After sliding the surface,a high-frequency up and down motion is performed along the sliding surface,that is,the sliding mode.Since the sliding mode surface is independent of the parameters and disturbances of the system,it is strongly immune to external disturbances.The traditional sliding mode control has a contradiction between the sliding mode chattering and the approach speed,and the traditional sliding mode surface easily causes high-frequency disturbance of the system due to the existence of the differential term.The selection of a sliding mode surface and a sliding mode reaching method are key to reducing chattering and ensuring the dynamic performance of a Dual-PMSM system.

    3.1 Design of the sliding mode surface

    According to the theory of SMC,various reaching laws can be selected to achieve highly dynamic DPMSM performance.

    Define the slide surface as

    The PMSM system status variables functions are defined as

    whereωrefandωiare the given and the actual speed of theith PMSM,respectively,andcis the integral coefficient.The SMC structure of the Dual-PMSMs system is the same.Compared with literatures[19,20],the integral sliding mode can effectively avoid the high frequency noise caused by the differential and reduce the steady state error.

    3.2 Design of the improved bi-power reaching method

    The traditional reaching method is expressed as-k|s|sgn(s).To adapt to the variations of the sliding mode surface,the improved bi-power reaching method can be designed as

    wherek1,k2,k3>0,1 >α>0,β>1.The first term on the right side of the equal sign guarantees the effective time convergence of the sliding mode.The second term ensures the rapid convergence of the control system away from the sliding mode’s surface.The third term provides the lowest rate of change for the control system.Next,the characteristics of the improved bi-power reaching method proposed in this paper will be discussed,mainly from the perspective of rapidity and the steady-state error bound.

    3.2.1 The rapidity of the improved bi-power reaching method

    When the state variablesis far away from the sliding mode surface,the second term has a large rate of change and therefore plays a dominant role.When the state variablesis close to the sliding mode surface,the first term has a large rate of change and plays a dominant role.Here,the third term is assumed in the interval [a,b] and can be considered to achieve the accelerated convergence of the intermediate state.

    In the first state,the first and the third term can be ignored so

    In the second state,the first and the second term can be ignored so

    In the third state,the second and the third term can be ignored so

    If the initial variables(0) >b>0,the sliding mode motion process can be divided into three stages.Whens(0)→s=b,the second term plays a dominant role and the other terms can be ignored.Whens=b→s=a,the third term plays a dominant role and the other terms can be ignored.Whens=a→s=0,the first term plays a dominant role and the other terms can be ignored.Here,equation (8)can be integrated,thus

    The approach time of the first stage is therefore

    When equation (9) is integrated,

    The approach time of the second stage is

    Lastly,equation (10) is integrated,thus

    The approach time of the first stage is

    The total approach time can be expressed as(17),if the minor terms are ignored in the three stages.

    If the initial variables(0) <-b<0,the sliding mode motion process can be divided into three stages.Whens(0)→s=-b,the second term plays a dominant role and the other terms can be ignored.Whens=-b→s=-a,the third term plays a dominant role and the other terms can be ignored.Whens=-a→s=0,the first term plays a dominant role and the other term can be ignored.

    Similarly,equation (8) can be integrated,thus

    The approach time of the first stage is

    When equation (9) is integrated,thus

    The approach time of the second stage is

    Lastly,equation (10) is integrated,thus

    The approach time of the first stage is

    If the minor terms are ignored in the three stages,the total approach time can be expressed as equation (24)

    It is evident that the control system can reach the balance point in a finite time.After reaching the balance point,the speed error is zero when reaching the sliding mode,and it can effectively reduce sliding mode chattering[21].

    3.2.2 Analysis of steady-state error bound and stability

    If equation (7) has the influence of uncertainty disturbance,which can be written as

    DefineDas the upper bound of the uncertainty perturbation d(t),that is,|d(t)| ≤D.When there are uncertain and bounded external disturbances in the system,in order to analyze the convergence of the system in finite time,the following lemma is introduced first.

    Lemma 1.In Ref.[22],IfthereisacontinuousdifferentiablefunctionV(x)definedintheneighborhoodU?Rncontainingtheorigin,andthereis arealnumber?>0,0 <θ<1,satisfytheconditions

    (1)V(x) ispositivedefiniteinU;

    (2)V·≤-φVθ(x),?x∈U.

    If the Lyapunov function is defined as

    by substituting equation (25) into the differentiation ofV,the following equation can be obtained

    If |s|(k3|s|-d(t))≥0,then equation (27) can be simplified as

    From Lemma 1,it can be seen that the system converges in finite time about the equilibrium zero so the system can be guaranteed to converge in regionin a finite time.

    Equation (27) can also be transformed into

    Similarly,whenk1|s|α-d(t)≥0 ork2|s|βd(t)≥0,the system is guaranteed to converge in the regionin a finite time.So,the steady-state error bound of the improved bipower convergence law is

    From the analysis,if the value of the parameters are proper,the value of the steady-state error bound of the improved bi-power reaching formula is smaller.It means that the reaching formula has better immunity to the bounded disturbance of uncertainty and stronger robustness.Also,it can be seen that whether or not the system contains uncertain disturbances,Therefore,the designed sliding mode control system is stable and the system can reach the sliding mode’s surface.

    3.3 Replace of symbol function

    The general SMO method has the chattering phenomenon because of the discontinuity of the sign function sgn(s).In order to suppress the intrinsic chattering for better performance,this paper designs a continuous function to replace the sign function.

    where η is a very small positive number.

    3.4 Design of speed controller

    The speed controller provides the current value to produce a torque reference for the motor drive system.Equation (5) can be differentiated,thus

    Equations (6) and (7) can be rewritten as

    So,the new reference current is obtained as

    The block diagram of the final speed control law is shown in Fig.1.

    Fig.1 Block diagram of the speed controller

    4 Design of the load-based torque observer

    Generally,the load torque and external disturbance torque in the PMSM control system are regarded as the total torque.The reasonable design of the observer can effectively observe the load torque and calculate the motor current in equation (34) to realize disturbance suppression of the system.The total torque can be regarded as a constant value within a control period,which means

    In order to obtain the estimated value of the total torqueTLi,the disturbance observer can be designed according to modern control theory and the gain in the observer can be reasonably configured to observe the rotational speed and the total disturbance torque.The state equation of the system is constructed as follows

    in a nonlinear time-varying feedback system,where

    We can know

    It can be seen that the system is fully observable.The observer and observation error equations are constructed as follows

    The matrixG=can be found so that the eigenvalues of the matrix (A-GC) are located in the left half-plane by the pole configuration.The observation errorebetween the observedand the actualTLcan be close to zero in finite time.Fig.2 is the block diagram of the total disturbance torque observer.

    Fig.2 Structural block diagram of the disturbance torque observer

    Fig.3 Surface diagram of ?kp value output

    Fig.4 Surface diagram of ?ki value output

    5 Speed synchronization controller design

    The cross-coupling control adopts speed synchronization error compensation current to make the double-PMSM respond quickly and realize speed synchronization.However,the speed error synchronization coefficient in cross-coupling control is usually difficult to obtain through theoretical analysis.Therefore,a cross-coupling synchronization control algorithm based on an improved double-power sliding mode control and fuzzy adaptive PI control is designed to improve the system’s accuracy.

    For the fuzzy adaptive PI control,the synchronization errors ? ω and its rate of change ?ω are the input and the current compensation is the output (Define ? ω=ω1-ω2,? ωc=? ω/?t).Thekpandkivalues of the PI controller are continuously adjusted through ?kpand ?kionline.Wheneis large,a largekpandkishould be taken to reduce the error.Wheneis moderate,a moderatekpandkishould be moderated to avoid overshoot of the synchronous system.Wheneis small,a smallkpandkishould be selected to avoid the impact of the synchronous system and give adaptive adjustment ability.Table 1 and Table 2 are the fuzzy rules ofkpandki.Figs.3-4 (color online) show the relationship of the surface of ?kpand ?ki.The control diagram of the Dual-PMSMs synchronous system is shown in Fig.5.

    Tab.1 kp fuzzy rule table

    Tab.2 ki fuzzy rule table

    Fig.5 Overall block diagram of dual-motor synchronous control system

    6 Simulation and analysis

    The purpose of the current study is to determine the speed synchronization performance and antiinterference of a Dual-PMSM system.In order to verify the performance of the proposed control strategy,a Dual-PMSMs synchronous control modeling simulation is performed in MATLAB/Simulink.The parameters of Dual-PMSMs and the controller parameters are shown in Tables 3 and 4.The simulated speed response waveform of the proposed improved bi-power reaching method and traditional reaching method is compared in Fig.6 (color online) with reference speeds from 800 r/minto1 200 r/min.It can be seen that the improved bipower reaching method control has less adjustment time (Traditional reaching method speed controller parameter:k=30;The improved bi-power reaching method speed controller parameters are shown in Table 4 PMSM1.).

    Fig.6 Comparison of speed response waveforms between the improved and traditional reaching methods

    It can be seen that the parameters of the two motors is different and the process is more difficult than it is for motors with the same parameters.The parameters of the current loop PI controller are the same between the two control strategies,wherekp=350 andkp=82 500.The speed PI controller para-meters of the traditional double PI parallel crosscoupling control method are designed atkp=0.02 andki=1.

    Tab.3 Parameters of the motor

    Tab.4 SMC controller parameters

    The performance comparison between the traditional double PI cross-coupling control from noload torque and sudden load torque perturbation is shown in Figs.7-Fig.10 when the reference speed isωref=800 r/min.

    From Fig.7(a),it can be seen that traditional dual PI parallel cross-coupling control has a larger overshoot at no-load torque start and it reaches the reference speed after 0.075 s.The designed control strategy in this paper has no overshoot and can reach the reference speed in 0.015 s,as shown in Fig.7(b).Due to the different parameters of the two motors,the speed synchronization error of the Dual-PMSMs is larger whether uses the traditional crosscoupling control strategy or the improved bi-power reaching sliding mode control method at startup.From Fig.8(a) we can know that the maximum synchronization error can reach 25 r/min at the reference speed of 800 r/min when use the traditional cross-coupling control strategy.However,Fig.8(b)shows that the maximum speed error of the proposed control strategy is 12 r/min under no-load torque startup conditions.

    Fig.7 Speed waveforms obtained by different methods under no-load torque starting condition.(a) Conventional crosscoupled control.(b) Improved bi-power reaching method

    Fig.8 Synchronization error waveforms obtained by different methods under no-load torque startup condition.(a) Conventional cross-coupling control.(b) Improved bi-power reaching method sliding mode control

    The speed waveform and the synchronization error waveform are shown in Fig.9,where a 2 N·m load torque is suddenly applied to motor 1 at 1 s and a 2.5 N·m load torque is suddenly applied to motor 2 at 2 s.Fig.10(a) shows that the large synchronization error is 7 r/min with sudden load torque and it can reach stability after 0.2 s under the conventional cross-coupling controller.Fig.10 (b) shows that the proposed control strategy has a maximum speed synchronization error of 2.2 r/min with sudden load torque and reaches stability after 0.1 s (Fig.10).Thus,the improved method has better anti-disturbance performance and speed tracking capabilities than those of the traditional control algorithm.

    Fig.9 Torque speed waveforms obtained by different methods under sudden load torque condition.(a) Conventional crosscoupling control.(b) Improved bi-power reaching method sliding mode control

    Fig.10 Synchronization error waveforms obtained by different methods under sudden surge load torque condition.(a) Conventional cross-coupling control.(b) Improved bi-power reaching method sliding mode control

    7 Conclusion

    Based on the traditional cross-coupling control,an integral sliding mode speed tracking controller based on bi-power reaching method is designed and an observer is introduced into the sliding mode control rate to enhance the robustness and anti-disturbance of the system.A speed synchronization controller based on fuzzy adaptive PI control adjusts the PI parameters of the speed synchronous controller according to the real-time synchronization error.The comparison experimetal indicates that the system has certain adaptive adjustment ability for external disturbance.

    久久青草综合色| 啦啦啦 在线观看视频| 国产淫语在线视频| 亚洲精品一二三| 永久免费av网站大全| 国产欧美亚洲国产| 国产免费福利视频在线观看| 国产精品 国内视频| 精品国产乱码久久久久久小说| 高清在线国产一区| 久久 成人 亚洲| 超碰成人久久| 成年人午夜在线观看视频| 一级毛片电影观看| 日本91视频免费播放| kizo精华| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲国产av影院在线观看| 夫妻午夜视频| 超碰成人久久| www.熟女人妻精品国产| 亚洲欧洲日产国产| 国产精品一区二区免费欧美 | 欧美+亚洲+日韩+国产| 免费黄频网站在线观看国产| 天天躁狠狠躁夜夜躁狠狠躁| 国产av一区二区精品久久| 亚洲精品美女久久久久99蜜臀| 免费高清在线观看日韩| 久久免费观看电影| 国产极品粉嫩免费观看在线| 亚洲国产中文字幕在线视频| 天堂8中文在线网| 丝袜美足系列| 亚洲精品一卡2卡三卡4卡5卡 | www.自偷自拍.com| 新久久久久国产一级毛片| 青春草视频在线免费观看| 丝袜在线中文字幕| 日韩 亚洲 欧美在线| 欧美黄色片欧美黄色片| 亚洲国产精品999| 国产淫语在线视频| 国产av一区二区精品久久| 久久天堂一区二区三区四区| av视频免费观看在线观看| 男人添女人高潮全过程视频| 国产精品久久久av美女十八| 日本91视频免费播放| 亚洲三区欧美一区| 999久久久国产精品视频| 97在线人人人人妻| 男人添女人高潮全过程视频| 巨乳人妻的诱惑在线观看| 黄网站色视频无遮挡免费观看| 亚洲成人手机| 黑人欧美特级aaaaaa片| 久久影院123| 久久人人爽av亚洲精品天堂| 高清欧美精品videossex| 国产亚洲av高清不卡| 两性午夜刺激爽爽歪歪视频在线观看 | 国产亚洲精品一区二区www | 日韩制服骚丝袜av| 2018国产大陆天天弄谢| 一级毛片女人18水好多| 午夜福利视频精品| 搡老熟女国产l中国老女人| 不卡av一区二区三区| 精品国产超薄肉色丝袜足j| 十八禁高潮呻吟视频| 国产日韩欧美在线精品| 新久久久久国产一级毛片| 欧美老熟妇乱子伦牲交| 国内毛片毛片毛片毛片毛片| 波多野结衣一区麻豆| 久久精品亚洲av国产电影网| 久久久久国内视频| a级毛片在线看网站| 日本猛色少妇xxxxx猛交久久| 99国产精品一区二区三区| 女人高潮潮喷娇喘18禁视频| 久久久国产精品麻豆| 欧美日韩福利视频一区二区| 咕卡用的链子| 啦啦啦免费观看视频1| 香蕉丝袜av| 日本vs欧美在线观看视频| 中文字幕高清在线视频| 三上悠亚av全集在线观看| 91精品三级在线观看| 亚洲五月婷婷丁香| 99国产精品99久久久久| 亚洲av成人不卡在线观看播放网 | 日日夜夜操网爽| 亚洲精品中文字幕在线视频| 视频区欧美日本亚洲| 99热网站在线观看| 国产亚洲精品一区二区www | 性少妇av在线| 亚洲国产av影院在线观看| 久久精品熟女亚洲av麻豆精品| 久久国产精品男人的天堂亚洲| 欧美激情 高清一区二区三区| 国产一区二区三区在线臀色熟女 | 午夜福利在线观看吧| 精品国产乱码久久久久久小说| 国产男人的电影天堂91| 操出白浆在线播放| 欧美日韩亚洲高清精品| 丝瓜视频免费看黄片| 国产免费av片在线观看野外av| 久久久水蜜桃国产精品网| 成年美女黄网站色视频大全免费| 正在播放国产对白刺激| 伊人久久大香线蕉亚洲五| 国产精品一区二区在线观看99| 桃花免费在线播放| 又紧又爽又黄一区二区| 欧美黄色片欧美黄色片| 欧美黄色淫秽网站| 亚洲三区欧美一区| 90打野战视频偷拍视频| 欧美日韩亚洲国产一区二区在线观看 | videosex国产| 法律面前人人平等表现在哪些方面 | 精品国产一区二区三区久久久樱花| 精品久久蜜臀av无| 妹子高潮喷水视频| 国产伦人伦偷精品视频| 青青草视频在线视频观看| 纯流量卡能插随身wifi吗| 国产av精品麻豆| 2018国产大陆天天弄谢| 国产亚洲一区二区精品| 岛国毛片在线播放| 一区二区av电影网| 精品第一国产精品| 一区二区三区乱码不卡18| 欧美成人午夜精品| 91成人精品电影| 国产精品久久久人人做人人爽| www.av在线官网国产| 少妇裸体淫交视频免费看高清 | 欧美日韩亚洲高清精品| 亚洲性夜色夜夜综合| 777米奇影视久久| 午夜两性在线视频| 国产亚洲精品久久久久5区| 欧美少妇被猛烈插入视频| 欧美日韩黄片免| 国产男女超爽视频在线观看| 中文精品一卡2卡3卡4更新| 亚洲欧美激情在线| 99国产综合亚洲精品| 日本猛色少妇xxxxx猛交久久| 欧美日韩黄片免| 最近中文字幕2019免费版| 国产男女内射视频| 久久人人97超碰香蕉20202| 黄频高清免费视频| av天堂久久9| 自线自在国产av| 欧美xxⅹ黑人| 脱女人内裤的视频| 久久久精品免费免费高清| tocl精华| 我要看黄色一级片免费的| 国产精品国产av在线观看| 在线观看免费午夜福利视频| 超碰成人久久| 人妻一区二区av| 菩萨蛮人人尽说江南好唐韦庄| 岛国在线观看网站| 欧美日韩中文字幕国产精品一区二区三区 | 国产成人一区二区三区免费视频网站| 老司机亚洲免费影院| a级片在线免费高清观看视频| 18禁黄网站禁片午夜丰满| 在线十欧美十亚洲十日本专区| 黄片小视频在线播放| 国产麻豆69| 成年人午夜在线观看视频| 人人妻人人爽人人添夜夜欢视频| 色综合欧美亚洲国产小说| 啦啦啦啦在线视频资源| 69av精品久久久久久 | 每晚都被弄得嗷嗷叫到高潮| 母亲3免费完整高清在线观看| 久久99热这里只频精品6学生| 国产精品麻豆人妻色哟哟久久| 这个男人来自地球电影免费观看| 久久 成人 亚洲| 亚洲国产看品久久| 菩萨蛮人人尽说江南好唐韦庄| 在线观看一区二区三区激情| 久久久国产成人免费| 不卡av一区二区三区| 亚洲成av片中文字幕在线观看| 亚洲免费av在线视频| 麻豆乱淫一区二区| 日本a在线网址| 一级毛片女人18水好多| 热99久久久久精品小说推荐| 国产精品亚洲av一区麻豆| 久久久精品区二区三区| 99国产精品一区二区蜜桃av | 欧美大码av| 午夜免费成人在线视频| 亚洲天堂av无毛| 国产精品熟女久久久久浪| 亚洲久久久国产精品| 成人国语在线视频| www.自偷自拍.com| 国产av又大| 五月天丁香电影| 欧美激情极品国产一区二区三区| 国产人伦9x9x在线观看| 日韩 欧美 亚洲 中文字幕| 最黄视频免费看| 手机成人av网站| 欧美日韩中文字幕国产精品一区二区三区 | e午夜精品久久久久久久| 久久国产精品影院| 亚洲av日韩在线播放| 国产99久久九九免费精品| 男人添女人高潮全过程视频| 欧美黄色淫秽网站| 日韩欧美国产一区二区入口| 男人操女人黄网站| 国产精品国产三级国产专区5o| 俄罗斯特黄特色一大片| 啦啦啦视频在线资源免费观看| 精品人妻在线不人妻| 人人妻人人澡人人看| 久久久久国产精品人妻一区二区| 国产免费福利视频在线观看| 91九色精品人成在线观看| 欧美黑人欧美精品刺激| 男女国产视频网站| 青春草视频在线免费观看| 人人妻人人澡人人看| 久久人人爽人人片av| 狠狠婷婷综合久久久久久88av| 9色porny在线观看| 考比视频在线观看| 精品欧美一区二区三区在线| 亚洲专区中文字幕在线| 香蕉国产在线看| 岛国在线观看网站| 狠狠婷婷综合久久久久久88av| 看免费av毛片| 日本精品一区二区三区蜜桃| 欧美精品av麻豆av| 午夜福利视频在线观看免费| 国产国语露脸激情在线看| 麻豆乱淫一区二区| 麻豆av在线久日| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品一区二区在线不卡| 亚洲精品久久成人aⅴ小说| 日韩制服骚丝袜av| 伊人久久大香线蕉亚洲五| 一区二区三区精品91| 亚洲自偷自拍图片 自拍| 国产一区二区三区综合在线观看| 国产精品一区二区免费欧美 | 亚洲 欧美一区二区三区| 一区二区日韩欧美中文字幕| 大片电影免费在线观看免费| 少妇精品久久久久久久| 国产区一区二久久| 亚洲少妇的诱惑av| 日本wwww免费看| 亚洲精品在线美女| 大香蕉久久成人网| 亚洲五月色婷婷综合| 免费观看av网站的网址| 丝袜美足系列| 色94色欧美一区二区| 欧美久久黑人一区二区| 欧美老熟妇乱子伦牲交| 久久ye,这里只有精品| 亚洲欧美色中文字幕在线| bbb黄色大片| 久久久精品区二区三区| 一区二区三区精品91| 丝袜脚勾引网站| 99精国产麻豆久久婷婷| 亚洲av片天天在线观看| 色94色欧美一区二区| 久久久久久久精品精品| 他把我摸到了高潮在线观看 | 亚洲国产精品成人久久小说| 亚洲欧美精品自产自拍| 欧美性长视频在线观看| 肉色欧美久久久久久久蜜桃| 热re99久久国产66热| 人妻一区二区av| 高清在线国产一区| 男人添女人高潮全过程视频| 欧美日韩亚洲国产一区二区在线观看 | √禁漫天堂资源中文www| 精品亚洲成国产av| 免费不卡黄色视频| 午夜免费成人在线视频| 99久久精品国产亚洲精品| 12—13女人毛片做爰片一| 国产成人影院久久av| 9热在线视频观看99| 中文字幕人妻丝袜制服| 女人爽到高潮嗷嗷叫在线视频| 日韩熟女老妇一区二区性免费视频| 色视频在线一区二区三区| 欧美午夜高清在线| 成人影院久久| 国产91精品成人一区二区三区 | 侵犯人妻中文字幕一二三四区| 欧美xxⅹ黑人| 在线 av 中文字幕| 99国产精品一区二区蜜桃av | 99久久99久久久精品蜜桃| 精品少妇黑人巨大在线播放| 正在播放国产对白刺激| 亚洲成人国产一区在线观看| 久久午夜综合久久蜜桃| 久久中文看片网| 亚洲精品国产色婷婷电影| 成年动漫av网址| 可以免费在线观看a视频的电影网站| av天堂在线播放| 一进一出抽搐动态| 中文字幕制服av| 国产熟女午夜一区二区三区| 老司机靠b影院| 国产黄频视频在线观看| 热re99久久精品国产66热6| 久久久久国内视频| 一区二区三区激情视频| 亚洲色图 男人天堂 中文字幕| 亚洲专区国产一区二区| 十八禁人妻一区二区| 又紧又爽又黄一区二区| 免费人妻精品一区二区三区视频| 国产亚洲一区二区精品| 91国产中文字幕| 国产亚洲av高清不卡| 中国美女看黄片| 亚洲欧美精品综合一区二区三区| 母亲3免费完整高清在线观看| 亚洲国产精品成人久久小说| av超薄肉色丝袜交足视频| a 毛片基地| 精品福利永久在线观看| 97人妻天天添夜夜摸| 啪啪无遮挡十八禁网站| 久久久久国产精品人妻一区二区| 免费高清在线观看视频在线观看| 亚洲精品在线美女| av福利片在线| 人人妻,人人澡人人爽秒播| 中文字幕av电影在线播放| 十八禁网站免费在线| 午夜免费鲁丝| 女性生殖器流出的白浆| 搡老熟女国产l中国老女人| 最近中文字幕2019免费版| 久久精品国产综合久久久| 日韩视频一区二区在线观看| 欧美 亚洲 国产 日韩一| 日韩欧美免费精品| 欧美激情久久久久久爽电影 | 男女国产视频网站| 午夜福利,免费看| 天堂8中文在线网| 捣出白浆h1v1| 精品卡一卡二卡四卡免费| 成人亚洲精品一区在线观看| 国产免费视频播放在线视频| 丝袜美腿诱惑在线| a级毛片黄视频| av超薄肉色丝袜交足视频| 在线十欧美十亚洲十日本专区| 亚洲七黄色美女视频| 欧美精品啪啪一区二区三区 | 亚洲专区字幕在线| 国产成人精品无人区| 精品福利观看| 久久性视频一级片| 18禁观看日本| 性少妇av在线| 少妇精品久久久久久久| 午夜成年电影在线免费观看| 亚洲av美国av| av国产精品久久久久影院| 女性生殖器流出的白浆| 亚洲欧美清纯卡通| 交换朋友夫妻互换小说| 国产精品一二三区在线看| 在线观看免费日韩欧美大片| 午夜视频精品福利| 桃花免费在线播放| h视频一区二区三区| 黑人猛操日本美女一级片| 国产一卡二卡三卡精品| 亚洲色图综合在线观看| 久久国产精品大桥未久av| 亚洲精品国产av成人精品| 黄频高清免费视频| 久热爱精品视频在线9| 免费高清在线观看视频在线观看| 欧美日韩亚洲高清精品| 国产区一区二久久| 国产主播在线观看一区二区| 青青草视频在线视频观看| 国产欧美亚洲国产| 一区二区三区乱码不卡18| 最近最新中文字幕大全免费视频| 少妇 在线观看| 久久精品亚洲av国产电影网| 18禁观看日本| 中文字幕色久视频| 国产免费av片在线观看野外av| 欧美久久黑人一区二区| 国产伦理片在线播放av一区| 日本猛色少妇xxxxx猛交久久| 性色av一级| 欧美日韩亚洲高清精品| 美女大奶头黄色视频| 日日夜夜操网爽| 久久天堂一区二区三区四区| 免费不卡黄色视频| 欧美 日韩 精品 国产| 色精品久久人妻99蜜桃| 日韩免费高清中文字幕av| 成年人免费黄色播放视频| 国产片内射在线| 日本欧美视频一区| 少妇人妻久久综合中文| 不卡一级毛片| 亚洲av国产av综合av卡| 国产在视频线精品| www.av在线官网国产| 国产高清国产精品国产三级| 国产淫语在线视频| 国产精品亚洲av一区麻豆| 黑人巨大精品欧美一区二区蜜桃| 久久精品亚洲av国产电影网| 国产精品99久久99久久久不卡| 国产av精品麻豆| 国产成人a∨麻豆精品| 久久av网站| 精品一区在线观看国产| 久久精品熟女亚洲av麻豆精品| 成年女人毛片免费观看观看9 | 亚洲第一青青草原| 久久热在线av| 一个人免费在线观看的高清视频 | 国产精品.久久久| 一本久久精品| 中国美女看黄片| 午夜视频精品福利| 久久久久国产一级毛片高清牌| av视频免费观看在线观看| 久久久久久久精品精品| 国产有黄有色有爽视频| 国产亚洲av高清不卡| 日韩有码中文字幕| 午夜影院在线不卡| 国产日韩一区二区三区精品不卡| 久久女婷五月综合色啪小说| 9热在线视频观看99| 日本av免费视频播放| 99国产极品粉嫩在线观看| 老司机福利观看| 亚洲精品一二三| 美女福利国产在线| 亚洲黑人精品在线| 婷婷成人精品国产| 各种免费的搞黄视频| 欧美午夜高清在线| 大片免费播放器 马上看| 99国产精品一区二区蜜桃av | 亚洲专区国产一区二区| 99热国产这里只有精品6| 国产日韩欧美在线精品| 青春草亚洲视频在线观看| 国产三级黄色录像| 国产精品久久久久久精品电影小说| 国产黄频视频在线观看| 国产野战对白在线观看| 91大片在线观看| 亚洲人成77777在线视频| 美女国产高潮福利片在线看| 久久久国产成人免费| 国产精品麻豆人妻色哟哟久久| 欧美精品av麻豆av| 精品久久久久久久毛片微露脸 | 免费观看av网站的网址| 久久久精品区二区三区| 欧美黄色淫秽网站| 亚洲,欧美精品.| 欧美日韩国产mv在线观看视频| a级毛片在线看网站| 久久久久久久大尺度免费视频| 亚洲第一欧美日韩一区二区三区 | 精品国产一区二区三区久久久樱花| 亚洲精品一卡2卡三卡4卡5卡 | 激情视频va一区二区三区| 日本撒尿小便嘘嘘汇集6| av视频免费观看在线观看| 久久国产亚洲av麻豆专区| 男女下面插进去视频免费观看| 蜜桃国产av成人99| 亚洲国产欧美在线一区| 老汉色av国产亚洲站长工具| www日本在线高清视频| 久久精品亚洲av国产电影网| 丝袜喷水一区| 国产成人av激情在线播放| 中文字幕另类日韩欧美亚洲嫩草| 国产亚洲av高清不卡| 亚洲伊人久久精品综合| 国产不卡av网站在线观看| 亚洲av成人一区二区三| 老鸭窝网址在线观看| 成人av一区二区三区在线看 | 久久精品国产a三级三级三级| 99热网站在线观看| 啦啦啦免费观看视频1| 一本色道久久久久久精品综合| 亚洲av电影在线观看一区二区三区| 精品久久久精品久久久| 国产精品久久久久久人妻精品电影 | 久久九九热精品免费| 悠悠久久av| 一区二区av电影网| 天天躁狠狠躁夜夜躁狠狠躁| 欧美日韩亚洲国产一区二区在线观看 | 亚洲久久久国产精品| 法律面前人人平等表现在哪些方面 | 午夜福利在线观看吧| 亚洲精品在线美女| 日韩制服骚丝袜av| 国产精品久久久av美女十八| 狂野欧美激情性xxxx| 青春草视频在线免费观看| 一级毛片电影观看| 免费在线观看完整版高清| 国产99久久九九免费精品| 国产成人精品在线电影| 无限看片的www在线观看| 国产福利在线免费观看视频| 97人妻天天添夜夜摸| 一区二区三区精品91| 女人被躁到高潮嗷嗷叫费观| 免费在线观看黄色视频的| 精品亚洲成a人片在线观看| 亚洲国产欧美在线一区| 国产av一区二区精品久久| 50天的宝宝边吃奶边哭怎么回事| 久久久国产精品麻豆| 老司机亚洲免费影院| 丝袜人妻中文字幕| 精品熟女少妇八av免费久了| 国产精品一二三区在线看| 后天国语完整版免费观看| 不卡一级毛片| 日韩有码中文字幕| 国产亚洲av片在线观看秒播厂| 久久久久国产一级毛片高清牌| 美女中出高潮动态图| 麻豆国产av国片精品| 国产精品久久久av美女十八| 久久国产精品人妻蜜桃| 亚洲国产日韩一区二区| 日日摸夜夜添夜夜添小说| 黄色视频,在线免费观看| 水蜜桃什么品种好| 国产黄色免费在线视频| 热re99久久精品国产66热6| 波多野结衣一区麻豆| 嫩草影视91久久| 久久久久国产一级毛片高清牌| h视频一区二区三区| 黑人欧美特级aaaaaa片| 性高湖久久久久久久久免费观看| 国产亚洲精品一区二区www | 亚洲专区国产一区二区| 亚洲色图 男人天堂 中文字幕| 亚洲伊人色综图| 欧美另类亚洲清纯唯美| 午夜福利,免费看| 色播在线永久视频| 男女免费视频国产| 建设人人有责人人尽责人人享有的| 操出白浆在线播放| 亚洲欧美色中文字幕在线| 正在播放国产对白刺激| 国产三级黄色录像| 欧美性长视频在线观看| 最新的欧美精品一区二区| 在线亚洲精品国产二区图片欧美| 夜夜夜夜夜久久久久| 考比视频在线观看| 中文字幕av电影在线播放| 黄频高清免费视频| 黄网站色视频无遮挡免费观看| 一区二区av电影网| 啦啦啦免费观看视频1| 窝窝影院91人妻| 这个男人来自地球电影免费观看| 亚洲第一av免费看| 亚洲国产欧美网| 久久久国产成人免费|