岳巾晶 曾瑩 郭曉珮 董越 姬若楠 彭瑞 羅曉華
摘要:目的 探究miR-155和環(huán)磷酸鳥苷依賴性蛋白激酶1(PKG1)在子癇前期患者胎盤組織中的表達(dá)及miR-155在核因子(NF)-κB的介導(dǎo)下通過抑制PKG1對滋養(yǎng)細(xì)胞HTR-8/SVneo功能的影響。方法 收集剖宮產(chǎn)分娩的正常產(chǎn)婦(NPE組)以及子癇前期產(chǎn)婦(PE組)的胎盤各20個,體外培養(yǎng)滋養(yǎng)細(xì)胞HTR-8/SVneo,分為NC組、mimics組、inhibitor組、siRNA NC組、PKG1 siRNA組、siRNA+inhibitor組;用NF-κB抑制劑PDTC處理細(xì)胞,分為Control組、PDTC組、PDTC+NC組、PDTC+mimics組。采用qPCR檢測胎盤和滋養(yǎng)細(xì)胞HTR-8/SVneo中miR-155和PKG1 mRNA的表達(dá);Western blot檢測PKG1蛋白的表達(dá);分別采用CCK-8法、Transwell法、流式細(xì)胞術(shù)檢測細(xì)胞的增殖、遷移、凋亡能力。結(jié)果 PE組胎盤組織中miR-155的表達(dá)升高,而PKG1的表達(dá)降低(P<0.05)。體外實(shí)驗(yàn)表明,與NC組相比,miR-155 mimics組中PKG1的表達(dá)降低,滋養(yǎng)細(xì)胞遷移、增殖能力減弱,凋亡能力增強(qiáng),miR-155 inhibitor組中PKG1表達(dá)則升高,滋養(yǎng)細(xì)胞遷移、增殖能力增強(qiáng),凋亡能力減弱(P<0.05);與Control組相比,PDTC組miR-155的表達(dá)降低,滋養(yǎng)細(xì)胞遷移、增殖能力增強(qiáng),凋亡能力減弱(P<0.05)。結(jié)論 miR-155在子癇前期中表達(dá)上調(diào),并且可在NF-κB的介導(dǎo)下通過下調(diào)PKG1影響滋養(yǎng)細(xì)胞的增殖、遷移和凋亡。
關(guān)鍵詞:先兆子癇;細(xì)胞運(yùn)動;細(xì)胞增殖;細(xì)胞凋亡;NF-κB;miR-155;PKG1;滋養(yǎng)細(xì)胞
中圖分類號:R714.244文獻(xiàn)標(biāo)志碼:ADOI:10.11958/20221869
MiR-155 affects the biological functions of trophoblastic cells through regulating
cGMP-dependent kinase 1 and is involved in the mechanism of preeclampsia
YUE JinjingZENG Ying GUO Xiaopei DONG YueJI Ruonan PENG Rui LUO Xiaohua
1 Department of Gynaecology and Obstetrics, 2 Department of Scientific Research Office, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
Corresponding Author E-mail: Luoxiaohua620@163.com
Abstract: Objective To investigate the expression levels of miR-155 and cGMP-dependent protein kinase 1 (PKG1) in placental tissue of patients with preeclampsia, and the effect of miR-155 on the function of trophoblasts HTR-8/SVneo by inhibiting PKG1 under the mediation of nucleus factor kappa B (NF-κB). Methods Twenty placentas were collected from normal pregnant women and pre-eclampsia pregnant women who delivered by cesarean section. In vitro trophoblasts HTR-8/SVneo were cultured and? divided into the NC group, the? mimics group, the inhibitor group, the siRNA NC group, the PKG1 siRNA group and the siRNA+inhibitor group. Cells were treated with NF-κB inhibitor PDTC and divided into the control group, the PDTC group, the PDTC+NC group and the PDTC+mimics group. Real-time quantitative polymerase chain reaction (qPCR) was performed to detect the expression of miR-155 and PKG1 mRNA in placentas and HTR-8/SVneo cells. Western blot assay was performed to measure the level of PKG1 protein. The cell proliferation, migration and apoptosis were assessed by CCK-8 assay, Transwell assay and flow cytometry. Results The expression of miR-155 was significantly upregulated in placental tissue of the PE group, while the expression of PKG1 decreased significantly (P<0.05). The vitro experiments showed that compared with the NC group, the expression of PKG1 was significantly reduced in the miR-155 mimics group (P<0.05). The migration and proliferation ability of trophoblast was significantly weakened, the apoptotic ability was significantly enhanced (P<0.05). The expression of PKG1 was significantly increased in the miR-155 inhibitor group, the migration and proliferation ability of trophoblast was significantly enhanced, and the apoptotic ability was significantly weakened. Compared with the control group, the expression of miR-155 was significantly reduced in the PDTC group, the migration and proliferation ability of trophoblast was significantly enhanced, and the apoptotic ability was significantly weakened (P<0.05). Conclusion Results indicate that the expression of miR-155 is upregulated in preeclampsia, and can affect proliferation, migration and apoptosis of trophoblast cells by down-regulating PKG1 mediated by NF-κB.
Key words: pre-eclampsia; cell movement; cell proliferation; apoptosis; NF-kappa B; miR-155; PKG1; trophoblast
子癇前期(preeclampsia,PE)是妊娠期特有的疾病,其特征是妊娠20周后出現(xiàn)蛋白尿和高血壓。PE的發(fā)病率為2%~8%[1],是導(dǎo)致孕產(chǎn)婦及新生兒死亡的主要原因之一,占全球孕產(chǎn)婦死亡的10%~15%[2]。目前普遍認(rèn)為胎盤滋養(yǎng)層細(xì)胞侵襲異常、血管內(nèi)皮功能受損與PE的發(fā)病密切有關(guān)[3],但具體發(fā)病機(jī)制仍不清楚,缺少有效的治療措施。微小RNA(microRNA,miR)是一類小分子非編碼RNA,長度約22個核苷酸[4]。研究表明,miRNA的表達(dá)失調(diào)可能與PE的發(fā)生有關(guān)[5]。本團(tuán)隊(duì)前期研究發(fā)現(xiàn),miR-155在子癇前期患者胎盤組織中高表達(dá),并且可抑制滋養(yǎng)細(xì)胞的增殖、遷移、侵襲,促進(jìn)其凋亡和炎性反應(yīng)[6]。已有研究表明,miR-155可通過與一氧化氮(NO)/環(huán)磷酸鳥苷(cGMP)通路的主要下游分子環(huán)磷酸鳥苷依賴性蛋白激酶1(cGMP-dependent protein kinase 1,PKG1)的3′-非翻譯區(qū)(UTR)互補(bǔ)結(jié)合,從而負(fù)向調(diào)節(jié)血管平滑肌細(xì)胞(VSMC)中PKG1的表達(dá),進(jìn)而導(dǎo)致VSMC表型轉(zhuǎn)換和功能障礙[7]。然而,該通路在PE和滋養(yǎng)細(xì)胞中的作用尚未被證實(shí),筆者推測miR-155可能通過調(diào)節(jié)PKG1參與PE的進(jìn)展。本研究旨在探究miR-155/PKG1軸對PE的影響以及對滋養(yǎng)細(xì)胞生物學(xué)功能的調(diào)節(jié)機(jī)制。
1 材料與方法
1.1 材料 選擇2020年6月—2021年12月于鄭州大學(xué)第三附屬醫(yī)院剖宮產(chǎn)分娩的PE產(chǎn)婦20例作為PE組,選擇同期剖宮產(chǎn)分娩的正常產(chǎn)婦20例作為NPE組。PE的診斷標(biāo)準(zhǔn)參考《妊娠期高血壓疾病診治指南(2020)》[8]。2組產(chǎn)婦均排除雙胎及多胎妊娠、慢性肝腎疾病、妊娠期糖尿病、傳染性或代謝性疾病等。本研究經(jīng)本院倫理委員會批準(zhǔn)(倫理號:2022-238-01),所有研究對象均簽署知情同意書。
1.2 主要試劑與儀器 人絨毛膜滋養(yǎng)層細(xì)胞HTR8/SVneo購自上海中國科學(xué)院細(xì)胞庫;Trizol試劑購自日本TAKARA公司;Lipofectaimine 2000、Transwell小室購自美國Thermo Fisher Scientific公司;miR-155 mimic、inhibitor、NC、PKG1 siRNA以及PKG1 siRNA NC購自上海吉瑪制藥技術(shù)有限公司;PDTC購自英國Abcam公司;熒光定量PCR(qPCR)試劑盒購自德國DBI公司;PKG1抗體購自美國Boster公司;BCA蛋白定量試劑盒購自南京凱基生物發(fā)展有限公司;CCK-8試劑盒購自上海碧云天生物技術(shù)有限公司;Annexin V-FITC/PI試劑盒購自南京諾唯贊生物科技股份有限公司;PCR擴(kuò)增儀(Mx3000P)購自杭州晶格科學(xué)儀器有限公司。
1.3 研究方法
1.3.1 標(biāo)本的收集與處理 所有標(biāo)本均在剖宮產(chǎn)胎盤娩出后5 min內(nèi)收集,避開鈣化灶及出血區(qū)域,于胎盤母面不同位置剪取胎盤組織,置于無菌的EP管中,并迅速置于-80 ℃冰箱中保存?zhèn)溆谩?/p>
1.3.2 細(xì)胞分組轉(zhuǎn)染 將體外培養(yǎng)的HTR-8/SVneo細(xì)胞分為6組:NC組(轉(zhuǎn)染miR-155 NC)、mimics組(轉(zhuǎn)染miR-155 mimic)、inhibitor組(轉(zhuǎn)染miR-155 inhibitor)、siRNA NC組(轉(zhuǎn)染PKG1 siRNA NC)、PKG1 siRNA組(轉(zhuǎn)染PKG1 siRNA)、siRNA+inhibitor組(轉(zhuǎn)染PKG1 siRNA和miR-155 inhibitor)。取對數(shù)期生長至密度為90%的細(xì)胞接種至6孔板(3?105/孔),并更換為無血清無雙抗的培養(yǎng)基,按照Lipofectaimine 2000試劑盒說明書對各組細(xì)胞分別進(jìn)行轉(zhuǎn)染,于37 ℃、5%CO2、飽和濕度培養(yǎng)箱中培養(yǎng)4 h后更換為含10%胎牛血清的培養(yǎng)基繼續(xù)培養(yǎng)48 h。
1.3.3 核因子(NF)-κB抑制劑PDTC處理 PDTC是國際公認(rèn)的NF-κB抑制劑,可以在多種細(xì)胞中抑制NF-κB的激活。將細(xì)胞分為4組:Control組(常規(guī)培養(yǎng))、PDTC組(PDTC處理)、PDTC+NC組(PDTC與miR-155 NC共處理)、PDTC+mimics組(PDTC與miR-155 mimics共處理)。PDTC組使用含PDTC 30 μmol/L的培養(yǎng)基培養(yǎng)48 h,PDTC+NC組與PDTC+mimics組中,miR-155 NC或miR-155 mimics轉(zhuǎn)染后更換為含PDTC 30 μmol/L的培養(yǎng)基再培養(yǎng)48 h。
1.3.4 總RNA提取及qPCR檢測 將所保存的胎盤組織從冰箱中取出,采用Trizol法進(jìn)行胎盤組織和各組HTR-8/SVneo細(xì)胞中總RNA的提取,質(zhì)檢后繼續(xù)-80 ℃保存。按照逆轉(zhuǎn)錄試劑盒說明書將RNA合成cDNA,隨后用Agilent Stratagene熒光定量PCR儀進(jìn)行熒光定量, PCR反應(yīng)條件:95 ℃ 2 min;94 ℃ 20 s,58 ℃ 20 s,72 ℃ 20 s,40個循環(huán)。miR-155以U6為內(nèi)參,PKG1以GAPDH為內(nèi)參。引物序列見表1。采用2-ΔΔCt法計(jì)算miR-155和PKG1的相對表達(dá)量。
1.3.5 Western blot檢測各組PKG1的表達(dá) 采用RIPA裂解液提取胎盤組織和各組HTR-8/SVneo細(xì)胞中的總蛋白,按照BCA試劑盒檢測蛋白濃度,用10%十二烷基硫酸鈉-聚丙烯酰胺凝膠電泳分離蛋白樣品,并轉(zhuǎn)移到PVDF膜上。用5%脫脂奶粉封閉2 h后,加入一抗(1∶1 000)孵育過夜,然后加入二抗(1∶2 000)室溫下孵育2 h,之后進(jìn)行ECL顯影,各條帶的灰度值采用Image Pro Plus Ver.6.0進(jìn)行分析,目的蛋白相對表達(dá)量=目的條帶灰度值/GAPDH灰度值。
1.3.6 Transwell檢測細(xì)胞遷移能力 在Transwell小室的上室接種細(xì)胞(3?104/孔),下室加入含10%胎牛血清的完全培養(yǎng)基,培養(yǎng)24 h后采用4%多聚甲醛固定,結(jié)晶紫染色,隨機(jī)抽取3張圖片,顯微鏡下觀察遷移細(xì)胞數(shù)。
1.3.7 CCK-8檢測細(xì)胞增殖活性 將細(xì)胞接種于96孔培養(yǎng)板(3?103/孔)中培養(yǎng)12 h,分別于0 h、24 h、48 h、72 h時取出培養(yǎng)板,加入100 μL CCK-8工作液,再培養(yǎng)2 h,然后檢測450 nm處的吸光度(A)值。
1.3.8 流式細(xì)胞術(shù)檢測細(xì)胞凋亡 按照Annexin V-FITC/PI試劑盒說明書進(jìn)行操作。首先收集培養(yǎng)48 h的細(xì)胞,制備細(xì)胞懸液,然后加入凋亡檢測工作液,避光孵育15 min。用FlowJo軟件測定細(xì)胞凋亡率。
1.4 統(tǒng)計(jì)學(xué)方法 采用SPSS 26.0及Graphpad Prism 9.0軟件進(jìn)行數(shù)據(jù)分析。正態(tài)分布的計(jì)量資料以x±s表示,2組間比較采用獨(dú)立樣本t檢驗(yàn),多組間比較采用單因素方差分析,組間多重比較采用LSD-t檢驗(yàn)。不符合正態(tài)分布的計(jì)量資料以M(P25,P75)表示,2組間比較采用Mann-Whitney U檢驗(yàn)。以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2 結(jié)果
2.1 受試者一般資料比較 與NPE組相比,PE組年齡、體質(zhì)量指數(shù)(BMI)和孕周的差異無統(tǒng)計(jì)學(xué)意義(P>0.05),收縮壓(SBP)及舒張壓(DBP)升高,而胎兒出生體質(zhì)量降低(P<0.05),見表2。
2.2 2組胎盤組織中miR-155及PKG1的表達(dá)比較 與NPE組相比,PE組miR-155的表達(dá)水平升高(P<0.01),而PKG1的mRNA及蛋白[0.15(0.07,0.32) vs. 0.88(0.77,1.03),n=4,Z=16.000]水平均降低(P<0.05),見表3、圖1。
2.3 miR-155對滋養(yǎng)細(xì)胞HTR-8/SVneo中PKG1表達(dá)的影響 與NC組相比,miR-155 mimics組miR-155水平升高,miR-155 inhibitor組降低(P<0.05),miR-155 inhibitor組PKG1 mRNA和蛋白水平升高,而miR-155 mimics組降低(P<0.05)。見表4、圖2。
2.4 miR-155對滋養(yǎng)細(xì)胞HTR-8/SVneo遷移、增殖、凋亡的影響 與NC組相比,miR-155 inhibitor組細(xì)胞遷移、增殖能力增強(qiáng),細(xì)胞凋亡率減少(P<0.05),而miR-155 mimics組細(xì)胞遷移、增殖能力減弱,細(xì)胞凋亡率增加(P<0.05),見表5,圖3、4。
2.5 抑制PKG1的表達(dá)后對miR-155、PKG1表達(dá)的影響 與NC組相比,inhibitor組miR-155水平降低,PKG1 mRNA和蛋白的水平升高(P<0.05);與PKG1 siRNA組相比,siRNA+inhibitor組miR-155水平降低,PKG1在mRNA和蛋白水平均升高(P<0.05),見表6、圖5。
2.6 抑制NF-κB的表達(dá)對滋養(yǎng)細(xì)胞HTR-8/SVneo中miR-155和PKG1水平的影響 與Control組相比,PDTC組miR-155水平降低,PKG1 mRNA和蛋白表達(dá)水平升高(P<0.05);與PDTC+NC組相比,PDTC+mimics組miR-155的水平升高(P<0.05),PKG1 mRNA和蛋白水平均降低(P<0.05),見表7、圖6。
2.7 抑制NF-κB表達(dá)對滋養(yǎng)細(xì)胞HTR-8/SVneo生物學(xué)功能的影響 與Control組相比,PDTC組滋養(yǎng)細(xì)胞的遷移、增殖能力增強(qiáng),凋亡率下降(P<0.05);與PDTC+NC組相比,PDTC+mimics組滋養(yǎng)細(xì)胞的遷移、增殖能力減弱,凋亡率增加(P<0.01)。見表8,圖7、8。
3 討論
PE是一種嚴(yán)重威脅母嬰健康的妊娠特異性疾病,伴有炎癥反應(yīng)和內(nèi)皮細(xì)胞功能障礙[9],如不及時治療會導(dǎo)致腦卒中、腎功能衰竭、肺水腫、肝破裂、子癇等嚴(yán)重并發(fā)癥[10]。目前PE的病因和發(fā)病機(jī)制尚不清楚,治療旨在減緩病理進(jìn)展以延長孕周,然而可用于治療該疾病的臨床策略有限,只有胎盤娩出才可徹底解除母體的癥狀,因而尋找有效的治療靶點(diǎn)是當(dāng)前圍產(chǎn)醫(yī)學(xué)領(lǐng)域中的研究熱點(diǎn)。
3.1 miR-155在PE中的表達(dá)及作用 miRNAs在基因的表達(dá)調(diào)控中發(fā)揮著重要的作用,其通過與靶基因mRNA的3′-UTR反向互補(bǔ),參與細(xì)胞分化、增殖、凋亡、代謝等多種生物學(xué)過程[11]。有學(xué)者研究miRNAs的基因表達(dá)譜發(fā)現(xiàn),一些miRNAs,如miR-335、miR-424、miR-18a、miR-155可以通過作用于多種靶點(diǎn)導(dǎo)致滋養(yǎng)層細(xì)胞功能障礙[12-13]。miR-155是保守性較好的多功能miRNA之一,由位于21號染色體上的miR155宿主基因(MIR155HG)編碼,可以在包括PE在內(nèi)的多種疾病中表達(dá)。本課題組前期研究發(fā)現(xiàn),miR-155在PE患者中高表達(dá),并與其啟動子區(qū)域DNA甲基化水平呈負(fù)相關(guān)[6],但其具體機(jī)制尚不清楚。本研究通過對PE患者和正常產(chǎn)婦胎盤中相關(guān)因子的檢測發(fā)現(xiàn),PE患者胎盤組織中miR-155的表達(dá)水平顯著升高,與Wu等[14]研究結(jié)果一致,而PKG1的表達(dá)明顯降低,提示miR-155的高表達(dá)與PE的發(fā)生密切相關(guān)。
3.2 miR-155通過抑制PKG1的表達(dá)在PE中發(fā)揮作用 PKG1是cGMP的重要效應(yīng)物,具有多種重要功能,如血管舒張與重建、細(xì)胞分化和凋亡等。NO/cGMP信號轉(zhuǎn)導(dǎo)通路在內(nèi)皮功能和心血管穩(wěn)態(tài)中發(fā)揮重要作用[15]。NO由L-精氨酸通過內(nèi)皮型一氧化氮合酶磷酸化形成,在調(diào)節(jié)血壓方面起重要作用,NO可結(jié)合平滑肌細(xì)胞中NO的受體可溶性鳥苷酸環(huán)化酶(sGC),從而將三磷酸鳥苷(GTP)轉(zhuǎn)化為cGMP,引起cGMP依賴性蛋白激酶(PKG)水平的升高而發(fā)揮生物學(xué)效應(yīng),當(dāng)這一途徑受損時可導(dǎo)致血管內(nèi)皮功能受損、血管舒張障礙[16]。在哺乳動物中,PKG有2種同工酶,即PKG1和PKG2,由不同基因編碼[17]。PKG1主要在心血管系統(tǒng)中發(fā)揮作用,而PE是一種以血管功能障礙為特征的疾?。?8],這表明在PE中PKG1可能更為重要。Choi等[7]研究認(rèn)為,miR-155模擬物可降低VSMC細(xì)胞中PKG1的水平,從而導(dǎo)致VSMC表型發(fā)生改變和舒張功能障礙。為驗(yàn)證miR-155是否可通過抑制PKG1的表達(dá)進(jìn)而影響滋養(yǎng)細(xì)胞的生物學(xué)功能,本研究采用滋養(yǎng)細(xì)胞HTR-8/SVneo進(jìn)行了體外實(shí)驗(yàn),轉(zhuǎn)染miR-155 mimics或inhibitor建立過表達(dá)或干擾細(xì)胞模型,結(jié)果顯示miR-155低表達(dá)可以上調(diào)滋養(yǎng)細(xì)胞PKG1 mRNA和蛋白的水平,還可增強(qiáng)細(xì)胞的增殖、遷移能力,誘導(dǎo)細(xì)胞凋亡,提示miR-155可通過抑制PKG1引起滋養(yǎng)層細(xì)胞的生物學(xué)功能發(fā)生改變。
3.3 抑制NF-κB表達(dá)后對PE的影響 NF-κB是一種細(xì)胞內(nèi)轉(zhuǎn)錄因子,可以調(diào)節(jié)多種細(xì)胞功能,如炎癥反應(yīng)、胚胎發(fā)生、細(xì)胞增殖與凋亡以及對各種有害刺激的應(yīng)激反應(yīng)[19]。NF-κB信號轉(zhuǎn)導(dǎo)通路是一種經(jīng)典的促炎通路,在感染或損傷期間,組織會迅速釋放促炎因子,如白細(xì)胞介素(IL)-6、IL-8、腫瘤壞死因子α,從而激活NF-κB通路,進(jìn)而促進(jìn)炎性因子、趨化因子等的釋放[20]。根據(jù)Staff[21]提出的改良PE兩階段模型,筆者認(rèn)為PE的致病機(jī)制可能與氧化應(yīng)激和炎癥反應(yīng)密切相關(guān)。在炎性因子的刺激下NF-κB通路被激活,促進(jìn)機(jī)體進(jìn)一步分泌大量的炎性細(xì)胞因子,持續(xù)存在的炎癥反應(yīng)可引發(fā)血管內(nèi)皮損傷,從而促進(jìn)PE的發(fā)展[22]。有研究表明,在PE大鼠體內(nèi)選擇性抑制NF-κB的表達(dá)可降低大鼠血壓以及尿蛋白,并可減緩胎盤損傷[23]。Mann等[24]研究發(fā)現(xiàn),炎癥刺激可激活NF-κB,導(dǎo)致miR-155水平升高,進(jìn)而抑制SHIP1和SOCS1以及其他潛在靶標(biāo)的表達(dá)。本研究發(fā)現(xiàn),與Control組相比,NF-κB抑制劑PDTC處理后滋養(yǎng)細(xì)胞miR-155表達(dá)降低,PKG1的表達(dá)則明顯升高,滋養(yǎng)細(xì)胞的遷移、增殖能力明顯增強(qiáng),凋亡能力減弱,而轉(zhuǎn)染miR-155模擬物后可逆轉(zhuǎn)PTDC對PKG1水平以及滋養(yǎng)細(xì)胞生物學(xué)功能的影響。筆者推測NF-κB可能是通過miR-155發(fā)揮生物學(xué)作用,并影響PE進(jìn)展的重要信號因子。
綜上,PE患者胎盤組織中miR-155呈高表達(dá),而PKG1呈低表達(dá);NF-κB介導(dǎo)的miR-155通過下調(diào)PKG1的表達(dá),從而抑制滋養(yǎng)細(xì)胞的增殖和遷移,增加細(xì)胞凋亡。本研究對miR-155在PE發(fā)病中的作用進(jìn)行了初步分析,為明確PE的致病機(jī)制提供了新的理論基礎(chǔ)。
參考文獻(xiàn)
[1] IVES C W,SINKEY R,RAJAPREYAR I,et al. Preeclampsia-pathophysiology and clinical presentations:JACC state-of-the-art review[J]. J Am Coll Cardiol,2020,76(14):1690-1702. doi:10.1016/j.jacc.2020.08.014.
[2] ALFAIFI A A,HEYDER R S,BIELSKI E R,et al. Megalin-targeting liposomes for placental drug delivery[J]. J Control Release,2020,324:366-378. doi:10.1016/j.jconrel.2020.05.033.
[3] ZHOU Y,WANG J,WANG L,et al. Effect of compound danshen injection combined with magnesium sulfate on oxidative stress,TNF-alpha,NO,and therapeutic efficacy in severe preeclampsia[J]. Comput Intell Neurosci,2022,2022:9789066. doi:10.3390/biom10060953.
[4] SHIRVANI S O,SCHERR J,KAYVANPOUR E,et al. Marathon-induced cardiac strain as model for the evaluation of diagnostic microRNAs for acute myocardial infarction[J]. J Clin Med,2021,11(1):5. doi:10.3390/jcm11010005.
[5] KOLKOVA Z,HOLUBEKOVA V,GRENDAR M,et al. Association of circulating miRNA expression with preeclampsia,its onset,and severity[J]. Diagnostics (Basel),2021,11(3):476. doi:10.3390/diagnostics11030476.
[6] LUO X,PAN C,GUO X,et al. Methylation mediated silencing of miR-155 suppresses the development of preeclampsia in vitro and in vivo by targeting FOXO3[J]. Mediators Inflamm,2022,2022:4250621. doi:10.1155/2022/4250621.
[7] CHOI S,PARK M,KIM J,et al. TNF-alpha elicits phenotypic and functional alterations of vascular smooth muscle cells by miR-155-5p-dependent down-regulation of cGMP-dependent kinase 1[J]. J Biol Chem,2018,293(38):14812-14822. doi:10.1074/jbc.RA118.004220.
[8] 中華醫(yī)學(xué)會婦產(chǎn)科學(xué)分會妊娠期高血壓疾病學(xué)組. 妊娠期高血壓疾病診治指南(2020)[J]. 中華婦產(chǎn)科雜志,2020,55(4):227-238. Group of Hypertensive Disorders of Pregnancy,Obstetrics and Gynecology Branch of Chinese Medical Association. Guidelines for the diagnosis and treatment of hypertensive disorders during pregnancy(2020)[J]. Chin J Obstetr Gynecol,2020,55(4):227-238. doi:10.3760/cma.j.cn112141-20200114-00039.
[9] LI H,OUYANG Y,SADOVSKY E,et al. Unique microRNA signals in plasma exosomes from pregnancies complicated by preeclampsia[J]. Hypertension,2020,75(3):762-771. doi:10.1161/HYPERTENSIONAHA.119.14081.
[10] ABDELZAHER W Y,MOSTAFA-HEDEAB G,BAHAA H A,et al. Leukotriene receptor antagonist,montelukast ameliorates L-NAME-induced pre-eclampsia in rats through suppressing the IL-6/Jak2/STAT3 signaling pathway[J]. Pharmaceuticals(Basel),2022,15(8):914. doi:10.3390/ph15080914.
[11] LIU X,WANG W,BAI Y,et al. Identification of a genome-wide serum microRNA expression profile as potential noninvasive biomarkers for chronic kidney disease using next-generation sequencing[J]. J Int Med Res,2020,48(12):1220769033. doi:10.1177/0300060520969481.
[12] CAI M,KOLLURU G K,AHMED A. Small molecule,big prospects:microRNA in pregnancy and its complications[J]. J Pregnancy,2017,201:6972732. doi:10.1155/2017/6972732.
[13] HEMMATZADEH M,SHOMALI N,YOUSEFZADEH Y,et al. MicroRNAs:small molecules with a large impact on pre-eclampsia[J]. J Cell Physiol,2020,235(4):3235-3248. doi:10.1002/jcp.29286.
[14] WU H Y,LIU K,ZHANG J L. LINC00240/miR-155 axis regulates function of trophoblasts and M2 macrophage polarization via modulating oxidative stress-induced pyroptosis in preeclampsia[J]. Mol Med,2022,28(1):119. doi:10.1186/s10020-022-00531-3.
[15] EVORA P,SOARES R,BASSETTO S,et al. After thirty years,we still cannot understand why methylene blue is not a reference to treat vasoplegic syndrome in cardiac surgery[J]. Braz J Cardiovasc Surg,2021,36(3):406-411. doi:10.21470/1678-9741-2021-0955.
[16] ITO H,MORISHITA R,NAGATA K I. Functions of rhotekin,an effector of rho GTPase,and its binding partners in mammals[J]. Int J Mol Sci,2018,19(7):2121. doi:10.3390/ijms19072121.
[17] RAMDANI G,SCHALL N,KALYANARAMAN H,et al. cGMP-dependent protein kinase-2 regulates bone mass and prevents diabetic bone loss[J]. J Endocrinol,2018,238(3):203-219. doi:10.1530/JOE-18-0286.
[18] BISWAS S,KOJONAZAROV B,HADZIC S,et al. IRAG1 deficient mice develop PKG1beta dependent pulmonary hypertension[J]. Cells,2020,9(10):2280. doi:10.3390/cells9102280.
[19] FERNANDO I P S,KIRINDAGE K G I S,JAYASINGHE A M K,et al. Hot water extract of Sasa borealis (hack.) makino & shibata abate hydrogen peroxide-induced oxidative stress and apoptosis in kidney epithelial cells[J]. Antioxidants(Basel),2022,11(5):1013. doi:10.3390/antiox11051013.
[20] ZHAO L,LI Y,YAO D,et al. Pharmacological basis for use of a novel compound in hyperuricemia:anti-hyperuricemic and anti-inflammatory effects[J]. Front Pharmacol,2021,12:772504. doi:10.3389/fphar.2021.772504.
[21] STAFF A C. The two-stage placental model of preeclampsia:an update[J]. J Reprod Immunol,2019:134-135. doi:10.1016/j.jri.2019.07.004.
[22] WANG Y,LI B,ZHAO Y. Inflammation in preeclampsia:genetic biomarkers, mechanisms,and therapeutic strategies[J]. Front Immunol,2022,13:883404. doi:10.3389/fimmu.2022.883404.
[23] SOCHA M W,MALINOWSKI B,PUK O,et al. The role of NF-κB in uterine spiral arteries remodeling,insight into the cornerstone of preeclampsia[J]. Int J Mol Sci,2021,22(2):704. doi:10.3390/ijms22020704.
[24] MANN M,MEHTA A,ZHAO J L,et al. An NF-κB-microRNA regulatory network tunes macrophage inflammatory responses[J]. Nat Commun,2017,8(1):851. doi:10.1038/s41467-017-00972-z.
(2022-11-18收稿 2023-03-02修回)
(本文編輯 李鵬)