• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Band engineering of valleytronics WSe2-MoS2 heterostructures via stacking form,magnetic moment and thickness

    2023-11-02 08:38:40YanweiWu吳彥瑋ZongyuanZhang張宗源LiangMa馬亮TaoLiu劉濤NingHao郝寧Wengang呂文剛MingshengLong龍明生andLeiShan單磊
    Chinese Physics B 2023年10期
    關(guān)鍵詞:馬亮劉濤

    Yanwei Wu(吳彥瑋), Zongyuan Zhang(張宗源), Liang Ma(馬亮), Tao Liu(劉濤),Ning Hao(郝寧), Wengang L¨u(呂文剛), Mingsheng Long(龍明生), and Lei Shan(單磊),§

    1Information Materials and Intelligent Sensing Laboratory of Anhui Province,Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education,Institutes of Physical Science and Information Technology,Anhui University,Hefei 230601,China

    2State Key Laboratory of Metastable Materials Science&Technology and Key Laboratory for Microstructural Material Physics of Hebei Province,School of Science,Yanshan University,Qinhuangdao 066004,China

    3Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions,High Magnetic Field Laboratory,Chinese Academy of Sciences,Hefei 230031,China

    4Beijing National center for Condensed Matter Physics,Beijing Key Laboratory for Nanomaterials and Nanodevices,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    Keywords: valleytronics,thickness,stacking,magnetic moment

    1.Introduction

    In the past years, two-dimensional (2D) materials have attracted many researchers’ interest due to their particular magnetic,[1,2]electronic and optical properties.[3-7]For transition metal dichalcogenide (TMD) systems, when thinned down to monolayer,lots of new physical properties were discovered,such as the direct bandgap,[8,9]non-centrosymmetric crystal structure, and valley-contrasting optical selection rule.[10-13]

    It is known that transition metal dichalcogenides(TMDs)with a honeycomb lattice such asMX2(M= Mo/W;X=S/Se)consist of hexagonalX-M-Xcovalently bonded quasi-2D structures.In monolayer situation, TMDs exhibit a direct bandgap which is in the visible frequency range.Owing to the inversion symmetry breaking and strong spin-orbit coupling, monolayer TMDs exhibit two inequivalent spin-valley polarized band edges atKand-Kpoints at the corners of the hexagonal Brillouin zone (BZ).As a new degree of freedom(DOF)beside spin and charge,circularly polarized light,[11-14]magnetic fields,[15,16]strain,[17]spin-polarized current[18]and magnetic proximity effect[19-21]can be used in valley regulation.Such attractive interaction between spin and valley pseudospin makes monolayer TMDs an ideal platform for spin manipulations,valley physics and valleytronics applications.

    As a common method, the construction of heterostructures[22-24]is widely used in the tuning of band structure in 2D materials’ applications.Former studies of vertical stacking van der Waals heterostructures have been successfully carried out.Applications and related theories have demonstrated the efficient interlayer electron transfer and tunable layer population of electrons and holes.[25-29]However,regulation of electronic structures of 2D materials is still critical and challenging.Many methods, such as dichalcogenides doped with magnetic transition metal atoms,[30-33]applying electric field,[34]adjusting temperature,[35]and strain regulation,[34,36,37]have been reported.In the method of temperature adjusting, the range of the bandgap tuning is very small (~10-1meV/K).As for strain regulation, large shape variable is hard to achieve although the bandgap change is very considerable.Since spin-orbit coupling is not considered,methods such as applying external electron field and doping magnetic transition metal atom dichalcogenides[30-32]are independent of spin valley physics.

    In this study, we have investigated the electronic structures of WSe2-MoS2heterostructures in different stacking form and thickness.We combine the monolayer WSe2with monolayer(ML),bilayer(BL)and three layers(TL)2H-MoS2in structure construction.In order to find the effect of the magnetic moment on band gap engineering,we have added az-axis magnetic moment to different stacking WSe2-MoS2heterobilayers.Results suggest that stacking form,thickness and magnetization are effective in the regulation of valleys’ light absorption in WSe2-MoS2heterostructures,providing new ideas of photoelectric applications in this valleytronics system.In addition,Ref.[38]has investigated the breaking of valley degeneracy in MoSe2monolayer by an out-plane magnetic field up to 6.7 T at 4.2 K,providing the feasibility of our ideas.

    2.Methods

    We perform all calculations by employing the Viennaab-initiosimulation package (VASP)[39-41]within the framework of the projector augmented wave (PAW) method.The generalized gradient approximation (GGA) parameters by Perdew-Burke-Ernzerhof (PBE)[42]are used as the exchange-correlations, van der Waals correction (DFT-D2)method[43]is accounted to describe the van der Waals interactions.To investigate the different stacking type, we adopt 2×2 unit cells for the structure construction.In geometry optimizing,we adopt 25 °A vacuums slabs forMX2(M=W/Mo,X=S/Se) monolayers while 20 °A vacuum slabs for WSe2-MoS2heterobilayers.The cutoff energy of the plane-wave basis is set to 400 eV.A 10-5eV electronic iteration convergence criterion with a 0.01 eV/°A force tolerance is set for all calculations for structure relaxing.For ML WSe2-TL MoS2systems, we calculate these heterostructures by using real space projectors to reduce the computation.In addition,we use Gamma-centered 11×11×1 Monkhorst-Packk-point sampling grid for geometry optimization and 13×13×1 for static self-consistency.Magnetic moment (0.03-0.15μB) is added inz-direction to the supercell of all heterostructures.Spin-orbit coupling(SOC)is considered in all systems.

    3.Results and discussion

    3.1.Thickness and stacking forms of WSe2-MoS2 heterostructures

    It is known that the monolayerMX2is in the form ofXM-Xand consists a hexagonal of Mo/W layer sandwiched between two S/Se layers.The structure of 2H-MoS2is symmetrical in a hexagon,with two layers as a period,and forms a triangular prism coordination with Mo atom as the center(shown in Fig.1(a)).

    Fig.1.(a) Top and side views of 2H-MX2 (M =Mo/W, X =S/Se),(b) hexagonal Brillouin zone (BZ) and high symmetry points of 2D structure, (c) and (d) calculated band structures (with SOC) of monolayer MoS2 and WSe2.

    We first consider the effect of different stacking on bandgap tuning of the heterostructures.As shown in Fig.2,we have divided these heterostructures into six groups,which are called I,II,III,IV,V and VI.At the interface of all structures in the same group, WSe2and MoS2have the same stacked interlayer.

    We have performed a calculation of the electronic structures for different stacked WSe2-MoS2heterostructures to illustrate how the thickness affects the bandgap.Results are listed in Figs.3,S1 and S2.

    As shown in Figs.3(a),S1 and S2,all stacking types have direct band gap and spin-valley polarization.In Fig.3(b),the CBMs are mainly contributed by Mo in the MoS2layer(s),while the VBMs are mainly contributed by W of the WSe2monolayer.Due to the degenerated CBM, the valley index(K/K1point)is determined by the stacking direction of monolayer WSe2,which is also indicated in Fig.S1(types I,III and V have the same valley index, while types II, IV, VI possess the other consistent index).Raising thickness of 2H-MoS2increases both band gap andK/K1points’CBM degeneracy.To illustrate the results more precisely,we summarize the results in Table 1.

    As shown in Table 1,our results suggest that the bandgaps of monolayer MoS2and WSe2agree well with previous studies.[34,44,45]Compared with MoS2and WSe2monolayers, the construction of WSe2-MoS2heterobilayers reduces the bandgap with a maximum value of 1.308 eV.On this basis,the energy gap can be finely regulated by the layer thickness and stacking mode of the heterojunction.Increasing the thickness of 2H-MoS2raises the bandgap in all stacking forms.Besides, the effect of band gap regulation also depends on the stacking type.Such tuning ranges suggest that the thickness of 2H-MoS2in the constructions of MoS2-WSe2heterostructures has advantages in electronic devices (such as field effect transistors and photodetectors).On the other hand, due to the 2D properties, the MoS2-WSe2heterostructures’ particular optical and electrical properties have broad prospects in the fields of small-scale, high-performance optoelectronic and nano devices.In addition,the direct band gap also makes MoS2-WSe2heterostructures suitable for optical applications.

    Fig.2.Top and side views of WSe2-MoS2 heterostructures atomic model with six different stacking forms: (a)-(f)I-VI form stacking.

    Table 1.Calculated bandgaps (eV) of heterostructures composed of monolayer MoSe2 and different thickness of 2H-MoS2 in six stacking forms.

    3.2.Band engineering via magnetic moment

    To investigate the effect of thez-axis magnetic moment atK/K1points, thek·pmethod and DFT are both adopted.AtK/K1points,the Hamiltonian of all WSe2-MoS2heterobilayers described by thek·pmethod can be written as[14]

    in whichτ=±1 is the valley index,athe lattice constant,tthe effective hopping integral,Δthe band gap, ?σthe Pauli matrices for two basis functions, ?sthe Pauli matrices for spin.The last term of Eq.(1) describes the SOC, where|2A| and|2B|deal with the spin split at conduction-band-edge and valenceband-edge (for monolayer MoS2and MoS2-WSe2heterobilayers,A=0).When considering an addedz-axis magnetic field,the Hamiltonian reads

    Here,it should be noticed that the magnetic term is small and has not coupled with other terms.From which we can get the band edges atK/K1points:The first and third eigenvalues stand for the spin split in the conduction band edges while the second and fourth eigenvalues illustrate the spin split in the valence band edges.As mentioned above,the induced magnetic moment makes different band edges atK/K1points.In the situations ofA=0,CBMs have no difference atK/K1points with the rise of the magnetic moment, which still gives a direct bandgap.Generally speaking, the rising of magnetized term decreases the band gap.

    Now, we have computed the WSe2-MoS2heterobilayers with magnetic moment(z-axis)in the range of 0-0.15μB(interval 0.03μB).We list the bandgaps of all situations in Table 2 and show the computed band structures of 0.03μB,0.06μB,0.09μB,0.12μBand 0.15μBin Figs.4 and S3.

    Fig.4.Calculated band structures of magnetized VI form stacked WSe2-MoS2 heterobilayers with magnetic moment of (a) 0.00 μB,(b)0.03μB,(c)0.06μB,(d)0.09μB,(e)0.12μB,(f)0.15μB.Green and red colors indicate the spin-up and spin-down polarization.

    Table 2.Calculated bandgap (in eV) of I-VI stacking WSe2-MoS2 heterobilayers with magnetic moments(ranging from 0 to 0.15μB).

    As the difference of band edges betweenKandK1points is small,we use the difference between CBM and VBM as the band gap.As listed in Table 2, in all kinds of stacking types,the bandgap increases with the enhancement of the magnetic moment.Moreover, the tuning effect of magnetic moment depends on the stacking type.With a magnetic moment of 0.15μB,more than 0.4 eV bandgap tuning appears in II-group stacking while I-group stacking only has a 0.159 eV bandgap regulation.For all six heterobilayers, the total free energies (without SOC) of I-VI type stackings are-181.189 eV,-180.845 eV,-181.110 eV,-181.166 eV,-180.859 eV,and-181.194 eV,respectively,in which types II and V have more advantages in the magnetized situations,they have similar total free energies(~-180.8 eV).The total free energies of another group containing types I, III, IV and VI are all close to-181.2 eV,and the tuning effects on the bandgap of these stacking types are relatively close.Furthermore, the increase of magnetic moment raises a difference in band edges atKandK1points,which is similar to the results of thek·pmethod.

    Compared withMX2(M=Mo/W,X=S/Se) monolayers, the multilayer situations are more complex due to the interlayer coupling.In the typicalk·pmethod, the given systems are assumed to be fixed.In other words, the magnetic moments in this model should be very small to keep the system parameters(such as lattice constants and atom positions)unchanged which has negligible influence on the lattice.On the other hand,DFT calculations can consider larger magnetic moments due to full geometry optimization (coupling of the magnetic moment and the structure parameters).As a result,for a specific system, thek·pmethod is only applicable in a small range of magnetic moments,while the DFT calculation is suitable for a larger range of magnetic moment.

    4.Conclusion and perspectives

    In summary, we have performed a study of spin-valley polarization in six stackings of WSe2-MoS2heterostructures and magnetized bilayer systems by DFT.Calculations show thatMX2monolayers and all six different stackings of WSe2-MoS2heterostructures have direct-bandgap and valleytronics properties.Compared withMX2monolayers,the construction of WSe2-MoS2heterobilayers achieves significant bandgap reduction(maximum 1.308 eV).On this basis,the rising thickness of 2H-MoS2can further regulate the band gap which depends on the stacking form.Furthermore, we have investigated thez-axis magnetized WSe2-MoS2heterobilayers,bothk·pmethod and DFT demonstrate that thez-axis magnetic moment introduces different band edges atK/K1points.For relatively larger magnetic moment,the band gap changes significantly.Similar to the thickness of 2H-MoS2, the effect of the magnetic moment in band gap tuning also depends on the stacking type.As a result, the magnetic moment and thickness can be used as the further regulation means of stacking form to band engineering.Compared with previous studies,our methods are more effective and easier experimentally achieved.Our results suggest that WSe2-MoS2heterostructures are suitable platforms for spin-valley applications due to their tunable direct bandgaps and valleytronics properties.In addition, thickness, stacking form and induced magnetic moment give controllable methods in the optical absorption of 2D multilayers,we believe our calculations are suitable for applications in 2D spin-valley nanostructures.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos.61975224 and 12104004), the University Synergy Innovation Program of Anhui Province(Grant No.GXXT-2020-050), the Fund of Anhui Provincial Natural Science Foundation(Grant No.2008085MF206),New magnetoelectric materials and devices, the Recruitment Program for Leading Talent Team of Anhui Province 2020, State Key Laboratory of Luminescence and Applications (Grant No.SKLA-2021-03), and the Open Fund of Infrared and Low-Temperature Plasma Key Laboratory of Anhui Province(Grant No.IRKL2022KF03).

    猜你喜歡
    馬亮劉濤
    助人為樂的劉濤
    助人為樂的劉濤
    他們什么都沒有,卻擁有愛
    讀者(2023年15期)2023-08-22 09:13:59
    Single-beam leaky-wave antenna with wide scanning angle and high scanning rate based on spoof surface plasmon polariton
    政商關(guān)系對數(shù)字政府建設(shè)的影響機(jī)制與理論進(jìn)路
    黨政研究(2022年3期)2022-05-25 16:11:20
    補(bǔ)街
    劉濤:成為更好的自己
    金色年華(2017年7期)2017-06-21 09:27:52
    馬鈴薯主糧化
    用到點(diǎn)上才是材
    才用到點(diǎn)上才叫能
    意林(2014年5期)2014-04-10 15:40:53
    后天国语完整版免费观看| 一本一本综合久久| 母亲3免费完整高清在线观看| 久久久水蜜桃国产精品网| 天堂√8在线中文| 久久天堂一区二区三区四区| 久久精品aⅴ一区二区三区四区| 国产成人系列免费观看| 国产成人系列免费观看| avwww免费| 久久天堂一区二区三区四区| 丰满的人妻完整版| 国产91精品成人一区二区三区| 亚洲欧美日韩无卡精品| 国产成人系列免费观看| 亚洲自拍偷在线| 午夜福利18| av欧美777| 亚洲,欧美精品.| 88av欧美| 久久香蕉国产精品| 床上黄色一级片| 亚洲狠狠婷婷综合久久图片| 久久精品国产亚洲av高清一级| 国产单亲对白刺激| 欧美极品一区二区三区四区| 国产久久久一区二区三区| 午夜久久久久精精品| 亚洲第一电影网av| 久久国产精品人妻蜜桃| 精品一区二区三区av网在线观看| xxx96com| 精品久久久久久久人妻蜜臀av| 色综合婷婷激情| 一本综合久久免费| 欧美激情久久久久久爽电影| 久久国产精品影院| 12—13女人毛片做爰片一| 三级国产精品欧美在线观看 | 欧美日韩亚洲国产一区二区在线观看| 国产成人av教育| 精品一区二区三区四区五区乱码| av片东京热男人的天堂| 老司机福利观看| 观看免费一级毛片| 午夜日韩欧美国产| 女人爽到高潮嗷嗷叫在线视频| 欧美高清成人免费视频www| 不卡av一区二区三区| 757午夜福利合集在线观看| 亚洲欧美精品综合一区二区三区| 欧美三级亚洲精品| 老司机靠b影院| 日韩免费av在线播放| 午夜影院日韩av| 又粗又爽又猛毛片免费看| 神马国产精品三级电影在线观看 | 一本一本综合久久| 国产熟女午夜一区二区三区| 老司机午夜十八禁免费视频| 成人国语在线视频| 午夜成年电影在线免费观看| 中文在线观看免费www的网站 | 亚洲国产看品久久| 在线永久观看黄色视频| 国产午夜精品久久久久久| 国产精品精品国产色婷婷| 久久中文字幕一级| 日韩av在线大香蕉| 国产精华一区二区三区| 精品熟女少妇八av免费久了| 99精品久久久久人妻精品| aaaaa片日本免费| 国产精品久久电影中文字幕| 久久午夜综合久久蜜桃| 啦啦啦观看免费观看视频高清| 一级毛片女人18水好多| 亚洲国产欧美网| 国产精品乱码一区二三区的特点| 日韩精品中文字幕看吧| 成人高潮视频无遮挡免费网站| 午夜激情av网站| 亚洲中文字幕一区二区三区有码在线看 | 久久久久久久午夜电影| 9191精品国产免费久久| 久久久久久久久中文| 看片在线看免费视频| 日韩欧美在线乱码| 91在线观看av| 午夜日韩欧美国产| 成人永久免费在线观看视频| 成年版毛片免费区| 不卡一级毛片| 亚洲 国产 在线| 国产三级在线视频| 亚洲国产看品久久| 国产免费av片在线观看野外av| 黄色女人牲交| 亚洲熟妇中文字幕五十中出| 久久中文字幕一级| 久久久久久久精品吃奶| 丝袜人妻中文字幕| 国产成人影院久久av| 国产亚洲av嫩草精品影院| 老司机午夜十八禁免费视频| www.精华液| xxx96com| 9191精品国产免费久久| av免费在线观看网站| 日韩欧美 国产精品| 一a级毛片在线观看| 99精品欧美一区二区三区四区| 国产一区二区三区在线臀色熟女| 国产亚洲精品久久久久5区| 国产亚洲av嫩草精品影院| 久久久久久亚洲精品国产蜜桃av| 伦理电影免费视频| 免费一级毛片在线播放高清视频| 国产亚洲精品av在线| 亚洲av五月六月丁香网| 日韩欧美 国产精品| 国产精品久久久久久人妻精品电影| 国产不卡一卡二| 美女午夜性视频免费| 国产三级黄色录像| 一个人免费在线观看电影 | 国内毛片毛片毛片毛片毛片| 母亲3免费完整高清在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 精品午夜福利视频在线观看一区| 最新美女视频免费是黄的| 欧美高清成人免费视频www| 一二三四在线观看免费中文在| 麻豆久久精品国产亚洲av| 欧美av亚洲av综合av国产av| 88av欧美| 国产精品av久久久久免费| 十八禁人妻一区二区| 精品一区二区三区四区五区乱码| 国产单亲对白刺激| 久久久精品大字幕| 又黄又爽又免费观看的视频| 精品国产亚洲在线| 精品电影一区二区在线| 男女午夜视频在线观看| 午夜免费观看网址| av在线天堂中文字幕| 黄片大片在线免费观看| 可以免费在线观看a视频的电影网站| 国产av一区在线观看免费| 麻豆一二三区av精品| 一级黄色大片毛片| 少妇人妻一区二区三区视频| 日本精品一区二区三区蜜桃| 一个人观看的视频www高清免费观看 | 91麻豆av在线| 99热这里只有是精品50| 好看av亚洲va欧美ⅴa在| 国语自产精品视频在线第100页| 白带黄色成豆腐渣| 久久婷婷成人综合色麻豆| 精华霜和精华液先用哪个| 亚洲中文av在线| 国产精品久久久久久人妻精品电影| 1024手机看黄色片| 精品午夜福利视频在线观看一区| 窝窝影院91人妻| 国产精品98久久久久久宅男小说| 久久精品人妻少妇| 少妇被粗大的猛进出69影院| 久久人妻福利社区极品人妻图片| 久久九九热精品免费| 女人被狂操c到高潮| 看免费av毛片| 精品福利观看| av中文乱码字幕在线| 五月伊人婷婷丁香| 免费高清视频大片| 欧美在线一区亚洲| 久久午夜亚洲精品久久| 亚洲av电影不卡..在线观看| 精品久久久久久久久久免费视频| 日韩国内少妇激情av| 女人高潮潮喷娇喘18禁视频| 亚洲激情在线av| 丝袜美腿诱惑在线| 亚洲一卡2卡3卡4卡5卡精品中文| 国产69精品久久久久777片 | 成人三级做爰电影| 欧美高清成人免费视频www| 成人特级黄色片久久久久久久| 午夜福利在线在线| 亚洲av成人av| 久久精品91无色码中文字幕| e午夜精品久久久久久久| 久久人妻av系列| 啦啦啦观看免费观看视频高清| 国产精品一区二区三区四区免费观看 | 精品国产乱子伦一区二区三区| 最近视频中文字幕2019在线8| 一级黄色大片毛片| 欧美大码av| 国产高清videossex| 精品一区二区三区av网在线观看| 久久精品亚洲精品国产色婷小说| 一区二区三区激情视频| 波多野结衣高清无吗| 欧美在线黄色| av有码第一页| 国产成人影院久久av| 亚洲成a人片在线一区二区| 日韩大尺度精品在线看网址| 亚洲自偷自拍图片 自拍| 成人av一区二区三区在线看| 欧美日本亚洲视频在线播放| 99热只有精品国产| 狠狠狠狠99中文字幕| 国产熟女午夜一区二区三区| 午夜福利成人在线免费观看| 久久精品91无色码中文字幕| 国产91精品成人一区二区三区| 亚洲狠狠婷婷综合久久图片| 欧美乱妇无乱码| 欧美国产日韩亚洲一区| 国产成+人综合+亚洲专区| ponron亚洲| 国产精品免费一区二区三区在线| 琪琪午夜伦伦电影理论片6080| 免费看十八禁软件| 亚洲欧美激情综合另类| 日本在线视频免费播放| 在线观看舔阴道视频| 久久精品人妻少妇| 亚洲18禁久久av| 亚洲精品中文字幕一二三四区| 麻豆av在线久日| 又爽又黄无遮挡网站| 亚洲午夜理论影院| 999久久久精品免费观看国产| 97人妻精品一区二区三区麻豆| 亚洲精品色激情综合| 国产黄色小视频在线观看| 一本久久中文字幕| 国产激情久久老熟女| 国产激情欧美一区二区| 国产亚洲av高清不卡| 国产亚洲精品第一综合不卡| 久久香蕉国产精品| 亚洲五月婷婷丁香| 亚洲第一电影网av| 欧美日本视频| 午夜福利高清视频| 香蕉av资源在线| 亚洲精华国产精华精| 中出人妻视频一区二区| 搡老熟女国产l中国老女人| 妹子高潮喷水视频| 久久99热这里只有精品18| av在线天堂中文字幕| 亚洲一卡2卡3卡4卡5卡精品中文| 国产区一区二久久| 精品国产乱子伦一区二区三区| 757午夜福利合集在线观看| 亚洲国产精品999在线| 视频区欧美日本亚洲| 欧美成狂野欧美在线观看| 观看免费一级毛片| 日本成人三级电影网站| 久久婷婷人人爽人人干人人爱| а√天堂www在线а√下载| 久99久视频精品免费| 中文字幕久久专区| 不卡一级毛片| 亚洲精品色激情综合| 青草久久国产| 91老司机精品| 国产精品1区2区在线观看.| 欧美在线黄色| 亚洲精品中文字幕一二三四区| 午夜老司机福利片| 国产1区2区3区精品| 12—13女人毛片做爰片一| 一二三四社区在线视频社区8| 国产av又大| 国产成人av激情在线播放| 欧美日韩黄片免| 国产精品一区二区三区四区久久| 免费看十八禁软件| www.精华液| 欧美日韩精品网址| 国产主播在线观看一区二区| 亚洲一码二码三码区别大吗| 欧美日韩亚洲国产一区二区在线观看| 一区二区三区国产精品乱码| 动漫黄色视频在线观看| 丰满人妻一区二区三区视频av | 桃红色精品国产亚洲av| 露出奶头的视频| 国产片内射在线| 男人舔奶头视频| 亚洲精品久久国产高清桃花| 亚洲成av人片在线播放无| 色综合亚洲欧美另类图片| 国产精品一区二区三区四区久久| 亚洲中文av在线| 舔av片在线| 91大片在线观看| 日韩欧美 国产精品| 人成视频在线观看免费观看| 精品久久久久久久久久免费视频| 久久人人精品亚洲av| 十八禁人妻一区二区| 可以在线观看毛片的网站| 亚洲精品一区av在线观看| 精品久久久久久久末码| 久久 成人 亚洲| 无遮挡黄片免费观看| 琪琪午夜伦伦电影理论片6080| 国产精品一区二区精品视频观看| 国产高清视频在线播放一区| 久久久精品欧美日韩精品| 一进一出抽搐动态| 91在线观看av| 无遮挡黄片免费观看| 俄罗斯特黄特色一大片| 91麻豆av在线| 国产乱人伦免费视频| 精品乱码久久久久久99久播| 1024手机看黄色片| 女人爽到高潮嗷嗷叫在线视频| 此物有八面人人有两片| 中文字幕熟女人妻在线| 97超级碰碰碰精品色视频在线观看| 亚洲va日本ⅴa欧美va伊人久久| 97人妻精品一区二区三区麻豆| 淫秽高清视频在线观看| 久久久久久亚洲精品国产蜜桃av| 欧美性长视频在线观看| av在线播放免费不卡| 这个男人来自地球电影免费观看| 91大片在线观看| 午夜福利高清视频| 一区福利在线观看| 日本a在线网址| 国产精品永久免费网站| 熟女电影av网| 久久精品影院6| 免费在线观看亚洲国产| 午夜福利18| 国产亚洲精品第一综合不卡| 精品免费久久久久久久清纯| 亚洲男人的天堂狠狠| 国产精品1区2区在线观看.| 日韩欧美一区二区三区在线观看| 又大又爽又粗| 看免费av毛片| 日本五十路高清| 大型av网站在线播放| 法律面前人人平等表现在哪些方面| 午夜激情av网站| 免费电影在线观看免费观看| 麻豆成人午夜福利视频| 亚洲国产日韩欧美精品在线观看 | 日本精品一区二区三区蜜桃| 免费在线观看亚洲国产| 久久久久国产精品人妻aⅴ院| 男人舔女人下体高潮全视频| 免费看十八禁软件| 看免费av毛片| 欧美又色又爽又黄视频| а√天堂www在线а√下载| 成人三级做爰电影| 国产视频一区二区在线看| 麻豆国产97在线/欧美 | 成人精品一区二区免费| 亚洲国产精品999在线| 免费看十八禁软件| 天堂av国产一区二区熟女人妻 | 免费高清视频大片| 99久久精品国产亚洲精品| 日韩精品中文字幕看吧| 岛国视频午夜一区免费看| 女警被强在线播放| 国产成+人综合+亚洲专区| 日韩精品免费视频一区二区三区| 最近最新中文字幕大全免费视频| 欧美成人免费av一区二区三区| 老熟妇乱子伦视频在线观看| 在线永久观看黄色视频| 亚洲人成电影免费在线| 天天一区二区日本电影三级| 国产精品av视频在线免费观看| 青草久久国产| 精品久久久久久久人妻蜜臀av| 欧美av亚洲av综合av国产av| 男女视频在线观看网站免费 | 在线观看一区二区三区| 99精品久久久久人妻精品| 亚洲自偷自拍图片 自拍| 国产精品,欧美在线| 最新在线观看一区二区三区| 精品不卡国产一区二区三区| 精品久久久久久久毛片微露脸| 欧美国产日韩亚洲一区| 精品电影一区二区在线| 夜夜爽天天搞| 高潮久久久久久久久久久不卡| 亚洲国产精品999在线| 欧美色视频一区免费| 欧美日韩瑟瑟在线播放| 久久精品综合一区二区三区| 国产精品永久免费网站| 国产精品影院久久| 又大又爽又粗| 国产熟女xx| 国产成年人精品一区二区| 亚洲第一欧美日韩一区二区三区| 一区二区三区激情视频| 少妇裸体淫交视频免费看高清 | 久久精品91蜜桃| 欧美zozozo另类| 日韩欧美在线二视频| 国产精品综合久久久久久久免费| 天堂√8在线中文| 欧美一级毛片孕妇| ponron亚洲| 欧美黑人巨大hd| 在线观看舔阴道视频| 欧美黄色片欧美黄色片| 精品午夜福利视频在线观看一区| 每晚都被弄得嗷嗷叫到高潮| 亚洲aⅴ乱码一区二区在线播放 | 免费电影在线观看免费观看| 亚洲免费av在线视频| 亚洲一区二区三区色噜噜| 最近最新中文字幕大全免费视频| 中文字幕久久专区| 国产精品av视频在线免费观看| 日韩欧美一区二区三区在线观看| 国产精品久久视频播放| 天堂av国产一区二区熟女人妻 | a在线观看视频网站| 国产伦在线观看视频一区| 国产欧美日韩精品亚洲av| 亚洲第一电影网av| 精品久久久久久,| 一本一本综合久久| 亚洲欧美精品综合一区二区三区| 久久久精品欧美日韩精品| 国产精品一区二区免费欧美| 少妇人妻一区二区三区视频| 女警被强在线播放| 亚洲精品一卡2卡三卡4卡5卡| 91成年电影在线观看| 国产成人av激情在线播放| 久久婷婷人人爽人人干人人爱| 国产亚洲欧美98| 18禁观看日本| 91国产中文字幕| 成人高潮视频无遮挡免费网站| 欧美一区二区国产精品久久精品 | 一级黄色大片毛片| 日本免费a在线| 亚洲成av人片在线播放无| 国产黄a三级三级三级人| 一卡2卡三卡四卡精品乱码亚洲| 99久久久亚洲精品蜜臀av| 夜夜爽天天搞| 香蕉久久夜色| 国产一区二区在线av高清观看| 国产片内射在线| 国产在线精品亚洲第一网站| 亚洲成人中文字幕在线播放| 日韩有码中文字幕| 中文亚洲av片在线观看爽| 两个人视频免费观看高清| 久久精品国产综合久久久| 国产欧美日韩精品亚洲av| 色尼玛亚洲综合影院| 精华霜和精华液先用哪个| av片东京热男人的天堂| 老熟妇仑乱视频hdxx| 后天国语完整版免费观看| 精品少妇一区二区三区视频日本电影| 久久中文字幕人妻熟女| 国产99久久九九免费精品| 色综合亚洲欧美另类图片| 91麻豆av在线| 久久久久亚洲av毛片大全| 久久九九热精品免费| 久久国产精品影院| 国产精品久久久久久人妻精品电影| 久久久久久久久中文| 天堂√8在线中文| 最新美女视频免费是黄的| 国产精品av视频在线免费观看| 久久久久国产一级毛片高清牌| 伊人久久大香线蕉亚洲五| 在线观看日韩欧美| 久久婷婷成人综合色麻豆| 午夜福利视频1000在线观看| 欧美不卡视频在线免费观看 | 国产av麻豆久久久久久久| 久久天堂一区二区三区四区| 欧美中文综合在线视频| 丁香欧美五月| 亚洲免费av在线视频| 国产精品影院久久| 国产精品美女特级片免费视频播放器 | 免费av毛片视频| 亚洲一卡2卡3卡4卡5卡精品中文| 成人国产综合亚洲| 51午夜福利影视在线观看| 又黄又粗又硬又大视频| 黄色视频,在线免费观看| 99精品在免费线老司机午夜| 十八禁网站免费在线| 久久久精品大字幕| 国产精品久久久久久精品电影| 亚洲国产中文字幕在线视频| 中文字幕人成人乱码亚洲影| 精品久久蜜臀av无| 少妇人妻一区二区三区视频| 欧美色欧美亚洲另类二区| 成人av一区二区三区在线看| 禁无遮挡网站| 国产精品一区二区精品视频观看| 亚洲一码二码三码区别大吗| 特级一级黄色大片| 舔av片在线| 一级毛片高清免费大全| av有码第一页| 脱女人内裤的视频| 老汉色av国产亚洲站长工具| 看免费av毛片| 国产精品九九99| 99国产精品99久久久久| 亚洲熟妇熟女久久| 成人一区二区视频在线观看| 一二三四社区在线视频社区8| 怎么达到女性高潮| 女生性感内裤真人,穿戴方法视频| 成人一区二区视频在线观看| 国产av不卡久久| 成人一区二区视频在线观看| 日本精品一区二区三区蜜桃| 正在播放国产对白刺激| 色在线成人网| 国产69精品久久久久777片 | 人人妻,人人澡人人爽秒播| 99热6这里只有精品| 神马国产精品三级电影在线观看 | 日韩免费av在线播放| 在线观看免费日韩欧美大片| 国产午夜福利久久久久久| 欧美色视频一区免费| 悠悠久久av| 毛片女人毛片| 999久久久国产精品视频| 欧美人与性动交α欧美精品济南到| 亚洲成人久久性| 免费在线观看黄色视频的| 天天躁夜夜躁狠狠躁躁| 欧美色欧美亚洲另类二区| 国产精品久久久av美女十八| 欧美另类亚洲清纯唯美| 日本 av在线| 中文在线观看免费www的网站 | 亚洲欧洲精品一区二区精品久久久| av欧美777| 日本三级黄在线观看| 1024香蕉在线观看| 免费观看精品视频网站| 午夜福利免费观看在线| 又黄又粗又硬又大视频| 亚洲国产精品成人综合色| 日本成人三级电影网站| 成人手机av| 999久久久国产精品视频| 两人在一起打扑克的视频| 在线视频色国产色| 亚洲国产精品久久男人天堂| 国产精品免费一区二区三区在线| 成人18禁高潮啪啪吃奶动态图| 一区福利在线观看| www.熟女人妻精品国产| 99精品欧美一区二区三区四区| 午夜精品一区二区三区免费看| 床上黄色一级片| 亚洲国产欧美网| 最近最新中文字幕大全免费视频| 变态另类成人亚洲欧美熟女| 午夜福利在线观看吧| 国产高清视频在线播放一区| 日本撒尿小便嘘嘘汇集6| 精华霜和精华液先用哪个| 亚洲男人的天堂狠狠| 1024香蕉在线观看| 怎么达到女性高潮| 日韩欧美三级三区| 男男h啪啪无遮挡| 性色av乱码一区二区三区2| 国语自产精品视频在线第100页| 18禁裸乳无遮挡免费网站照片| 少妇粗大呻吟视频| 国产视频内射| 国产一区二区在线观看日韩 | 欧美日韩黄片免| 在线观看免费午夜福利视频| 亚洲真实伦在线观看| 国产精品久久电影中文字幕| 免费在线观看完整版高清| 看片在线看免费视频| 国产亚洲精品久久久久5区| 国产精品一区二区精品视频观看|