• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of strain on the flat band in twisted bilayer graphene

    2023-11-02 08:12:08ZhenZhang張鎮(zhèn)LuWen文露YoukaiQiao喬友凱andZhiqiangLi李志強
    Chinese Physics B 2023年10期
    關(guān)鍵詞:志強

    Zhen Zhang(張鎮(zhèn)), Lu Wen(文露), Youkai Qiao(喬友凱), and Zhiqiang Li(李志強)

    College of Physics,Sichuan University,Chengdu 610064,China

    Keywords: graphene,moir′e superlattice,magic angle and strain

    1.Introduction

    Many correlated and topological electronic phases have been discovered in twisted bilayer graphene (TBG) in recent studies,[1-19]which has led to an outburst of research based on this system over the past few years.[20-23]These novel quantum states originate from the formation of flat electronic bands near a magic twisted angle (~1°) under the influence of the moir′e superlattice.[20-37]Such flat bands exhibit a sensitive dependence on small lattice deformations[24,38]that are induced by lattice relaxation or strain.On the other hand, strain is an effective tool for engineering the flat bands[24,39]and thus helps us understand the various exotic quantum states in TBG.

    Previous experimental[8]and theoretical works[24,36,39-41]have shown that applying a heterostrain (relative strains between layers) in a two-layer structure can significantly modify the band structures and electronic phases.Due to the interaction between substrate and graphene in the preparation process, various strains are prevalent in actual TBG samples.Therefore,it is of great significance to study the effect of different types of strain on the flat bands in TBG.The influence of uniaxial heterostrain on the bands of TBG has been explored in detail in previous studies.[24,38,42,43]However, there are few detailed studies[39,44]on the difference and connection between the effects of various types of strains on the electronic structure of TBG.

    In this paper, we systematically investigate the effect of different heterostrains on the moir′e band structures and density of states (DOS) of TBG based on a low-energy effective continuum model.We show that various strains strongly affect the band structures of TBG near the magic angle.Compared with the twisted angle,only a small magnitude of strain is required to cause separation between the conduction band and the valence band.Volume-preserving strain can broaden the van Hove singularities compared with shear strain, and both types of strain have dissimilar dependence on strain direction.In addition,unlike other strains,the effect of biaxial strain on TBG is very similar to that of the twisted angle both geometrically and electronically.Therefore,certain angles that are difficult to achieve during sample fabrication experimentally can be replaced by applying biaxial strain.The effects of dissimilar strains on the band structures and DOS have very subtle differences, which can be used to experimentally distinguish various types of strain.Our findings regarding the flat bands and van Hove singularities have broad implications for the novel quantum phases in TBG,which can be directly studied by scanning tunnelling microscopy(STM)experiments.[6-8,17]

    2.Theoretical background

    For TBG without strain, where the two graphene layers are only rotated relative to each other, the moir′e superlattice forms an array of equilateral triangular domains with alternating AB and BA stacking regions.However,the moir′e pattern and the corresponding Brillouin zone of TBG are significantly distorted in the presence of heterostrain.An example of the associated moir′e pattern generated with various strains is shown in Fig.1.Because the moir′e superlattice period is much larger than the atomic scale in the limit of the small twisted angle,the continuum model can efficiently capture low-energy electronic structures,[20,29,45]which allows us to analyze the effect of geometrical deformation (including the twisted angle and strain)on the physical properties of TBG.

    Here the antisymmetric part,labeled byT(θ),represents a rotation matrix with twisted angleθ.The symmetric part, labeled byS(?), represents the strain with magnitude ?.Obviously, the shape of the unit cell as well as the Brillouin zone are both geometrically affected by deformationE.Therefore,the rescaled primitive and reciprocal lattice vectors can be expressed as[24]

    HereAiandGi(i=1,2)refer to the primitive vectors and the reciprocal vectors without deformation,respectively.

    For a TBG system,a periodic variation of the layer stacking order can emerge with a small value of deformationE,as shown in Fig.1.In our calculation,we consider a TBG system starting with AA stacking and then apply various geometrical deformationsE.Hence, the reciprocal lattice vectorsgiand the primitive lattice vectorsaiof the moir′e superlattice[24]are

    respectively.Here,E=E2-E1is the relative deformation matrix between two layers of graphene,whereEl(l=1,2)represents the deformation acting on each single layer of graphene.In this paper, the respective deformation of each layer is regarded asE1=-E2=E/2, that is, the two graphene layers are rotated and strained oppositely with the same magnitude.

    Based on the effective continuum model,the Hamiltonian of TBG can be written as

    whereUis the interlayer coupling of two graphene layers andhl(l=1,2)is the intralayer Hamiltonian of layerl, which is given by the two-dimensional gapless Dirac equation[24]

    In Eq.(5),ξ=±labels theK(K')valley andσx(σy)is the Pauli matrix in the sublattice space.In the following calculations, we take ˉhvF/a ≈2.1354 eV.[25]Within a simple twocenter approximation and the small-strain limit, the position of the Dirac fermionDl,ξin momentum space is[24]

    with

    whereKl,ξdenotes the location of theK(K')valley for layerlandAis the strain-induced vector potential.[24,46]In theAterm,the hopping modulus factor isβ ≈3.14[46]and ?xx(?yy,?xy) represents the component of the two-dimensional strain tensor.

    Moreover, the effective interlayer couplingUis given by[20,24]

    whereω= e2πi/3anduandu'are the amplitudes of the diagonal and off-diagonal terms in the sublattice space,respectively.[47]They reflect the influence of lattice ripples on the moir′e band structures.In particular, in the smalldeformation regime,competition between the interlayer interaction and the elastic energy at the interface can lead to significant lattice relaxation for TBG.The reconstruction can be taken into account by usingu=0.0797 eV andu'=0.0975 eV in our calculation,which are the interlayer coupling strengths of AA/BB and AB/BA stacked regions,respectively.[33,47]

    In the following, we introduce into the effective Hamiltonian four different types of strain that are common in two-dimensional materials, namely, shear strainSsh, volumepreserving strainSvp,biaxial strainSbaand uniaxial strainSua.In Fig.1,we display the corresponding moir′e pattern and the moir′e Brillouin zone under various strains with magnitude?=0.7% for TBG near the magic angle (θ=1.05°).Four general forms of strain have been derived in detail in previous reports.[24,44]In addition, to further understand the effect of strain direction on the electronic band structures of TBG,we consider an angleφof strain relative to the A1 axis(fouraxis coordinate system)in our system.[8]Therefore,the strain tensor can be modified to the following form:[24,44]

    The above four strains are characterized by the strain magnitude ?and the directionφ.Here, the parameterν=0.16 is the Poisson ratio[8]for graphene.Then,the deformation matrixEcontaining the strain directionφand magnitude ?is obtained for TBG,and is of the formE=S(?φ)+T(θ).

    3.Results and discussion

    Based on the effective continuum model described above, we calculate the electronic band structures of TBG at a fixed twisted angleθ=1.05°close to the magic angle under four different types of strain.In this article,the path of band structures is along the linek1→γ→k2→M→γ→M→k1in the moir′e Brillouin zone scheme,as shown by the red dashed line in Fig.1(a).In addition,we also perform a series of controls on the electronic band structures by varying the strain magnitude ?and directionφ.These results are fully displayed and discussed in this section.

    Fig.1.Schematic representation of the moir′e pattern and moir′e Brillouin zone for TBG with a twisted angle θ =1.05° under the influence of four types of uniform strain along the armchair direction,namely,(a)shear strain,(b)volume-preserving strain,(c)biaxial strain and(d)uniaxial strain.The parameters of these strains are magnitude ?=0.7%and direction φ =0°.The red dashed line in(a)represents the momentum path for the energy band plots.

    3.1.Shear strain

    Interlayer and interfacial shear strain play crucial roles in the performance and application of TBG.However, the key parameters controlling shear strain have been poorly studied both experimentally and theoretically.Note that the form of shear strain considered in Eq.(9) is similar to that in the research of Koshinoet al.,[39]and our form is equivalent to that in Ref.[39] under certain conditions.In particular, the shear strain form we considered is of more universal and practical significance, and can be combined with experimental studies.[48-51]

    In Fig.2, we show the band structures and DOS of the TBG system under shear strain with various magnitudes ?and directionsφ.When the strain magnitude ?=0,TBG exhibits flat bands with vanishing band velocity near the charge neutral point (CNP), resulting from competition between the kinetic energy and the interlayer hybridization energy.Correspondingly,as shown by the black line in Figs.2(a)and 2(b),the DOS has a strong peak near the CNP.However, the flat bands near the CNP are very sensitive to variation of the strain magnitude ?,and even a small magnitude of ?=0.1%causes them to split significantly, as shown in Figs.2(a) and 2(b).Moreover, as the magnitude ?of strain increases, the energy separation of the lowest conduction band and valence band increases systematically.Then, the corresponding peaks in the DOS also shift systematically to higher energies with increase in ?.Unlike flat band features, the remote bands are slightly affected by the strain magnitude ?.Although the energy gap between the flat bands and the higher-energy bands becomes smaller with increase in ?,the two are not connected and still maintain a small energy gap ofΔ~0.24 meV.Moreover,the energy shift of the two flat bands mainly occurs at theγpoint,and the band dispersion is also mainly distributed near theγpoint.The two bands are quite flat in most other regions of the Brillouin zone.In particular,shear strain does not open the gap near the CNP due to the symmetry ofC2zT,and the conduction band and valence band are still connected by a Dirac crossing point.Because the threefold rotational symmetries are broken by the strain,the two Dirac crossing points are no longer located at the corners of the Brillouin zone but at a generic point.[24,38]

    Compared with the strain magnitude ?, the electronic band structures of TBG are almost insensitive to the strain directionφ,as shown in Fig.2(c).This is because the behavior of the flat band is highly correlated with the asymmetric and anisotropic components of the strain tensor.[39]However, the structure of van Hove singularities changes subtly with various strain directionsφ.It can be clearly observed from Figs.2(a)and 2(b)that the DOS shows one or two smooth main peaks atφ=30°and 9°,while the prominent peaks of the DOS exhibit some shoulders and the van Hove singularities are broadened when the directionφdeviates by 30°or 90°.In addition, the system is periodic forφ →φ+π/3 originating from the symmetry of the unstrained system.Thus, the DOS of TBG with shear strain also goes through periodic changes.

    Fig.2.Band structures and the DOS of magic angle TBG considering the shear strain.(a)Strain direction φ=30°and magnitude ?=0,0.1%,0.2%,0.3%,0.4%.(b)Strain direction φ=90°and magnitude ?=0,0.1%,0.2%,0.3%,0.4%.Different colors represent different magnitudes of strain.The colored arrows mark the energy corresponding to the van Hove singularities.(c)The band structures of different directions φ with the strain magnitude ?=0.1%.

    3.2.Volume-preserving strain

    Volume-preserving strain is another heterostrain that is relatively common in two-dimensional systems.[24]The specific forms of volume-preserving strainSvpare listed in Section 2.According to Eq.(10),the materials are strained with a magnitude of ?along the directionφand a magnitude of-?along the vertical directionφsimultaneously.

    The effect of strainSvpfor a series of strain magnitudes on the electronic structures of TBG atφ=30°andφ=60°is shown in Fig.3.Under the action of volume-preserving strain,the variation of the flat band with magnitude ?is similar to that of the shear strain,as illustrated in the band structures in Figs.2(a),2(b)and 3.However,compared with the results for shear strain,the DOS in Fig.3 demonstrates the unique influence of volume-preserving strain on the TBG system.When the increasing parameter ?is taken into account,the characteristic peaks in the DOS are significantly broadened while moving to higher energies.In addition,the prominent peaks in the DOS evolve from a single peak to a group of peaks consisting of multiple secondary peaks at ?>0.2%.Moreover, at the same magnitude ?,the shape of the two peak groups changes with strain directionφ,which is most obvious when ?=0.4%.

    Fig.3.Band structures and the DOS of magic angle TBG considering volume-preserving strain.(a)Strain direction φ =60° and magnitude?=0, 0.1%, 0.2%, 0.3%, 0.4%.(b) Strain direction φ =90° and magnitude ?=0, 0.1%, 0.2%, 0.3%, 0.4%.Different colors represent different magnitudes of strain.The colored arrows mark the energy corresponding to the van Hove singularities.

    3.3.Biaxial strain

    Biaxial strain is a kind of strain in which a lowdimensional system is subjected to stress in both arbitrary and perpendicular directions.In general, biaxial strain is only related to the magnitude ?and is independent of the strain directionφ,as derived from Eq.(11).

    Figure 4(a) shows the influence of biaxial strain on the electronic structures in TBG under different strain magnitudes?.Unlike shear strain and volume-preserving strain, biaxial strain does not open the band gap of TBG at thek1point.As shown in Fig.4(c), since the threefold rotational symmetry is not broken when biaxial strain is applied to TBG, the two Dirac crossing points connecting the two energy bands are always located at the corners of the Brillouin zone.Biaxial strain can greatly affect the behavior of the lowest conduction band and the valence band,whereas the remote bands are independent of the strain magnitudes ?.Besides, with increase in ?,the energy gaps between the two flat bands near the CNP and the remote bands decrease gradually and tend to overlap.In Fig.4(b), we show the electronic band diagram of TBG with an additional small rotation angle Δθaround the magic angleθ ≈1.05°.It can be observed that the effect of twisted angle Δθon electron structures is very similar to that of biaxial strain in TBG.This finding can be attributed to the biaxial strain-induced vector potentialA=0, resulting in geometrical biaxial strain effects consistent with the twisted angle.Our results are agreement with previous studies on TBG under biaxial strain.[44]

    3.4.Uniaxial strain

    Uniaxial strain is a kind of strain in which the bilayer system is subjected to relative stress in one direction but not in the vertical direction.In previous studies,[52,53]uniaxial strain was found to exist extensively in TBG samples.The influence of uniaxial strain on the electronic band structure of TBG has been described in detail in previous works,[17,24,38,42,43]and the most important feature caused by uniaxial strain is the energy separation between the conduction band and the valence band near the CNP.

    3.5.Discussion

    We have described in detail the characteristics of the band structures in the TBG system under the influence of various strains.Next, we discuss the connections and differences between the dissimilar strains.We can clearly observe that the central flat band of TBG is very sensitive to all strains.Each strain near the magic angle broadens the bandwidth of the central flat band, leading the large energy separation of van Hove singularities in the DOS.These behaviors can be directly observed in STM experiments.[6,8]It is found that shear strain and volume-preserving strain have similar effects on the electronic structure of TBG,because asymmetric heterostrainsE1=-E2=E/2 are taken into account in our calculations.The central flat band splitting of TBG is mainly related to the anisotropic normal componentand the shear component ?xyof the strain tensor, which has been explained in previous work by using the pseudo Landau level picture of TBG.[39]

    Fig.4.Band structures of TBG with different (a) biaxial strain magnitudes ?=0.1%, 0.3%, 0.4% and (b) twisted angles θ =1.10°, 1.15°,1.20°.Different colors represent different magnitudes of strain and twisted angle.(c)The moir′e Brillouin zone of TBG under various biaxial strain magnitudes ?.

    We also analyze the differences between the dissimilar strains.Firstly, we find that the bands under different strains have different dispersion.Compared with shear strain, the structure of the van Hove singularity of TBG under volumepreserving strain has broader peaks in the DOS.Secondly,biaxial strain has a very unusual effect on the band of TBG compared with the other three types of strain.Biaxial strain does not break the threefold rotational symmetry of the TBG lattice.The changes in the band and DOS of TBG under the influence of biaxial strain are very similar to the effect of twisted angle.In fact,the geometric effect of biaxial strain is similar to that of twisted angle,as shown in previous studies.[44]Finally,unlike the complete separation of the central flat bands under uniaxial strain,shear strain and volume-preserving strain cause the flat band to change dramatically near theγpoint,such that under certain conditions the central flat bands intersect at locations other than the intersection of the two Dirac points.This result means that the electronic and optical behavior of the two flat bands can no longer be considered from the perspective of isolated bands.

    4.Conclusion and perspectives

    In this paper, we systematically studied the electronic band structure and DOS of magic angle TBG with different types of strain based on the effective continuum model.We find that the flat band near the CNP is greatly sensitive to shear,volume-preserving and uniaxial strain,which leads to distinct behaviors in the flat bands and DOS.Unlike uniaxial strain,the energy transition of shear strain and volume-preserving strain is more intense near theγpoint of the central flat band, and the two types of strain have dissimilar strain direction dependences, which enables us to extract a lot of critical information about band structure.In addition, biaxial strain is unusual compared with the other strain modes in that the effect on TBG is very similar to that of the twisted angle both geometrically and electronically,which provides a way to achieve some twisted angles that are difficult to fabricate experimentally using biaxial strain in the future.Finally, we found that different types of strain lead to corresponding characteristic peaks and thus modify the van Hove singularities in the DOS of the flat bands,which are expected to significantly influence the correlated and topological electronic phases in TBG and can be studied by future STM experiments.[6-8,17]

    Acknowledgements

    Project supported by the National Natural Science Foundation of China(Grant No.11874271).We thank Yan He for theoretical support and discussions.

    猜你喜歡
    志強
    NFT與絕對主義
    趙志強書法作品
    學習“集合”,學什么
    李志強·書法作品稱賞
    袁志強 始終奮戰(zhàn)在防疫第一線
    盧志強 用心于畫外
    海峽姐妹(2019年4期)2019-06-18 10:39:00
    送別張公志強
    寶藏(2018年12期)2019-01-29 01:50:50
    ON ENTIRE SOLUTIONS OF SOME TYPE OF NONLINEAR DIFFERENCE EQUATIONS?
    Analysis of Tibetan Plateau Vortex Activities Using ERA-Interim Data for the Period 1979-2013
    志強的石
    中華奇石(2014年12期)2014-07-09 18:30:22
    日韩一本色道免费dvd| 亚洲av综合色区一区| 亚洲人与动物交配视频| 丝瓜视频免费看黄片| 亚洲精品一二三| 色5月婷婷丁香| 国产精品国产av在线观看| 又黄又爽又刺激的免费视频.| 内地一区二区视频在线| av在线老鸭窝| 人妻一区二区av| 午夜福利在线观看免费完整高清在| 日韩一区二区视频免费看| 最近的中文字幕免费完整| 国产一区亚洲一区在线观看| 国产精品无大码| 久久久亚洲精品成人影院| 久久久亚洲精品成人影院| 国产黄片美女视频| 亚洲人成网站高清观看| 中文字幕人妻熟人妻熟丝袜美| 日韩一区二区视频免费看| 亚洲真实伦在线观看| 制服丝袜香蕉在线| 国产免费福利视频在线观看| 日韩av不卡免费在线播放| 国产一区二区三区av在线| 七月丁香在线播放| 欧美变态另类bdsm刘玥| 看十八女毛片水多多多| 日韩欧美 国产精品| 人妻 亚洲 视频| av黄色大香蕉| 一级爰片在线观看| 欧美老熟妇乱子伦牲交| 少妇高潮的动态图| 日韩一本色道免费dvd| 日韩精品有码人妻一区| 日本猛色少妇xxxxx猛交久久| 嫩草影院新地址| 久久国内精品自在自线图片| 夜夜骑夜夜射夜夜干| 韩国av在线不卡| 久久久久性生活片| 亚洲精品456在线播放app| 亚洲av不卡在线观看| 蜜桃久久精品国产亚洲av| 晚上一个人看的免费电影| 成人影院久久| 久久人人爽av亚洲精品天堂 | 自拍欧美九色日韩亚洲蝌蚪91 | 国产乱人视频| 亚洲色图av天堂| 久久久久久久久久成人| 国产乱人偷精品视频| 三级国产精品片| 久久人人爽人人片av| 最近2019中文字幕mv第一页| 久久人人爽人人片av| 午夜精品国产一区二区电影| tube8黄色片| 秋霞伦理黄片| 亚洲人成网站在线观看播放| 久久久精品免费免费高清| 直男gayav资源| 夜夜爽夜夜爽视频| 蜜桃久久精品国产亚洲av| 一级av片app| 欧美成人午夜免费资源| 尤物成人国产欧美一区二区三区| 国产成人a区在线观看| 久久亚洲国产成人精品v| 男人和女人高潮做爰伦理| 女性生殖器流出的白浆| 亚洲精品自拍成人| 久久久成人免费电影| 欧美性感艳星| 在线免费十八禁| 美女视频免费永久观看网站| 国产伦精品一区二区三区四那| 女人久久www免费人成看片| 最近中文字幕2019免费版| 熟女电影av网| 婷婷色综合大香蕉| 亚洲精品国产成人久久av| 我要看黄色一级片免费的| 在线亚洲精品国产二区图片欧美 | 日韩中字成人| 中文字幕av成人在线电影| 在线观看免费日韩欧美大片 | 久久毛片免费看一区二区三区| 岛国毛片在线播放| 全区人妻精品视频| 日本黄大片高清| 亚洲欧美一区二区三区黑人 | 男女免费视频国产| 一本—道久久a久久精品蜜桃钙片| 欧美日韩国产mv在线观看视频 | 在线观看三级黄色| 亚洲精品成人av观看孕妇| 少妇的逼水好多| 午夜日本视频在线| 国产av国产精品国产| 99热这里只有精品一区| 寂寞人妻少妇视频99o| 国产一区亚洲一区在线观看| 亚洲国产色片| 91精品一卡2卡3卡4卡| 一区二区三区精品91| 国产精品一区二区在线不卡| 狠狠精品人妻久久久久久综合| 亚洲中文av在线| 一区二区av电影网| 中文字幕精品免费在线观看视频 | 国产极品天堂在线| 超碰av人人做人人爽久久| 美女视频免费永久观看网站| 亚洲欧美日韩卡通动漫| 久久99热这里只有精品18| 久久久久久久亚洲中文字幕| 黄色视频在线播放观看不卡| 久久久久精品性色| 天堂俺去俺来也www色官网| 欧美极品一区二区三区四区| av专区在线播放| 寂寞人妻少妇视频99o| 成人国产麻豆网| 亚洲aⅴ乱码一区二区在线播放| av线在线观看网站| av网站免费在线观看视频| 丰满乱子伦码专区| 国产一级毛片在线| 在线天堂最新版资源| 一边亲一边摸免费视频| 成人二区视频| 国产精品久久久久久久电影| 亚洲国产欧美在线一区| 久久精品国产亚洲网站| 国产高清不卡午夜福利| 免费av中文字幕在线| 国产精品一二三区在线看| 免费看光身美女| 99热国产这里只有精品6| 欧美成人a在线观看| 中文在线观看免费www的网站| 亚洲欧美一区二区三区黑人 | 在线观看美女被高潮喷水网站| 欧美成人精品欧美一级黄| 免费av不卡在线播放| 国产欧美另类精品又又久久亚洲欧美| 少妇熟女欧美另类| 亚洲经典国产精华液单| 一本色道久久久久久精品综合| a 毛片基地| 欧美老熟妇乱子伦牲交| 婷婷色综合大香蕉| 国产亚洲精品久久久com| 中文字幕久久专区| av国产免费在线观看| 一区二区三区免费毛片| 国产精品人妻久久久久久| 国产 一区精品| 国产精品久久久久久av不卡| 国产免费又黄又爽又色| 欧美日韩视频精品一区| 我要看黄色一级片免费的| 小蜜桃在线观看免费完整版高清| 黄片wwwwww| 一区二区三区乱码不卡18| 精品一品国产午夜福利视频| 少妇被粗大猛烈的视频| 亚洲四区av| 夜夜爽夜夜爽视频| 美女主播在线视频| 中文乱码字字幕精品一区二区三区| av专区在线播放| 国产精品国产三级专区第一集| 综合色丁香网| 国产精品麻豆人妻色哟哟久久| 精品人妻偷拍中文字幕| 综合色丁香网| 成人美女网站在线观看视频| 只有这里有精品99| 欧美成人a在线观看| 老司机影院毛片| 久久鲁丝午夜福利片| 亚洲欧美成人综合另类久久久| 午夜福利视频精品| 在线亚洲精品国产二区图片欧美 | 日韩欧美 国产精品| 日本午夜av视频| 国产欧美另类精品又又久久亚洲欧美| 久久精品久久精品一区二区三区| 午夜激情福利司机影院| 又黄又爽又刺激的免费视频.| 国产白丝娇喘喷水9色精品| 国产精品av视频在线免费观看| 一区二区三区四区激情视频| 一个人免费看片子| 亚洲精品日韩在线中文字幕| 精品久久久精品久久久| 亚洲久久久国产精品| 一级毛片 在线播放| 午夜激情福利司机影院| 在线天堂最新版资源| a级毛片免费高清观看在线播放| 免费看日本二区| 十八禁网站网址无遮挡 | 久久久久久久精品精品| 久久久久久久大尺度免费视频| 成人免费观看视频高清| 欧美另类一区| 亚洲av不卡在线观看| 人体艺术视频欧美日本| 啦啦啦中文免费视频观看日本| 高清在线视频一区二区三区| 免费看不卡的av| 边亲边吃奶的免费视频| 国产成人精品婷婷| 直男gayav资源| 2022亚洲国产成人精品| 春色校园在线视频观看| 老师上课跳d突然被开到最大视频| 亚洲电影在线观看av| 成人18禁高潮啪啪吃奶动态图 | 久久久久久久精品精品| 久久这里有精品视频免费| 欧美日韩精品成人综合77777| 身体一侧抽搐| 久久 成人 亚洲| 久久精品熟女亚洲av麻豆精品| 免费人妻精品一区二区三区视频| 精品久久久久久久末码| 欧美老熟妇乱子伦牲交| 亚洲美女视频黄频| 欧美丝袜亚洲另类| 成人毛片60女人毛片免费| 天美传媒精品一区二区| 国产免费又黄又爽又色| 国产成人免费观看mmmm| 99热6这里只有精品| 人妻一区二区av| 99久久中文字幕三级久久日本| 韩国av在线不卡| 成人亚洲欧美一区二区av| 一边亲一边摸免费视频| 极品少妇高潮喷水抽搐| 男女边摸边吃奶| 天天躁日日操中文字幕| 国产成人一区二区在线| 国产亚洲91精品色在线| 久久精品国产亚洲网站| 纵有疾风起免费观看全集完整版| 一级毛片我不卡| 国产精品不卡视频一区二区| 午夜激情久久久久久久| 直男gayav资源| 午夜福利在线观看免费完整高清在| 久久久久久久精品精品| 18+在线观看网站| 亚洲av.av天堂| 建设人人有责人人尽责人人享有的 | 男的添女的下面高潮视频| 高清不卡的av网站| 少妇的逼水好多| 国产精品一及| 熟妇人妻不卡中文字幕| 这个男人来自地球电影免费观看 | av在线播放精品| 少妇熟女欧美另类| 少妇精品久久久久久久| 国产在线视频一区二区| 日本av免费视频播放| 欧美成人a在线观看| 亚洲美女搞黄在线观看| 九草在线视频观看| 一区在线观看完整版| 在线观看国产h片| 麻豆乱淫一区二区| 国产色婷婷99| 午夜免费观看性视频| 成人午夜精彩视频在线观看| 日韩电影二区| 亚洲欧美精品自产自拍| 七月丁香在线播放| 97热精品久久久久久| 亚洲av不卡在线观看| 色网站视频免费| 美女主播在线视频| 偷拍熟女少妇极品色| 热re99久久精品国产66热6| 久久av网站| 亚洲欧美日韩无卡精品| 人人妻人人添人人爽欧美一区卜 | 亚洲第一av免费看| 国产一区二区三区av在线| 久久久久精品性色| av天堂中文字幕网| 欧美成人a在线观看| 精品视频人人做人人爽| 国产亚洲欧美精品永久| tube8黄色片| 三级国产精品欧美在线观看| 美女福利国产在线 | 亚洲精品日韩av片在线观看| 下体分泌物呈黄色| av天堂中文字幕网| 美女福利国产在线 | 草草在线视频免费看| 女性被躁到高潮视频| 亚洲最大成人中文| 亚洲色图综合在线观看| 涩涩av久久男人的天堂| 国产精品一及| 新久久久久国产一级毛片| 日本欧美国产在线视频| av线在线观看网站| 欧美日韩精品成人综合77777| a 毛片基地| 永久网站在线| av卡一久久| 亚洲人成网站高清观看| 男人舔奶头视频| 国产亚洲91精品色在线| 六月丁香七月| 晚上一个人看的免费电影| 少妇高潮的动态图| 亚洲国产av新网站| 99久久综合免费| 成年av动漫网址| 高清午夜精品一区二区三区| 国产免费福利视频在线观看| 少妇人妻 视频| 在线观看美女被高潮喷水网站| 99热这里只有精品一区| 国产成人freesex在线| 又黄又爽又刺激的免费视频.| 人人妻人人澡人人爽人人夜夜| 人妻夜夜爽99麻豆av| 大片电影免费在线观看免费| 日韩亚洲欧美综合| 亚洲欧美日韩东京热| 麻豆国产97在线/欧美| 91精品国产国语对白视频| 成人一区二区视频在线观看| 色婷婷av一区二区三区视频| 男人狂女人下面高潮的视频| 91午夜精品亚洲一区二区三区| 能在线免费看毛片的网站| 亚洲,欧美,日韩| 日韩中文字幕视频在线看片 | 黄色配什么色好看| a级毛片免费高清观看在线播放| 欧美日韩国产mv在线观看视频 | 777米奇影视久久| 99久国产av精品国产电影| 另类亚洲欧美激情| 亚洲人成网站在线观看播放| 国产亚洲精品久久久com| 如何舔出高潮| 成年女人在线观看亚洲视频| 精品酒店卫生间| 美女脱内裤让男人舔精品视频| 日韩中字成人| 搡老乐熟女国产| 建设人人有责人人尽责人人享有的 | 免费久久久久久久精品成人欧美视频 | 亚洲欧洲日产国产| 免费看av在线观看网站| 十八禁网站网址无遮挡 | 大又大粗又爽又黄少妇毛片口| 我的老师免费观看完整版| 91aial.com中文字幕在线观看| 久久综合国产亚洲精品| 欧美日韩亚洲高清精品| 中文字幕久久专区| 久久国产精品大桥未久av | 国产精品一及| 国产精品久久久久久精品电影小说 | 青春草国产在线视频| 精品熟女少妇av免费看| 大片免费播放器 马上看| 亚洲国产av新网站| 久久99精品国语久久久| 51国产日韩欧美| 99精国产麻豆久久婷婷| 最新中文字幕久久久久| 久久精品国产自在天天线| 亚洲精品日韩在线中文字幕| 一级a做视频免费观看| 少妇人妻精品综合一区二区| 韩国av在线不卡| 久久毛片免费看一区二区三区| 国产亚洲5aaaaa淫片| 黑人高潮一二区| 女人十人毛片免费观看3o分钟| 欧美高清性xxxxhd video| 精品酒店卫生间| 亚洲国产欧美在线一区| 青春草国产在线视频| 亚洲国产精品999| 美女国产视频在线观看| 日韩中文字幕视频在线看片 | 2021少妇久久久久久久久久久| 久热这里只有精品99| 国产精品一区二区性色av| 国产精品免费大片| 国产精品熟女久久久久浪| av在线app专区| 午夜免费男女啪啪视频观看| 黄片无遮挡物在线观看| 亚洲高清免费不卡视频| 女的被弄到高潮叫床怎么办| 国产成人午夜福利电影在线观看| 国产男女超爽视频在线观看| 自拍欧美九色日韩亚洲蝌蚪91 | 国精品久久久久久国模美| 亚洲人成网站高清观看| 国产女主播在线喷水免费视频网站| 成人特级av手机在线观看| 性色av一级| 日本免费在线观看一区| 亚洲精品国产成人久久av| 蜜桃亚洲精品一区二区三区| 久久女婷五月综合色啪小说| 国产精品福利在线免费观看| av国产精品久久久久影院| 国产亚洲av片在线观看秒播厂| 全区人妻精品视频| 高清av免费在线| 嘟嘟电影网在线观看| 久久久亚洲精品成人影院| 麻豆成人午夜福利视频| 高清黄色对白视频在线免费看 | 亚洲精品国产色婷婷电影| 国产69精品久久久久777片| www.av在线官网国产| 亚洲欧洲国产日韩| 91在线精品国自产拍蜜月| 日韩视频在线欧美| 哪个播放器可以免费观看大片| 国产精品一二三区在线看| 全区人妻精品视频| 激情 狠狠 欧美| 欧美极品一区二区三区四区| 久久久亚洲精品成人影院| 日韩中文字幕视频在线看片 | 国产淫语在线视频| 国内少妇人妻偷人精品xxx网站| 亚洲精品色激情综合| 久久精品久久精品一区二区三区| 毛片一级片免费看久久久久| 日韩一区二区三区影片| 不卡视频在线观看欧美| 最黄视频免费看| 精品一区二区三区视频在线| 人人妻人人爽人人添夜夜欢视频 | 我要看黄色一级片免费的| 欧美高清性xxxxhd video| 国产男女超爽视频在线观看| 黑人猛操日本美女一级片| 一级黄片播放器| 中文欧美无线码| 国产伦精品一区二区三区四那| 成人亚洲欧美一区二区av| www.色视频.com| 春色校园在线视频观看| 久久这里有精品视频免费| 亚洲国产av新网站| 久久久久精品性色| 亚洲性久久影院| 街头女战士在线观看网站| 嫩草影院入口| av国产精品久久久久影院| 激情 狠狠 欧美| 久久精品久久久久久久性| 亚洲av中文字字幕乱码综合| 久久久久网色| 亚洲,欧美,日韩| 一本色道久久久久久精品综合| 日韩免费高清中文字幕av| 久久韩国三级中文字幕| 欧美xxxx性猛交bbbb| 精品酒店卫生间| 啦啦啦在线观看免费高清www| 欧美3d第一页| 日日摸夜夜添夜夜添av毛片| 看非洲黑人一级黄片| 久久精品久久精品一区二区三区| 狠狠精品人妻久久久久久综合| 制服丝袜香蕉在线| 精品国产乱码久久久久久小说| 深夜a级毛片| 天美传媒精品一区二区| 如何舔出高潮| 午夜福利在线观看免费完整高清在| 青青草视频在线视频观看| 精品亚洲成国产av| 精品国产三级普通话版| 狂野欧美白嫩少妇大欣赏| 九九在线视频观看精品| 天堂8中文在线网| 日韩电影二区| 91在线精品国自产拍蜜月| 晚上一个人看的免费电影| 97超视频在线观看视频| 国产日韩欧美亚洲二区| 久久久国产一区二区| 联通29元200g的流量卡| 亚洲欧洲日产国产| 午夜免费男女啪啪视频观看| 天天躁日日操中文字幕| 欧美区成人在线视频| 国产精品99久久99久久久不卡 | 亚洲成人中文字幕在线播放| 亚洲精品456在线播放app| 一本色道久久久久久精品综合| 欧美一级a爱片免费观看看| 国产精品福利在线免费观看| 亚洲av不卡在线观看| 国产熟女欧美一区二区| 丝袜脚勾引网站| 精华霜和精华液先用哪个| 热re99久久精品国产66热6| 一区二区av电影网| 新久久久久国产一级毛片| 中文精品一卡2卡3卡4更新| 国产免费又黄又爽又色| 26uuu在线亚洲综合色| 亚洲第一av免费看| 久久精品久久精品一区二区三区| 老司机影院毛片| 99热6这里只有精品| 少妇高潮的动态图| 美女cb高潮喷水在线观看| 人妻夜夜爽99麻豆av| 免费在线观看成人毛片| 亚洲成人av在线免费| 日韩亚洲欧美综合| 91久久精品电影网| 国产无遮挡羞羞视频在线观看| 精品一区二区免费观看| 又黄又爽又刺激的免费视频.| 一边亲一边摸免费视频| 亚洲欧美成人精品一区二区| 日本爱情动作片www.在线观看| 成人亚洲精品一区在线观看 | 亚洲精品日本国产第一区| 欧美精品一区二区大全| 天堂俺去俺来也www色官网| 精品人妻偷拍中文字幕| 国产精品伦人一区二区| 街头女战士在线观看网站| 18禁动态无遮挡网站| 麻豆国产97在线/欧美| 日日摸夜夜添夜夜添av毛片| 毛片一级片免费看久久久久| 亚洲欧美一区二区三区黑人 | 亚洲激情五月婷婷啪啪| 久久久色成人| 亚洲欧美精品自产自拍| 欧美极品一区二区三区四区| 一本—道久久a久久精品蜜桃钙片| a级一级毛片免费在线观看| 久久影院123| 亚洲欧美日韩东京热| 国产精品嫩草影院av在线观看| 一个人看视频在线观看www免费| 亚洲国产色片| 欧美日韩在线观看h| 一级黄片播放器| 日本色播在线视频| 中文字幕免费在线视频6| 亚洲国产欧美人成| 亚洲精品一二三| 91久久精品国产一区二区成人| 99精国产麻豆久久婷婷| 女性被躁到高潮视频| 精品久久久久久久久亚洲| 九九爱精品视频在线观看| 国产国拍精品亚洲av在线观看| 99久久精品国产国产毛片| 韩国高清视频一区二区三区| 亚洲国产av新网站| 国产成人一区二区在线| 久久久色成人| 亚洲熟女精品中文字幕| 午夜免费观看性视频| 日本-黄色视频高清免费观看| 久久 成人 亚洲| 成人综合一区亚洲| 男女下面进入的视频免费午夜| 一级黄片播放器| 91午夜精品亚洲一区二区三区| 我要看黄色一级片免费的| 高清视频免费观看一区二区| 97在线视频观看| 青春草视频在线免费观看| 亚洲欧洲国产日韩| 亚洲美女搞黄在线观看| 免费不卡的大黄色大毛片视频在线观看| 又爽又黄a免费视频| 免费久久久久久久精品成人欧美视频 | 一本色道久久久久久精品综合| 99热这里只有精品一区| 菩萨蛮人人尽说江南好唐韦庄| 国产精品99久久久久久久久| 亚洲欧美中文字幕日韩二区| 国产午夜精品久久久久久一区二区三区| 欧美成人精品欧美一级黄| 中文精品一卡2卡3卡4更新| 国产色婷婷99| 一本—道久久a久久精品蜜桃钙片| 国产色婷婷99| 国产视频首页在线观看|