• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A sliding-mode control of a Dual-PMSMs synchronization driving method

    2023-12-01 05:50:22SONGXiaoliZHANGChiGUOYawei
    中國(guó)光學(xué) 2023年6期

    SONG Xiao-li ,ZHANG Chi,3,GUO Ya-wei,3

    (1.National Astronomical Observatories/Nanjing Institute of Astronomical Optics & Technology,Chinese Academy of Sciences, Nanjing 210042, China;2.CAS Key Laboratory of Astronomical Optics & Technology, Nanjing Institute of Astronomical Optics & Technology, Nanjing 210042, China;3.University of Chinese Academy of Sciences, Beijing 100049, China)

    Abstract: Speed synchronization performance and anti-interference are important factors that affect the synchronous operation dynamic response and steady-state accuracy of dual Permanent Magnet Synchronous Motors’ (Dual-PMSMs).By introducing cross-coupling control as the framework,an integral sliding mode speed tracking controller based on an improved bi-power reaching method is proposed to reduce the speed error between two motors.A load torque observer is designed to bring the observed value into the Sliding Mode Control (SMC) reaching method that enhances the anti-disturbance performance of the system.Meanwhile,a synchronous controller is designed using a Fuzzy-Proportional-Integral-Derivative (FPID) control to improve the synchronization of the Dual-PMSMs.The results show that compared with the traditional PI algorithm as the target speed is 800 r/min,the proposed control method can decrease the two motors’ speed synchronization error from 25 r/min to 12 r/min under a no-load startup and reduce the speed synchronization error from 7 r/min to 2.2 r/min with sudden load torque,improving the synchronization and disturbance rejection.

    Key words: sliding mode control;cross-coupling control;improved bi-power reaching method;observer;Dual-PMSMs

    1 Introduction

    Permanent Magnet Synchronous Motors (PMSM) with high torque,power densities,simple structures,reliable operation and other outstanding advantages,has been widely used in many fields such as new energy,CNC machine tools,aerospace,ship propulsion etc.However,in a high-power transmission system,it is difficult for the single PMSM to meet the high demands for power due to its limitation in volume and some other factors,which makes the dual-or multi-motor cooperative drive load method a widely researched topic.

    The PMSM is a nonlinear,multi-variable and strongly coupled system.It is sensitive to external disturbances which brings significant challenges to Dual-PMSM synchronous drive control performance.Traditional PID control is widely used in PMSM speed regulation systems for its simple structure and high reliability.However,it is difficult to meet demands for accurate control in the face of external disturbances[1,2].Recently,various nonlinear algorithms have been introduced to PMSM control systems such as fuzzy control[3,4],neural network control[5],adaptive control[6],sliding mode control[7,8]and mode predictive control[9-10]etc.Sliding mode control is widely used in PMSM control systems because of its insensitivity to parameters and external disturbances,fast response speed and robustness[11-12].

    The common Dual-PMSM synchronous control structures mainly include[13]: Master-Slave Control,Master Reference Control,Cross-Coupling Control,etc.In Ref.[14],the concept of Cross-Coupling Control is proposed and rotational speed cross-coupling control is realized to eliminate the synchronization error of a two-motor system,but it requires additional hardware to be implemented to a cross-coupled system.In Ref.[15],Shih proposed Relative Cross-Coupling Control to reduce the position error in Bi-axis motion.In Ref.[16],to overcome the defects of the conventional relative crosscoupling control strategy,the speed weight coefficient reflects the importance of each motor’s speed in the improved relative cross-coupling control strategy,which mostly achieves the decoupling of the system’s synchronization and tracking performance but all motors use the same speed controller.Reference [17] analyzed the cross-coupling inherent characteristics of IMs and studied four control strategies to determine the effect of several operating parameters over stator currents cross-coupling.However,it did not mention the speed synchronization error of two-motor operation.In Ref.[18],a Master-Slave control structure is proposed with no coupling between two motors and thus there is no feedback between them.If one of the motors is disturbed,the other motor cannot compensate.This structure cannot effectively adjust the synchronization error.

    To ensure the speed synchronization performance in anti-internal and external interference,this paper proposes a novel reaching method based on a sliding-mode control for a Dual-PMSM system.An integral sliding mode speed tracking controller based on the improved bi-power reaching method is designed to replace the traditional PID speed tracking controller to mitigate the external disturbance of the dual-motor speed control system.A load torque observer is built to bring the observed value into the sliding mode control law to enhance the anti-disturbance performance of the system.At the same time,the speed synchronization controller uses the fuzzy PI control,which can adjust the PI parameters online in real time according to the synchronization error,so that the system has adaptive adjustment ability when facing external disturbances.

    2 PMSM mathematical model

    The mathematical model of PMSM is derived under the assumption that saturation from the eddy current high-order harmonic components is negligible,the stator windings are symmetric in space and the stator currents produce sinusoidal magnetic motive forces.According to these assumptions,the voltage equation of PMSM can be obtained as (1) in thed-q(Direct axis Quadrature axis) synchronous rotating reference coordinate when the PMSM is in a steady state.

    whereudanduqare voltage components of the d and q axes,respectively;idandiqare current components of thedandqaxes,respectively;LdandLqare thedandqaxes’ inductance;Rsis the stator resistance;andωeis the mechanical angular velocity of the motor.

    The electromagnetic torque equation can be expressed as

    wherepis the number of stator pole pairs;ψis the permanent magnet’s magnetic flux;Teis electromagnetic torque,andTLis the load torque.

    If the motor is an SPMSM (Surface Permanent Magnet Synchronous Motor),soLd=Lq=L,the torque equation can be simplified as

    The motion equation of the PMSM is

    whereJis the moment inertia;Bis the friction coefficient.ω is the mechanical angular velocity of the mirror.

    3 Design of the sliding mode speed tracking controller

    Sliding Mode Control (SMC) is essentially a kind of nonlinear control,which is a control algorithm based on variable structure control.It uses the switching function to make the controlled system continuously change and forces the controlled system to continuously approach the sliding mode surface in the dynamic process.After sliding the surface,a high-frequency up and down motion is performed along the sliding surface,that is,the sliding mode.Since the sliding mode surface is independent of the parameters and disturbances of the system,it is strongly immune to external disturbances.The traditional sliding mode control has a contradiction between the sliding mode chattering and the approach speed,and the traditional sliding mode surface easily causes high-frequency disturbance of the system due to the existence of the differential term.The selection of a sliding mode surface and a sliding mode reaching method are key to reducing chattering and ensuring the dynamic performance of a Dual-PMSM system.

    3.1 Design of the sliding mode surface

    According to the theory of SMC,various reaching laws can be selected to achieve highly dynamic DPMSM performance.

    Define the slide surface as

    The PMSM system status variables functions are defined as

    whereωrefandωiare the given and the actual speed of theith PMSM,respectively,andcis the integral coefficient.The SMC structure of the Dual-PMSMs system is the same.Compared with literatures[19,20],the integral sliding mode can effectively avoid the high frequency noise caused by the differential and reduce the steady state error.

    3.2 Design of the improved bi-power reaching method

    The traditional reaching method is expressed as-k|s|sgn(s).To adapt to the variations of the sliding mode surface,the improved bi-power reaching method can be designed as

    wherek1,k2,k3>0,1 >α>0,β>1.The first term on the right side of the equal sign guarantees the effective time convergence of the sliding mode.The second term ensures the rapid convergence of the control system away from the sliding mode’s surface.The third term provides the lowest rate of change for the control system.Next,the characteristics of the improved bi-power reaching method proposed in this paper will be discussed,mainly from the perspective of rapidity and the steady-state error bound.

    3.2.1 The rapidity of the improved bi-power reaching method

    When the state variablesis far away from the sliding mode surface,the second term has a large rate of change and therefore plays a dominant role.When the state variablesis close to the sliding mode surface,the first term has a large rate of change and plays a dominant role.Here,the third term is assumed in the interval [a,b] and can be considered to achieve the accelerated convergence of the intermediate state.

    In the first state,the first and the third term can be ignored so

    In the second state,the first and the second term can be ignored so

    In the third state,the second and the third term can be ignored so

    If the initial variables(0) >b>0,the sliding mode motion process can be divided into three stages.Whens(0)→s=b,the second term plays a dominant role and the other terms can be ignored.Whens=b→s=a,the third term plays a dominant role and the other terms can be ignored.Whens=a→s=0,the first term plays a dominant role and the other terms can be ignored.Here,equation (8)can be integrated,thus

    The approach time of the first stage is therefore

    When equation (9) is integrated,

    The approach time of the second stage is

    Lastly,equation (10) is integrated,thus

    The approach time of the first stage is

    The total approach time can be expressed as(17),if the minor terms are ignored in the three stages.

    If the initial variables(0) <-b<0,the sliding mode motion process can be divided into three stages.Whens(0)→s=-b,the second term plays a dominant role and the other terms can be ignored.Whens=-b→s=-a,the third term plays a dominant role and the other terms can be ignored.Whens=-a→s=0,the first term plays a dominant role and the other term can be ignored.

    Similarly,equation (8) can be integrated,thus

    The approach time of the first stage is

    When equation (9) is integrated,thus

    The approach time of the second stage is

    Lastly,equation (10) is integrated,thus

    The approach time of the first stage is

    If the minor terms are ignored in the three stages,the total approach time can be expressed as equation (24)

    It is evident that the control system can reach the balance point in a finite time.After reaching the balance point,the speed error is zero when reaching the sliding mode,and it can effectively reduce sliding mode chattering[21].

    3.2.2 Analysis of steady-state error bound and stability

    If equation (7) has the influence of uncertainty disturbance,which can be written as

    DefineDas the upper bound of the uncertainty perturbation d(t),that is,|d(t)| ≤D.When there are uncertain and bounded external disturbances in the system,in order to analyze the convergence of the system in finite time,the following lemma is introduced first.

    Lemma 1.In Ref.[22],IfthereisacontinuousdifferentiablefunctionV(x)definedintheneighborhoodU?Rncontainingtheorigin,andthereis arealnumber?>0,0 <θ<1,satisfytheconditions

    (1)V(x) ispositivedefiniteinU;

    (2)V·≤-φVθ(x),?x∈U.

    If the Lyapunov function is defined as

    by substituting equation (25) into the differentiation ofV,the following equation can be obtained

    If |s|(k3|s|-d(t))≥0,then equation (27) can be simplified as

    From Lemma 1,it can be seen that the system converges in finite time about the equilibrium zero so the system can be guaranteed to converge in regionin a finite time.

    Equation (27) can also be transformed into

    Similarly,whenk1|s|α-d(t)≥0 ork2|s|βd(t)≥0,the system is guaranteed to converge in the regionin a finite time.So,the steady-state error bound of the improved bipower convergence law is

    From the analysis,if the value of the parameters are proper,the value of the steady-state error bound of the improved bi-power reaching formula is smaller.It means that the reaching formula has better immunity to the bounded disturbance of uncertainty and stronger robustness.Also,it can be seen that whether or not the system contains uncertain disturbances,Therefore,the designed sliding mode control system is stable and the system can reach the sliding mode’s surface.

    3.3 Replace of symbol function

    The general SMO method has the chattering phenomenon because of the discontinuity of the sign function sgn(s).In order to suppress the intrinsic chattering for better performance,this paper designs a continuous function to replace the sign function.

    where η is a very small positive number.

    3.4 Design of speed controller

    The speed controller provides the current value to produce a torque reference for the motor drive system.Equation (5) can be differentiated,thus

    Equations (6) and (7) can be rewritten as

    So,the new reference current is obtained as

    The block diagram of the final speed control law is shown in Fig.1.

    Fig.1 Block diagram of the speed controller

    4 Design of the load-based torque observer

    Generally,the load torque and external disturbance torque in the PMSM control system are regarded as the total torque.The reasonable design of the observer can effectively observe the load torque and calculate the motor current in equation (34) to realize disturbance suppression of the system.The total torque can be regarded as a constant value within a control period,which means

    In order to obtain the estimated value of the total torqueTLi,the disturbance observer can be designed according to modern control theory and the gain in the observer can be reasonably configured to observe the rotational speed and the total disturbance torque.The state equation of the system is constructed as follows

    in a nonlinear time-varying feedback system,where

    We can know

    It can be seen that the system is fully observable.The observer and observation error equations are constructed as follows

    The matrixG=can be found so that the eigenvalues of the matrix (A-GC) are located in the left half-plane by the pole configuration.The observation errorebetween the observedand the actualTLcan be close to zero in finite time.Fig.2 is the block diagram of the total disturbance torque observer.

    Fig.2 Structural block diagram of the disturbance torque observer

    Fig.3 Surface diagram of ?kp value output

    Fig.4 Surface diagram of ?ki value output

    5 Speed synchronization controller design

    The cross-coupling control adopts speed synchronization error compensation current to make the double-PMSM respond quickly and realize speed synchronization.However,the speed error synchronization coefficient in cross-coupling control is usually difficult to obtain through theoretical analysis.Therefore,a cross-coupling synchronization control algorithm based on an improved double-power sliding mode control and fuzzy adaptive PI control is designed to improve the system’s accuracy.

    For the fuzzy adaptive PI control,the synchronization errors ? ω and its rate of change ?ω are the input and the current compensation is the output (Define ? ω=ω1-ω2,? ωc=? ω/?t).Thekpandkivalues of the PI controller are continuously adjusted through ?kpand ?kionline.Wheneis large,a largekpandkishould be taken to reduce the error.Wheneis moderate,a moderatekpandkishould be moderated to avoid overshoot of the synchronous system.Wheneis small,a smallkpandkishould be selected to avoid the impact of the synchronous system and give adaptive adjustment ability.Table 1 and Table 2 are the fuzzy rules ofkpandki.Figs.3-4 (color online) show the relationship of the surface of ?kpand ?ki.The control diagram of the Dual-PMSMs synchronous system is shown in Fig.5.

    Tab.1 kp fuzzy rule table

    Tab.2 ki fuzzy rule table

    Fig.5 Overall block diagram of dual-motor synchronous control system

    6 Simulation and analysis

    The purpose of the current study is to determine the speed synchronization performance and antiinterference of a Dual-PMSM system.In order to verify the performance of the proposed control strategy,a Dual-PMSMs synchronous control modeling simulation is performed in MATLAB/Simulink.The parameters of Dual-PMSMs and the controller parameters are shown in Tables 3 and 4.The simulated speed response waveform of the proposed improved bi-power reaching method and traditional reaching method is compared in Fig.6 (color online) with reference speeds from 800 r/minto1 200 r/min.It can be seen that the improved bipower reaching method control has less adjustment time (Traditional reaching method speed controller parameter:k=30;The improved bi-power reaching method speed controller parameters are shown in Table 4 PMSM1.).

    Fig.6 Comparison of speed response waveforms between the improved and traditional reaching methods

    It can be seen that the parameters of the two motors is different and the process is more difficult than it is for motors with the same parameters.The parameters of the current loop PI controller are the same between the two control strategies,wherekp=350 andkp=82 500.The speed PI controller para-meters of the traditional double PI parallel crosscoupling control method are designed atkp=0.02 andki=1.

    Tab.3 Parameters of the motor

    Tab.4 SMC controller parameters

    The performance comparison between the traditional double PI cross-coupling control from noload torque and sudden load torque perturbation is shown in Figs.7-Fig.10 when the reference speed isωref=800 r/min.

    From Fig.7(a),it can be seen that traditional dual PI parallel cross-coupling control has a larger overshoot at no-load torque start and it reaches the reference speed after 0.075 s.The designed control strategy in this paper has no overshoot and can reach the reference speed in 0.015 s,as shown in Fig.7(b).Due to the different parameters of the two motors,the speed synchronization error of the Dual-PMSMs is larger whether uses the traditional crosscoupling control strategy or the improved bi-power reaching sliding mode control method at startup.From Fig.8(a) we can know that the maximum synchronization error can reach 25 r/min at the reference speed of 800 r/min when use the traditional cross-coupling control strategy.However,Fig.8(b)shows that the maximum speed error of the proposed control strategy is 12 r/min under no-load torque startup conditions.

    Fig.7 Speed waveforms obtained by different methods under no-load torque starting condition.(a) Conventional crosscoupled control.(b) Improved bi-power reaching method

    Fig.8 Synchronization error waveforms obtained by different methods under no-load torque startup condition.(a) Conventional cross-coupling control.(b) Improved bi-power reaching method sliding mode control

    The speed waveform and the synchronization error waveform are shown in Fig.9,where a 2 N·m load torque is suddenly applied to motor 1 at 1 s and a 2.5 N·m load torque is suddenly applied to motor 2 at 2 s.Fig.10(a) shows that the large synchronization error is 7 r/min with sudden load torque and it can reach stability after 0.2 s under the conventional cross-coupling controller.Fig.10 (b) shows that the proposed control strategy has a maximum speed synchronization error of 2.2 r/min with sudden load torque and reaches stability after 0.1 s (Fig.10).Thus,the improved method has better anti-disturbance performance and speed tracking capabilities than those of the traditional control algorithm.

    Fig.9 Torque speed waveforms obtained by different methods under sudden load torque condition.(a) Conventional crosscoupling control.(b) Improved bi-power reaching method sliding mode control

    Fig.10 Synchronization error waveforms obtained by different methods under sudden surge load torque condition.(a) Conventional cross-coupling control.(b) Improved bi-power reaching method sliding mode control

    7 Conclusion

    Based on the traditional cross-coupling control,an integral sliding mode speed tracking controller based on bi-power reaching method is designed and an observer is introduced into the sliding mode control rate to enhance the robustness and anti-disturbance of the system.A speed synchronization controller based on fuzzy adaptive PI control adjusts the PI parameters of the speed synchronous controller according to the real-time synchronization error.The comparison experimetal indicates that the system has certain adaptive adjustment ability for external disturbance.

    日本黄色片子视频| 国产激情偷乱视频一区二区| 亚洲av成人精品一区久久| 午夜精品一区二区三区免费看| 中文字幕久久专区| 国产一区有黄有色的免费视频 | 国产成人a∨麻豆精品| 欧美性猛交黑人性爽| 中国国产av一级| 午夜福利视频1000在线观看| 国产亚洲av片在线观看秒播厂 | 国产午夜福利久久久久久| 在线观看一区二区三区| 91在线精品国自产拍蜜月| 99热6这里只有精品| 亚洲三级黄色毛片| 午夜福利高清视频| 久久久久久久午夜电影| 午夜激情福利司机影院| 亚洲成av人片在线播放无| 国产女主播在线喷水免费视频网站 | 九草在线视频观看| 久久久久精品久久久久真实原创| 色播亚洲综合网| 美女高潮的动态| 看黄色毛片网站| 国产高潮美女av| 最近最新中文字幕免费大全7| 欧美激情在线99| 三级国产精品片| 美女被艹到高潮喷水动态| 免费观看在线日韩| 免费电影在线观看免费观看| 一区二区三区乱码不卡18| 别揉我奶头 嗯啊视频| 国产成人freesex在线| 一级黄色大片毛片| 国产精品乱码一区二三区的特点| 天堂av国产一区二区熟女人妻| av专区在线播放| 亚洲无线观看免费| 秋霞伦理黄片| 人人妻人人看人人澡| 国产 一区 欧美 日韩| 国产亚洲av片在线观看秒播厂 | 精品欧美国产一区二区三| 99热全是精品| 免费黄网站久久成人精品| 色尼玛亚洲综合影院| 亚洲在线观看片| 久久这里有精品视频免费| 欧美激情国产日韩精品一区| 亚洲av二区三区四区| 久久热精品热| 国产精品一区二区三区四区久久| 久99久视频精品免费| 国产免费又黄又爽又色| 91午夜精品亚洲一区二区三区| 国产av不卡久久| 精品一区二区三区视频在线| a级一级毛片免费在线观看| 国内少妇人妻偷人精品xxx网站| 亚洲国产欧美在线一区| 一本一本综合久久| 成人美女网站在线观看视频| 精品一区二区三区人妻视频| 久久久精品94久久精品| 国产精品嫩草影院av在线观看| 国产 一区 欧美 日韩| 高清午夜精品一区二区三区| 又粗又硬又长又爽又黄的视频| 美女cb高潮喷水在线观看| 日韩欧美国产在线观看| 欧美最新免费一区二区三区| 国产欧美另类精品又又久久亚洲欧美| 乱系列少妇在线播放| 99热精品在线国产| 国产高清不卡午夜福利| av播播在线观看一区| 26uuu在线亚洲综合色| 亚洲一级一片aⅴ在线观看| 亚洲国产欧洲综合997久久,| 成人午夜高清在线视频| 国产精品一区www在线观看| 国产精品国产三级国产专区5o | 精品久久久久久久久亚洲| 亚洲怡红院男人天堂| 亚洲av成人av| 一个人免费在线观看电影| 亚洲精品影视一区二区三区av| 美女cb高潮喷水在线观看| 日韩 亚洲 欧美在线| 一级av片app| 国产大屁股一区二区在线视频| 久久精品熟女亚洲av麻豆精品 | 欧美一级a爱片免费观看看| 综合色av麻豆| 日韩视频在线欧美| 欧美极品一区二区三区四区| 午夜精品国产一区二区电影 | 特级一级黄色大片| 美女脱内裤让男人舔精品视频| 大话2 男鬼变身卡| 波多野结衣高清无吗| 亚洲国产精品sss在线观看| 五月玫瑰六月丁香| 99九九线精品视频在线观看视频| 一区二区三区四区激情视频| 国产麻豆成人av免费视频| 久久久久久久久久久丰满| 久久精品熟女亚洲av麻豆精品 | 国产综合懂色| 国产在线男女| 村上凉子中文字幕在线| 18禁在线无遮挡免费观看视频| videos熟女内射| 精品熟女少妇av免费看| 久久久精品94久久精品| 国产久久久一区二区三区| 波野结衣二区三区在线| 黑人高潮一二区| 欧美色视频一区免费| 啦啦啦韩国在线观看视频| 亚洲精品乱码久久久久久按摩| 中文字幕熟女人妻在线| 亚洲不卡免费看| 日本免费在线观看一区| 国产高清国产精品国产三级 | 美女国产视频在线观看| 99久久精品国产国产毛片| 夜夜爽夜夜爽视频| 亚洲欧美精品专区久久| 亚洲va在线va天堂va国产| 亚洲在线自拍视频| 97人妻精品一区二区三区麻豆| 亚洲国产精品成人综合色| 亚洲久久久久久中文字幕| 三级男女做爰猛烈吃奶摸视频| 搡女人真爽免费视频火全软件| 精品久久国产蜜桃| 亚洲最大成人手机在线| 免费看日本二区| 欧美一级a爱片免费观看看| 熟妇人妻久久中文字幕3abv| 久久欧美精品欧美久久欧美| 色哟哟·www| 欧美性猛交╳xxx乱大交人| АⅤ资源中文在线天堂| 免费av观看视频| 欧美性感艳星| 精品久久久久久久久亚洲| 久久久亚洲精品成人影院| 最近中文字幕2019免费版| 尾随美女入室| 国产高清三级在线| 国产精品久久久久久久久免| 精品人妻熟女av久视频| 日本一二三区视频观看| 少妇猛男粗大的猛烈进出视频 | 老司机影院成人| 国产亚洲一区二区精品| 人妻制服诱惑在线中文字幕| 国产成年人精品一区二区| 成人av在线播放网站| 日韩在线高清观看一区二区三区| 日韩中字成人| 亚洲国产最新在线播放| 国产精品不卡视频一区二区| 久久国产乱子免费精品| 国产精华一区二区三区| 国产午夜精品一二区理论片| 亚洲欧洲国产日韩| 非洲黑人性xxxx精品又粗又长| 中文资源天堂在线| 亚洲一级一片aⅴ在线观看| 久久99热这里只频精品6学生 | 麻豆乱淫一区二区| 麻豆av噜噜一区二区三区| 国产色爽女视频免费观看| 人妻制服诱惑在线中文字幕| 亚洲激情五月婷婷啪啪| 精品久久久久久电影网 | 国产伦一二天堂av在线观看| 我的老师免费观看完整版| 在线观看一区二区三区| 免费大片18禁| 最近的中文字幕免费完整| 又黄又爽又刺激的免费视频.| 久久鲁丝午夜福利片| 亚洲欧美精品专区久久| 国产片特级美女逼逼视频| 日日摸夜夜添夜夜添av毛片| 久久久久久久久大av| 成人性生交大片免费视频hd| 国产精品国产高清国产av| 亚洲av免费在线观看| 99热6这里只有精品| 黄色一级大片看看| 精品久久国产蜜桃| 亚洲精品一区蜜桃| 亚洲精品,欧美精品| 丝袜美腿在线中文| 天堂av国产一区二区熟女人妻| 国产一区二区在线观看日韩| 国产黄色视频一区二区在线观看 | 国产精华一区二区三区| 国产伦一二天堂av在线观看| 国产亚洲91精品色在线| 亚洲久久久久久中文字幕| 国产高潮美女av| 一级毛片久久久久久久久女| 日日干狠狠操夜夜爽| 国产亚洲av片在线观看秒播厂 | 少妇被粗大猛烈的视频| 国产老妇伦熟女老妇高清| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品一区二区三区四区久久| 欧美极品一区二区三区四区| 午夜日本视频在线| 最近手机中文字幕大全| 久久久久国产网址| 亚洲精品国产成人久久av| 亚洲av电影不卡..在线观看| 汤姆久久久久久久影院中文字幕 | 毛片女人毛片| 国产精品乱码一区二三区的特点| 久久人人爽人人爽人人片va| 高清毛片免费看| av在线蜜桃| 久久99热这里只频精品6学生 | 人妻制服诱惑在线中文字幕| 黄色日韩在线| 日本午夜av视频| 女人十人毛片免费观看3o分钟| 国产在视频线在精品| 麻豆久久精品国产亚洲av| 免费观看人在逋| 久久久a久久爽久久v久久| 日本五十路高清| 欧美xxxx黑人xx丫x性爽| 97超碰精品成人国产| 日本wwww免费看| 秋霞在线观看毛片| 亚洲电影在线观看av| 在线观看美女被高潮喷水网站| 国产在视频线在精品| 亚洲精品自拍成人| 精品欧美国产一区二区三| 久久精品国产亚洲av涩爱| 国产精品一区二区三区四区久久| 久久精品国产亚洲av天美| 久久久亚洲精品成人影院| 99久久无色码亚洲精品果冻| 91狼人影院| 我的女老师完整版在线观看| 一卡2卡三卡四卡精品乱码亚洲| 成人毛片a级毛片在线播放| 69人妻影院| 一级毛片aaaaaa免费看小| 国产一区二区在线观看日韩| 熟女人妻精品中文字幕| 日本免费在线观看一区| 国产免费视频播放在线视频 | 日韩av在线免费看完整版不卡| 久久韩国三级中文字幕| 国产午夜精品论理片| 免费不卡的大黄色大毛片视频在线观看 | 精品一区二区三区视频在线| 国产高清不卡午夜福利| 免费观看人在逋| 亚洲在线观看片| 久久久久精品久久久久真实原创| 久久精品久久久久久久性| 日本黄大片高清| 亚洲av熟女| 秋霞伦理黄片| 又粗又硬又长又爽又黄的视频| 国产精品久久久久久精品电影小说 | 亚洲综合精品二区| 少妇的逼水好多| av国产免费在线观看| 国产精品一区www在线观看| 黄色日韩在线| 日日摸夜夜添夜夜爱| 波多野结衣巨乳人妻| 亚洲av.av天堂| 成人鲁丝片一二三区免费| 亚洲第一区二区三区不卡| 岛国在线免费视频观看| 亚洲无线观看免费| 久久久精品欧美日韩精品| 观看免费一级毛片| 草草在线视频免费看| 少妇熟女欧美另类| 边亲边吃奶的免费视频| 国产精品嫩草影院av在线观看| 久久鲁丝午夜福利片| 国产高清国产精品国产三级 | 国产一区二区亚洲精品在线观看| 亚洲在线自拍视频| 高清日韩中文字幕在线| 99久久人妻综合| av在线观看视频网站免费| 欧美色视频一区免费| 波野结衣二区三区在线| av视频在线观看入口| 91精品一卡2卡3卡4卡| 国产成年人精品一区二区| 直男gayav资源| 少妇人妻一区二区三区视频| 三级国产精品片| av在线蜜桃| 亚洲婷婷狠狠爱综合网| 熟妇人妻久久中文字幕3abv| 成人漫画全彩无遮挡| 国产激情偷乱视频一区二区| 久久欧美精品欧美久久欧美| 国产精品三级大全| 午夜激情欧美在线| 中文天堂在线官网| 1024手机看黄色片| 在线天堂最新版资源| 免费搜索国产男女视频| 不卡视频在线观看欧美| 视频中文字幕在线观看| 国产伦精品一区二区三区四那| 黑人高潮一二区| 欧美成人免费av一区二区三区| 午夜日本视频在线| 狂野欧美白嫩少妇大欣赏| 身体一侧抽搐| 毛片女人毛片| 寂寞人妻少妇视频99o| 久久6这里有精品| 亚洲,欧美,日韩| 天堂√8在线中文| 直男gayav资源| 久久精品国产自在天天线| 国产精品一二三区在线看| 欧美激情久久久久久爽电影| 麻豆久久精品国产亚洲av| 国产爱豆传媒在线观看| 汤姆久久久久久久影院中文字幕 | 久久草成人影院| 老师上课跳d突然被开到最大视频| 中文字幕av在线有码专区| h日本视频在线播放| 久久热精品热| 久久99热这里只有精品18| 国产精品女同一区二区软件| 男插女下体视频免费在线播放| 免费黄网站久久成人精品| 欧美最新免费一区二区三区| 淫秽高清视频在线观看| 乱码一卡2卡4卡精品| 久久久久久九九精品二区国产| 99久久人妻综合| 日韩一本色道免费dvd| 国产免费视频播放在线视频 | eeuss影院久久| 桃色一区二区三区在线观看| 只有这里有精品99| 欧美3d第一页| av播播在线观看一区| 亚洲欧美一区二区三区国产| 日产精品乱码卡一卡2卡三| 国产精品美女特级片免费视频播放器| 成人毛片60女人毛片免费| 男人和女人高潮做爰伦理| 亚洲欧美精品自产自拍| 国产片特级美女逼逼视频| 国产免费一级a男人的天堂| 午夜免费激情av| 在线a可以看的网站| 青春草亚洲视频在线观看| 人人妻人人看人人澡| 91久久精品国产一区二区三区| 亚洲丝袜综合中文字幕| 激情 狠狠 欧美| 国产精品人妻久久久久久| 激情 狠狠 欧美| 人人妻人人看人人澡| 亚洲最大成人av| 国产又色又爽无遮挡免| 中文精品一卡2卡3卡4更新| 大又大粗又爽又黄少妇毛片口| 日韩大片免费观看网站 | 成人三级黄色视频| 91精品国产九色| 国产一区二区在线观看日韩| 国产久久久一区二区三区| 国产精品久久久久久精品电影| 久久精品国产鲁丝片午夜精品| 久久婷婷人人爽人人干人人爱| 又爽又黄a免费视频| 99久久精品热视频| 国产成人精品一,二区| 丰满人妻一区二区三区视频av| 男女那种视频在线观看| 亚洲国产欧美在线一区| 亚洲人成网站在线观看播放| 国产高清国产精品国产三级 | 国语对白做爰xxxⅹ性视频网站| 99视频精品全部免费 在线| videossex国产| 日本免费在线观看一区| 国产淫片久久久久久久久| 中文天堂在线官网| 国产中年淑女户外野战色| 国产极品天堂在线| 亚洲一区高清亚洲精品| eeuss影院久久| 久久久久久久国产电影| 国产精品久久久久久精品电影| 精品久久久久久久久久久久久| 国产成人91sexporn| 亚洲av成人精品一区久久| 中文精品一卡2卡3卡4更新| 天堂av国产一区二区熟女人妻| 嫩草影院精品99| 91狼人影院| 亚洲欧美日韩卡通动漫| 在线观看66精品国产| 禁无遮挡网站| 91久久精品电影网| 久久精品夜色国产| 国产精品福利在线免费观看| 蜜桃久久精品国产亚洲av| 亚洲av成人精品一二三区| 天堂影院成人在线观看| 国产精品一区二区三区四区久久| 国产成人午夜福利电影在线观看| 欧美一区二区亚洲| 国产精品一区二区在线观看99 | 午夜爱爱视频在线播放| 国产av在哪里看| 国产单亲对白刺激| 女人久久www免费人成看片 | 又爽又黄无遮挡网站| 自拍偷自拍亚洲精品老妇| 久久精品国产99精品国产亚洲性色| 91久久精品电影网| 99久久精品国产国产毛片| 久久精品91蜜桃| 在现免费观看毛片| 日本免费在线观看一区| 亚洲五月天丁香| 亚洲色图av天堂| 午夜免费激情av| av在线蜜桃| 秋霞在线观看毛片| 久久精品久久久久久噜噜老黄 | 高清av免费在线| 国产午夜精品一二区理论片| 天美传媒精品一区二区| 国语自产精品视频在线第100页| 国语对白做爰xxxⅹ性视频网站| 国产成人精品久久久久久| 男人和女人高潮做爰伦理| ponron亚洲| 99热这里只有是精品在线观看| 亚洲精品日韩av片在线观看| 级片在线观看| 精品久久久久久久久av| 国产探花极品一区二区| 一边摸一边抽搐一进一小说| 亚洲av日韩在线播放| 秋霞在线观看毛片| 国产一区二区在线观看日韩| 99热这里只有是精品50| 久久精品综合一区二区三区| 国产探花极品一区二区| 97热精品久久久久久| 成人毛片60女人毛片免费| 99热6这里只有精品| 精品久久久久久久久亚洲| 欧美成人午夜免费资源| 国产一区亚洲一区在线观看| 波多野结衣巨乳人妻| 久久精品久久精品一区二区三区| 最近中文字幕2019免费版| 能在线免费观看的黄片| 神马国产精品三级电影在线观看| 国产精品蜜桃在线观看| 亚洲一级一片aⅴ在线观看| 波多野结衣巨乳人妻| 一夜夜www| 中文亚洲av片在线观看爽| 亚洲人与动物交配视频| 精华霜和精华液先用哪个| 观看免费一级毛片| 欧美性猛交黑人性爽| 九草在线视频观看| 大香蕉97超碰在线| 亚洲欧美精品专区久久| 国产乱人偷精品视频| 亚洲国产欧美人成| 成人高潮视频无遮挡免费网站| 一边摸一边抽搐一进一小说| 久久热精品热| 免费黄网站久久成人精品| 五月玫瑰六月丁香| 亚洲在久久综合| 能在线免费看毛片的网站| 91午夜精品亚洲一区二区三区| 嘟嘟电影网在线观看| 亚洲一级一片aⅴ在线观看| 成人午夜精彩视频在线观看| 亚洲aⅴ乱码一区二区在线播放| 中文亚洲av片在线观看爽| 久久人人爽人人片av| 免费观看a级毛片全部| 最近最新中文字幕大全电影3| 亚洲内射少妇av| 亚洲在久久综合| 亚洲va在线va天堂va国产| 2022亚洲国产成人精品| 亚洲国产精品久久男人天堂| 久久精品综合一区二区三区| 岛国毛片在线播放| 国产淫片久久久久久久久| 欧美日韩在线观看h| 尤物成人国产欧美一区二区三区| 国产一区二区在线av高清观看| 免费看光身美女| 一本一本综合久久| av在线观看视频网站免费| av黄色大香蕉| 中文字幕熟女人妻在线| 亚洲色图av天堂| 国产美女午夜福利| 久久亚洲精品不卡| 国产欧美日韩精品一区二区| 嫩草影院新地址| 欧美三级亚洲精品| 婷婷色av中文字幕| 黑人高潮一二区| 久久久久久久久久成人| 日韩欧美精品免费久久| 国产av在哪里看| 亚洲美女搞黄在线观看| 男女国产视频网站| 最近中文字幕2019免费版| 最近的中文字幕免费完整| 久久这里只有精品中国| 大又大粗又爽又黄少妇毛片口| 国产高清有码在线观看视频| 麻豆久久精品国产亚洲av| 少妇高潮的动态图| 亚洲精品国产av成人精品| 成人毛片60女人毛片免费| 午夜激情福利司机影院| 国产真实伦视频高清在线观看| 国产精品国产三级国产专区5o | 成年免费大片在线观看| 亚洲精品日韩av片在线观看| 久热久热在线精品观看| 国产不卡一卡二| 亚洲天堂国产精品一区在线| 国产欧美另类精品又又久久亚洲欧美| 青春草视频在线免费观看| 爱豆传媒免费全集在线观看| 国产成人a区在线观看| 国产国拍精品亚洲av在线观看| 精品国内亚洲2022精品成人| 国产成人福利小说| 国产激情偷乱视频一区二区| 成年女人永久免费观看视频| 久久这里有精品视频免费| 久久精品综合一区二区三区| 国产成人午夜福利电影在线观看| 免费看美女性在线毛片视频| 国产精品99久久久久久久久| 免费大片18禁| 国产毛片a区久久久久| 国产成人a∨麻豆精品| 全区人妻精品视频| 男插女下体视频免费在线播放| 永久免费av网站大全| 乱系列少妇在线播放| 久久99蜜桃精品久久| 女的被弄到高潮叫床怎么办| 久久这里只有精品中国| 中文在线观看免费www的网站| 亚洲av成人av| 国产又色又爽无遮挡免| 免费观看性生交大片5| h日本视频在线播放| 日韩一区二区三区影片| 看非洲黑人一级黄片| 国产伦精品一区二区三区四那| 欧美成人a在线观看| 自拍偷自拍亚洲精品老妇| 欧美一级a爱片免费观看看| 岛国在线免费视频观看| 亚洲精品自拍成人| 乱码一卡2卡4卡精品| 最近中文字幕高清免费大全6| 亚洲精品aⅴ在线观看| 久久精品国产亚洲av天美| 国产精品女同一区二区软件| 亚洲中文字幕一区二区三区有码在线看| 极品教师在线视频| 有码 亚洲区| 最近中文字幕2019免费版| 啦啦啦啦在线视频资源| 国产亚洲91精品色在线| 国产精品1区2区在线观看.| 人妻系列 视频| 国产一区亚洲一区在线观看| 黄色配什么色好看| 久久精品国产亚洲网站| 亚洲av免费在线观看| 日韩,欧美,国产一区二区三区 | 日韩欧美精品v在线|