• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Correspondence:A low-profile dual-polarization programmable dual-beam scanning antenna array*#

    2023-11-06 06:15:10ShichaoZHUYuanfanNINGHongboCHUPeiXIAOGaoshengLI

    Shichao ZHU,Yuanfan NING,Hongbo CHU,Pei XIAO,Gaosheng LI

    College of Electrical and Information Engineering,Hunan University,Changsha 410082,China

    A low-profile dual-polarization dual-beam scanning antenna array based on holographic control theory is presented in this paper.The radiating elements are ingeniously designed to achieve reconfigurable polarization and modulation of the radiation phase by controlling the state of the PIN diodes integrated on each element.A 72-channel series-parallel equal-amplitude and in-phase feeding network is integrated with the radiating array to achieve low-profile characteristics.The two-dimensional (2D) dynamic and accurate deflection of the beam is achieved by a designed direct current (DC) bias circuit that digitally encodes the antenna array using the single-chip microcontroller.A 2-element subarray and a 6×12 array have been fabricated and the digitally controllable radiation pattern of this antenna system has been experimentally verified.The antenna system can achieve the beam scanning of -30° to 30°with a step-scan of 5° at 11 GHz.The proposed antenna system is characterized by low profile,low cost,easy integration,and accurate beam steering,and holds broad application prospects in radar systems,smart antennas,and other fields.

    1 Introduction

    A beam scanning antenna can adjust the direction of radiation over a physical aperture according to practical requirements and serve an important role in communication fields such as radar (Han et al.,2019;Wu et al.,2020;Xu P et al.,2020).The traditional method is to achieve beam scanning by mechanical scanning or phase shifters,such as a phased array(Latha et al.,2021),which is the most mature beam scanning antenna available,but it suffers from disadvantages such as complex design and high cost (Hum and Perruisseau-Carrier,2014;Rocca et al.,2016;Yang HN et al.,2020;Mirmozafari et al.,2021).In recent years,with the rapid development of wireless communication technology,the demand for high-gain,widecoverage,and high-capacity antennas is increasing,and a lot of reflectarray,transmitarray,and microstriparray antennas based on metasurface elements (discrete phase characteristic) have been designed to achieve good beam reconfiguration and scanning effect (Wan et al.,2016,2021;Yang X et al.,2018;Liu et al.,2020a).Compared with a phased array,the cost and complexity of such beam scanning antennas are greatly reduced (Li et al.,2021).Discrete phase states are achieved by tunable components integrated into the antenna,such as liquid crystal materials (Bildik et al.,2015;Gao et al.,2018),PIN diodes (Bai et al.,2020;Wang ZL et al.,2020;Wang ZY et al.,2020),and varactors (Dai et al.,2018;Zhao et al.,2019).

    In Yang HH et al.(2017),a 1-bit dual-frequency electronically reconfigurable reflectarray antenna was proposed.The elements in the array have two states and the reflection phase difference between the two states is 180°.State switching is achieved by controlling an integrated PIN diode.The reflectarray antenna has 1600 elements,and the real-time dynamic adjustment of the beam is realized through the field programmable gate array (FPGA).In addition to reflectarray,there are many tunable transmitarray antennas(Iqbal et al.,2018;Nguyen and Pichot,2019;Liu et al.,2020b).A 2D beam-steering Fresnel-zone-plate antenna requiring only 180° phase tunability was proposed in Ma et al.(2021),and this array can achieve 45° deflection in both planes.However,both reflectarray and transmitarray antennas need an additional primary feed,which makes the overall profile of the antenna higher and requires installation considerations,and thus greatly limits the application of the antenna.

    Consequently,low-profile pattern reconfigurable microstrip array antennas that do not require a primary feed have received attention (Hu et al.,2018;Geng et al.,2019;Lin et al.,2020;Niu et al.,2021).In Zhang et al.(2020),a reconfigurable planar array antenna with a low profile and high gain pattern was introduced.The radiating elements include digital “0” and “1”elements,which are realized by integrating PIN diodes on the microstrip line to control the radio frequency(RF) signal flow path.Real-time switching of different radiation beams can be achieved by dynamically encoding these digital elements.In Pan et al.(2022),a one-dimensional (1D) single-polarization beam scanning array for the Internet of Things was proposed.The two states of the antenna element belong to the opposite phase radiation sources and the beam scanning is realized by the coding method of holographic antenna theory.However,the antenna needs to be connected to the power divider through the RF cable,which adds complexity and is not conducive to system integration.

    Based on the above research,a dual-polarization 1-bit element is proposed in this work.Four PIN diodes are integrated on the element.By adjusting the ON/OFF state of the diode in the same polarization direction,it is possible to change the different radiation states(opposite phase) and obtain 1-bit phase encoding characteristics.Because the element has adjustable diodes in both polarization directions,a dual-polarization function with horizontal/vertical polarization (HP/VP) is possible to achieve.Based on holographic modulation theory,the elements are coded,and the encoding is dynamically adjusted in real time using a microcontroller to realize dynamic beam scanning.The microstrip array,corresponding series-parallel feeding network,and DC bias circuit are designed,fabricated,and measured at X-band (11 GHz).The array is capable of achieving excellent dual-polarization beam scanning characteristics in both planes.In general,this antenna offers the advantages of a low profile,dual polarization,and easy integration.

    2 Design of the dual-polarization element

    2.1 Structure of the element

    Fig.1a shows the overall view of the proposed radiation element.The element consists of substrate 1,substrate 2,bonding film,and four layers of the metal.Both substrates 1 and 2 are Rogers 4350B.The two substrates are bonded by Rogers 4450F bonding film.Fig.1b shows the radiation patch structure printed on the upper layer of substrate 1.The RF signal is fed to the antenna element through the microstrip line printed on the bottom layer of substrate 2 and the feed probe at the center,as shown in Fig.1c.The feed probe is also used as part of the DC bias circuit,and the other end of the microstrip line is connected to the ground through a high impedance line.The open-circuit line of the radial stub added to the high-impedance line corresponds to an open circuit at the bias point,so that the leakage of the RF signal is prevented.

    Fig.1 Dual-polarization reconfigurable element: (a) overall configuration;(b) configuration of the radiation structure;(c) configuration of the feed structure;(d) configuration of the DC bias layer;(e) side view of the element;(f) equivalent circuit of the PIN diode;(g) layout and control schematic of PIN diodes

    To achieve impedance matching,the microstrip line structure adopts a stepped impedance transition.Four PIN diodes are integrated on the radiation patch,two in each of the HP and VP directions,and the radiation phase difference characteristic of π is achieved by controlling the ON/OFF function of the PIN diodes.To achieve independent control of the four PIN diodes,the outer ring of the radiation patch is divided into two parts,and the two parts are connected by two capacitors,which ensures that the RF circuit is not affected,and increases the freedom of the DC bias circuit design.To achieve consistency of the dual-polarization performance of the antenna element,it is essential that the element should have a symmetrical structure as much as possible.Therefore,four high-impedance bias lines are designed and connected to the DC bias circuit printed on the upper layer of substrate 2 using metallized vias.Bias lines 1 and 2,and 3 and 4,are connected separately,finally forming two DC bias ports P1 and P2 on the DC bias layer,as shown in Fig.1d.The radial stub on the high-impedance lines is added to improve isolation between the RF and DC signals.The DC voltage reaches the radiation patch through the DC bias layer and metallized vias to control the PIN diodes,and then passes through the feed probe to the ground to form a complete DC path.The equivalent parameters of the PIN diodes are shown in Fig.1f.The forward bias state of the PIN diodes can be equivalent to the series of 5.2-Ω resistance and 30-pH inductance,and it is equivalent to the series of 30-pH inductance and 40-fF capacitance when reversely biased.

    2.2 Simulation analysis of the element

    During normal operation,the element needs only to turn on a PIN diode.Fig.1g shows the layout and control schematic of the PIN diode,in which the HP state of the element is determined by PIN 1 and PIN 3,and the VP state by PIN 2 and PIN 4.Because the radiation characteristics of the element are essentially the same when operating in the HP and VP states,only the element operating in the HP state is described here to make things easier.It is defined that PIN 1 is turned on and the others are turned off as state 0;otherwise,PIN 3 is turned on and others are turned off as state 1.Table 1 shows the PIN diode states under different DC bias voltages.With three DC bias voltages, the state switching of the element in HP/VP can be satisfied.

    Table 1 DC port voltages corresponding to PIN diode states

    Different resonant frequencies can be achieved by adjusting the size of the antenna element,and a detailed description of the effect of element sizerwon the operating frequency band can be found in Section 1 of the supplementary materials.

    In the simulation,port 1 is the RF signal port of the array,and ports 2 and 3 are DC bias ports of the array.As seen in Fig.2a,theS11’s of the antenna element in the HP and VP are basically the same,and the -10-dB impedance bandwidth is 10.89-11.15 GHz.Meanwhile,in the operating band,S21is less than-30 dB,which means that the DC bias of the element has a good effect.The radiation patterns of the four states do not differ much,and the maximum gain reaches 4.7 dBi.For the dual-polarization characteristics,the cross-polarization performance is good in the main radiation direction,as shown in Fig.2b.

    Fig.2 Simulation performance of the element: (a) Sparameter;(b) radiation pattern

    The losses of the PIN diode and the designed DC bias circuit are analyzed.Because a part of the diode is equivalent to a resistance when it is turned on,there is a large resistance loss,so the loss from the PIN diode is calculated to be 0.7 dB by using the metal strip instead of the conduction diode.The simulation calculation by removing the DC bias circuit shows that the loss from the DC bias circuit is 0.66 dB,while the loss from other aspects (impedance mismatch,patch,etc.)is 0.54 dB.

    To distinguish states 0 and 1 more intuitively,Fig.3 presents the current distribution of the element in the two states.It can be seen that the currents in the two states are opposite.

    Fig.3 Surface current of the element in two states

    This characteristic can be equivalent to logical 0 and 1,and a 2-element subarray is designed to verify the effect of different combinations of 0 and 1 on the radiation pattern (Section 2 of the supplementary materials).

    3 Design of the dual-polarization and dual-beam antenna array

    A 6×12 array antenna is designed to achieve dualpolarization and dual-beam scanning.To achieve realtime dynamic control of the polarization and beam of the array,a 72-channel,series-parallel,equal-amplitude,and in-phase feeding network and the corresponding DC bias circuit are designed.The structure of the feeding network printed on the bottom of substrate 2 is demonstrated in Fig.4.The feeding network primarily adopts the quarter-impedance transition from transmission line theory to achieve the current distribution ratio at the output port,and the in-phase is achieved by designing the distance between the two ports to beλg(waveguide wavelength).The feed structure adopts a grounded coplanar waveguide (GCPW).Due to the strong trunk signal of the feeding network,two rows of ground metal vias are designed on both sides of the microstrip line to suppress the leakage of the RF signal to the surroundings,thereby reducing coupling to surrounding antenna elements.

    Fig.4 Structure of the series-parallel feeding network and DC bias circuit

    The microstrip lines are bent to align with the spacing of the elements,as indicated in Fig.4,and the structure of the DC bias circuit is given.The array requires 144 independent I/O ports to control the states of all elements.To enable a stable control of the PIN diodes by the output voltage,ground vias are set in each row of the array to achieve the stable voltage difference.

    Fig.5 shows the amplitude and phase of the simulatedS-parameters of the feeding network,whereS11less than -15 dB is at 11 GHz and the amplitudes of other ports are essentially the same.The phase difference of each output port is within 12°,which basically satisfies the equal phase requirement.

    Fig.5 Simulated S-parameter and output phase of the feeding network

    From the perspective of holographic theory (Johnson et al.,2015;Deng et al.,2021;Xu M et al.,2022),the antenna element is digitally encoded to verify the beam scanning capability of the antenna array.

    More detailed introduction about the holographic control theory can be found in Section 3 of the supplementary materials,and based on the digital coding theory,the beam scanning characteristics of the array at 11 GHz are simulated.Fig.6 shows the far-field patterns of the array.The simulation results suggest that the array can achieve precise beam steering at the preset angle.

    Fig.6 Far-field patterns corresponding to different angles

    4 Prototype fabrication and measurement

    To verify the performance of the proposed antenna,2-element subarray and 6×12 antenna array prototypes are fabricated and tested.In the test,the 2-element subarray is fed with a one-to-two power divider through the RF cable,with the integrated PIN diodes controlled by a DC voltage source capable of outputting±1.3 V.The PIN diodes in the 6×12 antenna array are controlled by a control board with 16×16 I/O ports based on a single-chip microcomputer,as shown in Fig.7.

    Fig.7 Photographs of the fabricated 2-element subarray,6×12 array,and environment of measurements

    The measurement results of the 2-element subarray are given in Section 4 of the supplementary materials.

    The measurement of the 6×12 array is shown in Fig.8.The code sequence of different deflection angles is imported into the single-chip microcomputer through the host computer,and the corresponding voltage is outputted from the extended I/O ports to control the PIN diodes;consequently,the beam deflection of the specific angle can be achieved.When ignoring the error of the antenna placement angle due to human factors,the simulation and measurement results are basically consistent,and the measured main lobe direction can be accurately deflected to the preset angle,which verifies the stable and accurate beam deflection of the proposed antenna system.

    Fig.8 Simulated and measured radiation patterns (a-g) and directivity,gain,and efficiency of the 6×12 antenna array(h) at different steering angles: (a) θ0=0°,φ0=0°;(b) θ0=±5°,φ0=0°;(c) θ0=±10°,φ0=0°;(d) θ0=±15°,φ0=0°;(e) θ0=±20°,φ0=0°;(f) θ0=±25°,φ0=0°;(g) θ0=±30°,φ0=0°

    Moreover,the cross-polarization of the dualpolarization antenna array is lower than -20 dB.However,the measured radiation pattern suffers from problems such as high-side lobe level and a little jitter in the main lobe,which may be caused mainly by the resonant frequency shift and the random phase difference introduced by the manufacture of the feeding network.In addition,the feeding network adopted in this study has equal amplitude at each port,and has an inherently high-side lobe level when used in the array antenna.Sidelobe performance can be improved by increasing the number of elements or using unequal amplitude feeding.

    The simulated directivity and gain and measured gain and efficiency of the antenna system are shown in Fig.8h.Here,the measured efficiency is the ratio of the measured gain to the simulated directivity.The results suggest that the radiation efficiency at each scanning angle is >70%.Because of the shift of the resonant frequency and the loss of the feeding network,PIN diodes,and DC bias circuit,the measured gain is reduced to a certain extent.The maximum aperture efficiency is 37% at 0°.The aperture efficiency is low at other angles because the gain decreases rapidly with the increase of the scanning angle.The main reasons for the decrease in gain are as follows:First,the proposed antenna array has symmetrical dual beams except for the 0° direction;compared with the single beam in the 0° direction,the symmetrical dual beam peak value is reduced by 3 dB (the energy is divided into two parts).Second,the antenna element has only two-phase radiation states,that is,1-bit phase quantization,and the phase accuracy is low,which will lead to quantization loss.

    A comparison with other antennas is given in Table 2.Most of the 1-bit beam scanning arrays proposed in recent years are reflection or transmission arrays,which are characterized by a high profile due to the need for a primary feed in space.In addition,there are few reports about the 2D radiation-type beam scanning antenna,and all of them are single polarization.In contrast,our antenna array features a low profile,dual-polarization,dual-beam,and a beam scanning step angle of 5° to ensure gain.

    Table 2 Comparison between the proposed beam scanning antenna and other reported antennas

    5 Conclusions

    In this paper,a dual-polarization dual-beam scanning array antenna based on holographic control theory is proposed.The antenna element integrates four PIN diodes,two in each of the horizonal and vertical directions,to achieve reconfigurable polarization.By varying the states of two PIN diodes in the same direction to change the radiation phase of the element,the simulation and measurement of the 2-element subarray verify that the proposed element is capable of manipulating the radiation pattern.Based on digital coding theory,the phase-adjustable structure integrated with the PIN diodes can act as a holographic element,and the desired object wave can be accurately and stably obtained by modulating the reference wave excited by the feed and the holographic element.The simulation verifies that the antenna array can achieve satisfactory 2D beam scanning.To verify the simulation results,a 2-element subarray prototype and a 6×12 array prototype are fabricated and subjected to measurement.The results of measurement and simulation are in good agreement,which proves the feasibility of the dual-polarization dual-beam scanning antenna system.Due to its low profile,low cost,and easy integration,this antenna system excels in applications in fields such as radar systems and smart antennas.

    Contributors

    Shichao ZHU designed the research.Shichao ZHU,Yuanfan NING,and Hongbo CHU tested the antenna system.Shichao ZHU drafted the paper.Pei XIAO helped organize the paper.Shichao ZHU and Gaosheng LI revised and finalized the paper.

    Compliance with ethics guidelines

    Shichao ZHU,Yuanfan NING,Hongbo CHU,Pei XIAO,and Gaosheng LI declare that they have no conflict of interest.

    Data availability

    The data that support the findings of this study are available from the corresponding author upon reasonable request.

    List of supplementary materials

    1 Supplement to the analysis of the element

    2 Supplement to the analysis of the 2-element subarray

    3 Supplement to the holographic control theory

    4 Supplement to the measurement results of the 2-element subarray

    99精品欧美一区二区三区四区| 成人精品一区二区免费| 两个人的视频大全免费| 五月玫瑰六月丁香| 好男人在线观看高清免费视频| 亚洲人成网站在线播| 久久精品亚洲精品国产色婷小说| 此物有八面人人有两片| 变态另类丝袜制服| 午夜精品在线福利| 99热精品在线国产| 全区人妻精品视频| 亚洲国产欧洲综合997久久,| 一边摸一边抽搐一进一小说| 特大巨黑吊av在线直播| 两性午夜刺激爽爽歪歪视频在线观看| 2021天堂中文幕一二区在线观| 国产精品三级大全| 99精品久久久久人妻精品| 九色国产91popny在线| 黄色成人免费大全| 精品乱码久久久久久99久播| 午夜老司机福利剧场| 熟女少妇亚洲综合色aaa.| 国产亚洲精品一区二区www| 每晚都被弄得嗷嗷叫到高潮| 久久久久久国产a免费观看| 欧美乱妇无乱码| 欧美大码av| 黄色日韩在线| 美女黄网站色视频| 99在线视频只有这里精品首页| 欧美大码av| 麻豆成人av在线观看| eeuss影院久久| 少妇裸体淫交视频免费看高清| 国产麻豆成人av免费视频| 国产欧美日韩精品一区二区| 日韩欧美国产一区二区入口| 少妇裸体淫交视频免费看高清| 97超级碰碰碰精品色视频在线观看| 一级毛片高清免费大全| 2021天堂中文幕一二区在线观| 噜噜噜噜噜久久久久久91| 国产精品美女特级片免费视频播放器| 9191精品国产免费久久| 日韩欧美国产一区二区入口| 18禁美女被吸乳视频| 亚洲一区高清亚洲精品| 国产精品一区二区三区四区免费观看 | 91在线精品国自产拍蜜月 | 一进一出好大好爽视频| 最后的刺客免费高清国语| 在线播放国产精品三级| 日韩中文字幕欧美一区二区| 99在线人妻在线中文字幕| 一本一本综合久久| 亚洲av成人精品一区久久| 久久精品91蜜桃| 岛国视频午夜一区免费看| 日本一二三区视频观看| 国产av麻豆久久久久久久| 亚洲成人久久性| 久久精品影院6| 久9热在线精品视频| 怎么达到女性高潮| 97碰自拍视频| 淫秽高清视频在线观看| 久久久国产成人精品二区| 亚洲无线观看免费| 亚洲片人在线观看| 欧美乱妇无乱码| 一级毛片女人18水好多| 亚洲真实伦在线观看| av在线天堂中文字幕| 首页视频小说图片口味搜索| 黄色日韩在线| 久久久久久久久久黄片| 狂野欧美白嫩少妇大欣赏| 少妇的逼水好多| 又粗又爽又猛毛片免费看| 亚洲在线自拍视频| 国产三级中文精品| 两个人视频免费观看高清| 欧美另类亚洲清纯唯美| 一级黄色大片毛片| 少妇的逼好多水| 在线观看日韩欧美| 伊人久久精品亚洲午夜| 国产91精品成人一区二区三区| 男人的好看免费观看在线视频| 国产色爽女视频免费观看| 精品一区二区三区视频在线观看免费| 天堂√8在线中文| 操出白浆在线播放| 99国产精品一区二区三区| 精华霜和精华液先用哪个| 两个人视频免费观看高清| 99热这里只有精品一区| 国内精品美女久久久久久| 19禁男女啪啪无遮挡网站| 一进一出抽搐动态| netflix在线观看网站| 无遮挡黄片免费观看| 一夜夜www| 亚洲久久久久久中文字幕| 又紧又爽又黄一区二区| 麻豆国产97在线/欧美| 亚洲人与动物交配视频| 亚洲国产精品合色在线| 99久久精品热视频| 国产精品美女特级片免费视频播放器| 757午夜福利合集在线观看| avwww免费| 99国产极品粉嫩在线观看| 床上黄色一级片| 国产中年淑女户外野战色| 欧美日本视频| 日韩欧美一区二区三区在线观看| 精品熟女少妇八av免费久了| 岛国在线观看网站| 久久精品影院6| x7x7x7水蜜桃| 黄色成人免费大全| 久久久久久大精品| 亚洲精品乱码久久久v下载方式 | 又爽又黄无遮挡网站| 在线十欧美十亚洲十日本专区| 午夜a级毛片| 久久久久九九精品影院| 日日摸夜夜添夜夜添小说| 日本五十路高清| 一夜夜www| www.熟女人妻精品国产| 不卡一级毛片| 制服丝袜大香蕉在线| 欧美另类亚洲清纯唯美| 国内少妇人妻偷人精品xxx网站| 麻豆国产97在线/欧美| xxxwww97欧美| 熟女电影av网| 天天添夜夜摸| 欧美大码av| 国产爱豆传媒在线观看| 搡老妇女老女人老熟妇| 两个人看的免费小视频| 久久人人精品亚洲av| 亚洲欧美日韩卡通动漫| 99久久精品一区二区三区| 午夜影院日韩av| 男女视频在线观看网站免费| 天堂av国产一区二区熟女人妻| 亚洲精品一区av在线观看| 两个人视频免费观看高清| 国产又黄又爽又无遮挡在线| 精品人妻1区二区| 亚洲欧美日韩卡通动漫| 国产在线精品亚洲第一网站| 日韩欧美精品v在线| 一边摸一边抽搐一进一小说| 国产伦在线观看视频一区| 一区福利在线观看| 在线免费观看不下载黄p国产 | 看免费av毛片| 97人妻精品一区二区三区麻豆| 最近最新免费中文字幕在线| 看黄色毛片网站| 亚洲国产精品999在线| 嫩草影院入口| 亚洲成av人片在线播放无| 在线观看一区二区三区| 一进一出抽搐动态| 婷婷亚洲欧美| 亚洲av电影在线进入| 欧美中文综合在线视频| 嫩草影视91久久| 69人妻影院| 久久国产精品人妻蜜桃| 美女大奶头视频| 俺也久久电影网| 人人妻人人看人人澡| 国产真人三级小视频在线观看| 久久久久九九精品影院| 亚洲欧美日韩东京热| 亚洲av美国av| 欧美一级毛片孕妇| 日韩人妻高清精品专区| 欧美xxxx黑人xx丫x性爽| 国产欧美日韩精品一区二区| 国产主播在线观看一区二区| 精品无人区乱码1区二区| 精品免费久久久久久久清纯| 午夜福利成人在线免费观看| 又粗又爽又猛毛片免费看| 日韩av在线大香蕉| 午夜免费男女啪啪视频观看 | 亚洲av成人精品一区久久| 亚洲真实伦在线观看| 亚洲精品影视一区二区三区av| 成人一区二区视频在线观看| 黄色女人牲交| 一级黄片播放器| av天堂中文字幕网| 深爱激情五月婷婷| 国产色婷婷99| 婷婷六月久久综合丁香| xxxwww97欧美| 12—13女人毛片做爰片一| 男女之事视频高清在线观看| 波多野结衣巨乳人妻| 最新中文字幕久久久久| 99久久精品国产亚洲精品| 一级黄色大片毛片| 最近最新中文字幕大全免费视频| 一级毛片高清免费大全| 99精品欧美一区二区三区四区| 成人鲁丝片一二三区免费| 在线天堂最新版资源| 18禁在线播放成人免费| 黑人欧美特级aaaaaa片| 男女下面进入的视频免费午夜| 亚洲欧美日韩高清专用| 小说图片视频综合网站| 国产激情偷乱视频一区二区| 欧美午夜高清在线| 亚洲第一欧美日韩一区二区三区| 精品人妻偷拍中文字幕| 午夜老司机福利剧场| 国产午夜精品论理片| 深夜精品福利| 国产av一区在线观看免费| 97碰自拍视频| 男人和女人高潮做爰伦理| 久久精品国产亚洲av涩爱 | 母亲3免费完整高清在线观看| a级一级毛片免费在线观看| avwww免费| 非洲黑人性xxxx精品又粗又长| 国产精品99久久99久久久不卡| 露出奶头的视频| 国产在视频线在精品| 免费看a级黄色片| 欧美乱妇无乱码| 色老头精品视频在线观看| 成年女人永久免费观看视频| 国产成人a区在线观看| 五月伊人婷婷丁香| 国产69精品久久久久777片| 在线观看66精品国产| 国产精品自产拍在线观看55亚洲| 日韩大尺度精品在线看网址| 国产私拍福利视频在线观看| 亚洲精品乱码久久久v下载方式 | 男女那种视频在线观看| 久久99热这里只有精品18| 99久久精品国产亚洲精品| 久久精品91蜜桃| 久久久久久久精品吃奶| 久久精品国产亚洲av涩爱 | 国产精品美女特级片免费视频播放器| av天堂中文字幕网| 69av精品久久久久久| 成人精品一区二区免费| 少妇的逼好多水| www.熟女人妻精品国产| 午夜a级毛片| 在线看三级毛片| 黄片小视频在线播放| 一进一出抽搐动态| 一区二区三区高清视频在线| 日本一二三区视频观看| 在线a可以看的网站| 国产精品久久久人人做人人爽| 美女 人体艺术 gogo| 精品国产亚洲在线| 午夜老司机福利剧场| 成人高潮视频无遮挡免费网站| 一二三四社区在线视频社区8| 成人亚洲精品av一区二区| 午夜福利在线在线| 操出白浆在线播放| 悠悠久久av| 一边摸一边抽搐一进一小说| 国产精品98久久久久久宅男小说| 丝袜美腿在线中文| 国产精品亚洲美女久久久| 国产精品三级大全| 啦啦啦韩国在线观看视频| 欧美午夜高清在线| 成人特级黄色片久久久久久久| 免费大片18禁| 99久久精品一区二区三区| 欧美黄色片欧美黄色片| 中文字幕人妻熟人妻熟丝袜美 | 国产高清三级在线| 国产精品久久久人人做人人爽| 老司机午夜福利在线观看视频| 亚洲专区中文字幕在线| 日韩有码中文字幕| 国产午夜福利久久久久久| 日本 欧美在线| 国产探花极品一区二区| 叶爱在线成人免费视频播放| 国产熟女xx| 国产亚洲欧美在线一区二区| 可以在线观看毛片的网站| 国产私拍福利视频在线观看| 级片在线观看| 国产精品一及| 亚洲av不卡在线观看| 久久久久亚洲av毛片大全| 美女cb高潮喷水在线观看| 白带黄色成豆腐渣| 丝袜美腿在线中文| 成人高潮视频无遮挡免费网站| 极品教师在线免费播放| 国产亚洲精品一区二区www| 琪琪午夜伦伦电影理论片6080| 国产精品一区二区免费欧美| 高清日韩中文字幕在线| 欧洲精品卡2卡3卡4卡5卡区| 少妇丰满av| 欧美3d第一页| 色在线成人网| e午夜精品久久久久久久| 国产爱豆传媒在线观看| 亚洲成人久久爱视频| 色哟哟哟哟哟哟| 国产精品 国内视频| 久久精品国产亚洲av涩爱 | 日本黄色片子视频| 国产午夜精品久久久久久一区二区三区 | 久久国产精品人妻蜜桃| 97超视频在线观看视频| 99热这里只有是精品50| 国产成年人精品一区二区| 国产高清videossex| 久久这里只有精品中国| 亚洲不卡免费看| 久久精品国产自在天天线| 成年女人毛片免费观看观看9| 亚洲精品在线观看二区| 日本黄色片子视频| 亚洲国产精品sss在线观看| 亚洲成a人片在线一区二区| 中文字幕av成人在线电影| 99精品久久久久人妻精品| 老汉色∧v一级毛片| 日本一二三区视频观看| 不卡一级毛片| 亚洲人成电影免费在线| 精品电影一区二区在线| 无人区码免费观看不卡| av中文乱码字幕在线| 无人区码免费观看不卡| 最好的美女福利视频网| 夜夜夜夜夜久久久久| 久久欧美精品欧美久久欧美| 日本撒尿小便嘘嘘汇集6| 嫩草影视91久久| 国产美女午夜福利| 精品人妻1区二区| 免费在线观看成人毛片| 人人妻,人人澡人人爽秒播| bbb黄色大片| 国产精品综合久久久久久久免费| 亚洲成人久久爱视频| 久久久久久人人人人人| 国产成人aa在线观看| 亚洲中文字幕一区二区三区有码在线看| 十八禁人妻一区二区| 在线观看66精品国产| 中国美女看黄片| 国产老妇女一区| 99riav亚洲国产免费| 国产老妇女一区| 最后的刺客免费高清国语| 国产老妇女一区| 国产成人影院久久av| 国产精品久久久久久久电影 | 波多野结衣高清无吗| 中文字幕精品亚洲无线码一区| 国产三级中文精品| 亚洲一区高清亚洲精品| 一a级毛片在线观看| 亚洲av电影不卡..在线观看| 久久亚洲精品不卡| 级片在线观看| 国产高清有码在线观看视频| 老熟妇乱子伦视频在线观看| 国产成人影院久久av| 亚洲 欧美 日韩 在线 免费| 国产欧美日韩一区二区精品| 久久精品人妻少妇| e午夜精品久久久久久久| 国产午夜精品久久久久久一区二区三区 | 在线播放无遮挡| 欧美性感艳星| 岛国在线观看网站| 日韩欧美精品免费久久 | 亚洲av免费在线观看| 午夜精品一区二区三区免费看| 变态另类丝袜制服| 久久久久久久久中文| 国产精品精品国产色婷婷| 国产精品99久久久久久久久| 欧美在线一区亚洲| 熟女电影av网| 在线观看免费午夜福利视频| 国产精品影院久久| 99久久综合精品五月天人人| 国产免费av片在线观看野外av| 国产高清videossex| 欧美黑人欧美精品刺激| 一级毛片高清免费大全| 国产伦人伦偷精品视频| 一个人看的www免费观看视频| 欧美成人一区二区免费高清观看| 动漫黄色视频在线观看| 青草久久国产| 又粗又爽又猛毛片免费看| aaaaa片日本免费| 国产av在哪里看| 国产v大片淫在线免费观看| 精品国产三级普通话版| 亚洲av成人精品一区久久| 有码 亚洲区| 成人精品一区二区免费| 18禁美女被吸乳视频| 精品福利观看| 高清毛片免费观看视频网站| 日韩免费av在线播放| 在线免费观看不下载黄p国产 | 老熟妇仑乱视频hdxx| 三级毛片av免费| 日本与韩国留学比较| 99久久综合精品五月天人人| 国产私拍福利视频在线观看| 国产精品野战在线观看| 国产伦人伦偷精品视频| 小说图片视频综合网站| av女优亚洲男人天堂| 午夜福利在线在线| 亚洲avbb在线观看| 丰满人妻一区二区三区视频av | 国产蜜桃级精品一区二区三区| 九色国产91popny在线| 国产成人福利小说| 欧美日韩国产亚洲二区| 中亚洲国语对白在线视频| 999久久久精品免费观看国产| 99精品久久久久人妻精品| 亚洲专区中文字幕在线| 亚洲精品456在线播放app | 亚洲真实伦在线观看| 精品日产1卡2卡| 久久婷婷人人爽人人干人人爱| xxx96com| 淫秽高清视频在线观看| 少妇高潮的动态图| 欧美成狂野欧美在线观看| 中文字幕av成人在线电影| 欧美丝袜亚洲另类 | 人人妻人人澡欧美一区二区| 亚洲avbb在线观看| 亚洲精品美女久久久久99蜜臀| 麻豆一二三区av精品| 观看美女的网站| 一级黄色大片毛片| 国产美女午夜福利| 中文字幕人成人乱码亚洲影| 男女那种视频在线观看| 听说在线观看完整版免费高清| 日本熟妇午夜| 午夜福利视频1000在线观看| 久久久久亚洲av毛片大全| 欧美另类亚洲清纯唯美| 国产欧美日韩精品亚洲av| 国产熟女xx| 亚洲精品影视一区二区三区av| 亚洲一区二区三区色噜噜| x7x7x7水蜜桃| 九九久久精品国产亚洲av麻豆| 日韩大尺度精品在线看网址| 少妇裸体淫交视频免费看高清| 三级男女做爰猛烈吃奶摸视频| 99在线视频只有这里精品首页| 欧美日本亚洲视频在线播放| 国内久久婷婷六月综合欲色啪| 十八禁网站免费在线| 好看av亚洲va欧美ⅴa在| 最近最新免费中文字幕在线| 日本免费一区二区三区高清不卡| 狂野欧美激情性xxxx| 久久精品国产清高在天天线| 看片在线看免费视频| 一个人免费在线观看电影| 国产视频一区二区在线看| 美女 人体艺术 gogo| 最新中文字幕久久久久| 国产探花在线观看一区二区| 亚洲欧美一区二区三区黑人| 欧美三级亚洲精品| 亚洲一区高清亚洲精品| 国产精品免费一区二区三区在线| 亚洲国产日韩欧美精品在线观看 | 午夜福利高清视频| 一卡2卡三卡四卡精品乱码亚洲| 国产精品免费一区二区三区在线| 国产亚洲精品av在线| 欧美xxxx黑人xx丫x性爽| 日本免费一区二区三区高清不卡| 一卡2卡三卡四卡精品乱码亚洲| 波多野结衣高清作品| 又黄又粗又硬又大视频| 日本一二三区视频观看| 亚洲乱码一区二区免费版| 日本三级黄在线观看| 国产亚洲欧美在线一区二区| 老熟妇乱子伦视频在线观看| 日韩有码中文字幕| 午夜a级毛片| 国产欧美日韩精品一区二区| 日韩av在线大香蕉| 精品电影一区二区在线| 亚洲精品乱码久久久v下载方式 | 手机成人av网站| 别揉我奶头~嗯~啊~动态视频| 美女大奶头视频| 久久久精品大字幕| 制服丝袜大香蕉在线| 亚洲精品在线美女| 久久草成人影院| 国产高清视频在线观看网站| 天天一区二区日本电影三级| 真人一进一出gif抽搐免费| 搡老岳熟女国产| 亚洲人成网站高清观看| 男女之事视频高清在线观看| 老汉色∧v一级毛片| 91麻豆av在线| 天堂√8在线中文| 岛国在线观看网站| 熟女人妻精品中文字幕| 日本 av在线| 免费一级毛片在线播放高清视频| 欧美成人a在线观看| 又粗又爽又猛毛片免费看| 国产久久久一区二区三区| 琪琪午夜伦伦电影理论片6080| 网址你懂的国产日韩在线| 三级毛片av免费| www.色视频.com| 国产精品电影一区二区三区| 男女视频在线观看网站免费| 波多野结衣高清无吗| 午夜久久久久精精品| 深爱激情五月婷婷| 999久久久精品免费观看国产| 国产精品久久久久久久久免 | 制服丝袜大香蕉在线| 亚洲中文字幕一区二区三区有码在线看| 狂野欧美激情性xxxx| АⅤ资源中文在线天堂| 老司机在亚洲福利影院| 一级黄片播放器| 丰满人妻一区二区三区视频av | 欧美一区二区国产精品久久精品| 国产精品98久久久久久宅男小说| 久久久久性生活片| 国产私拍福利视频在线观看| 内射极品少妇av片p| av女优亚洲男人天堂| 国产高清激情床上av| 18+在线观看网站| 桃红色精品国产亚洲av| 美女免费视频网站| 亚洲av中文字字幕乱码综合| 亚洲精品影视一区二区三区av| 亚洲精品在线观看二区| 两个人看的免费小视频| 成人午夜高清在线视频| 成人国产一区最新在线观看| 高清在线国产一区| 欧美一区二区亚洲| 精品一区二区三区视频在线观看免费| 成熟少妇高潮喷水视频| 90打野战视频偷拍视频| 在线天堂最新版资源| 欧美一级毛片孕妇| 色综合站精品国产| 国产精品久久久久久久电影 | 五月玫瑰六月丁香| 99久久九九国产精品国产免费| 美女 人体艺术 gogo| 99热只有精品国产| www日本在线高清视频| 亚洲成人久久爱视频| 国产私拍福利视频在线观看| 天天一区二区日本电影三级| bbb黄色大片| 黄片小视频在线播放| 欧美精品啪啪一区二区三区| 无人区码免费观看不卡| 99热只有精品国产| 白带黄色成豆腐渣| 两人在一起打扑克的视频| 国产成年人精品一区二区| 亚洲色图av天堂| 日本黄色片子视频| 91在线观看av| 午夜精品在线福利| 国产伦精品一区二区三区视频9 | 琪琪午夜伦伦电影理论片6080| 午夜两性在线视频|