• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of viscous force on the dynamic process of micro-sphere in optical tweezers

    2023-11-02 08:13:14JingLiu劉靜XingyuWu吳星宇YiminFeng馮怡敏MianZheng鄭冕andZhiyuanLi李志遠(yuǎn)
    Chinese Physics B 2023年10期
    關(guān)鍵詞:志遠(yuǎn)劉靜

    Jing Liu(劉靜), Xingyu Wu(吳星宇), Yimin Feng(馮怡敏), Mian Zheng(鄭冕), and Zhiyuan Li(李志遠(yuǎn))

    1College of Computer Science,South-Central Minzu University,Wuhan 430074,China

    2China Ship Development and Design Center,Wuhan 430064,China

    3School of Physics and Optoelectronics,South China University of Technology,Guangzhou 510640,China

    Keywords: optical tweezers,viscous force,equations of Newtonian mechanics,Runge-Kutta method

    1.Introduction

    The advent of optical tweezers has greatly promoted progress in the measurement of the forces and observation of the dynamics at the single molecule level,leading to a greater understanding of biochemical processes.[1]However, in the nano-world, ordinary water behaves as a very viscous liquid.The particle moving in water is like moving in the syrup.Viscosity consumes a lot of energy, which leads to a decrease in the momentum exchange and transfer between light and objects.Unlike levitating particles in liquid, optical trapping of nanoparticles in vacuum[2-4]is isolated from environmental thermal noise,thus eliminating the primary source of dissipation, which has attracted great attention in fundamental tests of quantum mechanics,[5,6]sensing of weak forces,[7,8]and searching for new physics.[9,10]In contrast to optical trapping in fluid surroundings,optical trapping in gaseous surroundings is quite challenging because of the high particle velocities and the low drag forces.

    On the other hand,the optical tweezer technique has been developed to manipulate particles with light absorption, such as metallic nanoparticles[11-14]and metallic-dielectric Janus microparticles.Different from the trap of dielectric material, these materials give rise to strong heating effects.It has been reported that nanoparticles can rotate at frequencies of several kilohertz when trapped in the circularly polarized light.[15]Due to the loss of materials and the thermal effect caused by light absorption,the surrounding waters will generate thermal[1]convection.The heating of the particles at high laser powers facilitates optical spinning because it lowers the viscosity and friction of the embedding water.Note that the common law of viscosity applies to most fluids,but there exist some materials that exhibit anomalous viscous properties.Anomalous properties may be conferred on a fluid by small particles immersed in it.[16]The viscosity of the nanofluid suspension with the same material nanoparticles varies with the particle size.Heet al.[17]found that the viscosity of TiO2-distilled water nanofluids decreases with the miniaturization of the micro-sphere size.

    Measuring real-time dynamics is crucial for uncovering the distinct mechanics of a micro-sphere.Research on the motion of an optically trapped Brownian particle has aroused great interest due to the applications of a sensitive probe of molecular and nanoscopic forces.Both experimental and numerical simulations research on an optically trapped particle have made progress,[18-20]but research on the effects of the viscous coefficients of the surrounding medium on microparticles is insufficient.In this paper, we focus on the influence of viscous coefficients on the micro-spheres in optical tweezers.First,we numerically analyze the three-dimensional(3D)dynamic process of dielectric micro-spheres in optical tweezers on the basis of the equations of Newtown mechanics.Second,we display the trajectories of the motion of micro-spheres when they are in the surrounding medium with different viscosity coefficients.Moreover, due to the different oscillation frequencies of optical tweezers along thex- andz-axes, we have considered the dynamics of the micro-sphere when it is set at different initial positions.Finally, we have reported that the equilibrium time mainly depends on the corresponding damping coefficient of the surrounding environment and oscillation frequency of the optical tweezers.

    2.Optical force on the micro-sphere in optical tweezers

    In optical tweezers, any particle falling within the laser beam undergoes two kinds of forces:a restoring force directed toward the region of highest intensity (gradient force) and a force that pushes the particle along the propagation axis of the laser beam (radiation pressure).A 3D stable trapping condition is achieved when the field gradient force overcomes the radiation pressure,the forces due to gravity and buoyancy,and the force animating the Brownian motion.If the particle is not far from the trap center,the optical force exerted on the particle is directly proportional to the displacementrfrom the equilibrium position.Since an optical trap behaves, with a good approximation, like a harmonic potential, it is able to exert a restoring force,Foptical=κ·r, whereκis the trap stiffness.Normally in an optical trap the radial optical forces are larger than those of the axial one, i.e.,κx ≈κy >κz.A schematic of the optical tweezers considered in this work is shown in Fig.1(a).

    Fig.1.(a)Schematic of optical tweezers and the coordinate system.(b)-(d)The calculated optical force acting on a micro-sphere when it moves along the x-,y-and z-axes,respectively,in the optical tweezers at the laser power P=10 mW.

    The collimated Gaussian beam at a wavelengthλ=1064 nm propagates along thez-axis and is focused by a high numerical aperture (NA=1.4) objective.We implement the ray optics model and algorithm in Ref.[21]to calculate the optical force (Foptical=[Foptical,x,Foptical,y,Foptical,z]) of a dielectric micro-sphere in an optical tweezer when the micro-sphere with radiusrsmoves around the focus point along thex-,y-,andz-axes, respectively.In the ray optics model, the focused Gaussian light beam is decomposed into a large number of individual rays.The rays are reflected and refracted at the interface of the particle and the surrounding medium.The optical force at each point quantitatively can be calculated via the principle of the exchange of momentum.The initial parameters are as follows.The surrounding medium is water with a refractive indexn1=1.33,the dielectric micro-sphere has a refractive index ofn2=1.6 and radiusrs=1μm,and the laser power isP=10 mW.In Figs.1(b)-1(d),we display the calculated optical forces as a function of the position along thex-,y- andz-axes of the micro-sphere around the identified equilibrium position.Here,the two most important features of optical tweezers are shown: the maximum axial force and spring constants that characterize the strength of the trap.Through linear fitting of the data in the Hookean region, the trap stiffness coefficients inx-,y- andz-axes are calculated and they areκx=κy=-12.47 pN·μm-1andκz=-12.02 pN·μm-1,respectively.The trap stiffness is fitted by the yellow line in the corresponding figure.Through calculating the optical force exerted on the micro-sphere,the equilibrium position of the micro-sphererequilibrium=[0,0,0.085] μm in the optical tweezers.

    3.Equations of motion of the micro-sphere

    In the optical tweezers, based on the equations of Newtown mechanics, the trapped micro-sphere motion can be approximated by

    whereris the particle position in 3D space andmis the mass of the micro-sphere,4.36×10-15kg.

    The drag force acting on the particle can be written as

    whereγis the viscous drag coefficient.For a spherical bead,γis expressed by the Stokes equation,γ=6πηrs, whereηis the fluid viscosity, 0.89×10-3Pa·s for water, and 1.81×10-5Pa·s for air at room temperature.[22]

    The gravitational forceGand buoyancy forceFbuoyacting on the micro-sphere are expressed as

    whereρsandρwcharacterize the density of the microsphere and water, respectively.Since the direction of gravity and buoyancy is along thez-axis, their resultant forces pass through the center of mass and do not provide torque to the micro-sphere.Here,Vsis the volume of the micro-sphere andgis the acceleration of gravity.

    The Brownian motion of micro-spheres is mainly the irregular motion caused by the uninterrupted impact of environmental molecules on the micro-spheres and can be expressed by[23]

    wherekBis the Boltzmann constant, andTis the temperature of the surrounding environment.In addition, Δt=t(i+1)-t(i) is a finite time interval, andN(0,1) denotes a Gaussian variable with zero mean and variance equal to 1.Brownian force is a random force due to collisions with the solvent molecules.The force cannot be determined and can only be described by a probabilistic method.According to Ref.[23], the mean-squared displacement〈(Δrx)2〉 is 3.4×10-4μm2whenη=0.89×10-3Pa·s by performing Brownian dynamics simulations when the stiffness coefficientκx=-12.47 pN·μm-1.

    The motion of the trapped micro-sphere in viscous liquid can be modeled as a forced damped oscillator.In this case,the trapped micro-sphere oscillates in the viscous liquid.The motion of the laser trap is treated as an optical force applied to the micro-sphere,while the drag force in the viscous liquid corresponds to the dampening of oscillations.In this case,owing to the asymmetry of the optical focus, the oscillation frequenciesalong the three main axes are different(ωx=ωy=53.47 kHz,ωz=52.51 kHz).The corresponding damping coefficientβcan be given byβ=γ/(2m).And then the dynamic differential equation of the micro-sphere by rewriting Eq.(1)as

    This is the differential equation for free oscillations with viscous damping.Several points may be noted about the solution of the equation.The function of which was differentiated twice to obtain the above equation may have contained two arbitrary constants that disappeared in the differentiation.The general solution must then contain two arbitrary constants that are to be evaluated with the use of the boundary conditions.

    The solution must represent a vibration with a continually decreasing amplitude if the damping is not too great.If the damping is very great,the particle should return to its equilibrium position with decreasing velocity and no vibrations will take place.There should be a borderline case when oscillations just cease and the particle returns to its equilibrium position in a minimum time.

    There are clearly three situations,namely,

    (i)β2>ω2i,overdamping;

    (ii)β2=ω2i,critical damping;

    (iii)β2<ω2i,underdamping.We shall consider these cases separately in the above order.

    4.Method of the differential equation (the fourth-order Runge-Kutta method)

    Since Eq.(5) cannot be solved analytically, we consider using the Runge-Kutta method to numerically analyze this equation.[24]Runge-Kutta is an important class of implicit or explicit iterative methods for the solution of nonlinear ordinary differential equations (ODEs).It combines classical methods such as the Euler algorithm and trapezoidal,and has the characteristics of high precision,which is very suitable for the situation in this paper.One of the above methods is very commonly used and is called the fourth-order Runge-Kutta method (RK4 method).It is mainly applied in the case of computer simulations when the derivatives and initial value information of the equation are known.This method eliminates the complex process of solving differential equations and has been successfully used to solve ODEs.The second-order differential Eq.(5) can be converted to two coupled first-order equations

    The time step Δtshould be much smaller than the characteristic time scales of the stochastic process to be simulated.If the Δtis comparable to or larger than the smallest time scale, the numerical solution will not converge and typically shows an unphysical oscillatory behavior or divergence.The characteristic timescale of our entire model is given by the relaxation timem/γ, so the minimum relaxation time is about~27 ns.In our calculations, we set the time step to 10 ns,such thatδt <m/γ.The recursive algorithm for the classical RK4 method can be written as follows:

    The velocity and position of the micro-sphere during the next integration time interval can be obtained from the following equation:

    With the fourth-order Runge-Kutta method,we can accurately calculate the kinetic parameters of the micro-sphere in the optical capture.

    5.Results and analysis

    The time reversal properties of a dynamical law signal are its dissipative character.To probe oscillations in the liquiddamped regime,a feasible route is to reduce the viscosity coefficient.For better illustration of the above three situations presented in Section 3, we display the trajectories of the motion of the micro-sphere when it is in the surrounding medium with different viscosity coefficients.Due to the different oscillation frequencies along three main axes,we have considered the trajectories of the motion of the micro-sphere when it is set at different initial positions.

    5.1.Micro-sphere set on the z-axis

    The initial parameters are listed as follows: the initial positionr0=[0,0,1]μm and the velocityv0=[0,0,0]μm·s-1In terms of thez-axial oscillation frequencyωz=52.51 kHz,when the fluid viscosity isη=2.43×10-5Pa·s the microsphere undergoes critical damping along thez-axis.Due to the symmetrical structure of optical tweezers and micro-spheres,the micro-sphere is forced by thez-axis optical force, and moves along thez-axis.Figure 2 shows the temporal evolution of thez-trajectories of a micro-sphere in liquids with different viscosities,η=0.89×10-3Pa·s,0.89×10-4Pa·s,2.43×10-5Pa·s, 0.89×10-5Pa·s, and 0.89×10-6Pa·s.The corresponding dynamic motions of micro-spheres with different viscosities are shown in the supplementary materials video S1.Table 1 displays the damping coefficient, oscillation frequency, and the equilibrium time and state of the micro-sphere with different viscosities in the optical tweezers.Whenη= 0.89×10-3Pa·s or 0.89×10-4Pa·s, because of the large damping and sufficient cushion, the whole system has enough capacity to dissipate energy.The microsphere will not oscillate back and forth, but will tend to balance monotonously and slowly in the overdamped oscillation.Finally, it respectively takes 1.05×10-2s and 1.98×10-3s to reach the equilibrium positionrequilibrium=[0,0,0.085]μm.Whenη=0.89×10-5Pa·s or 0.89×10-6Pa·s, in terms of the small damping and slow dissipation, the restoring force pulls the micro-sphere back to the equilibrium position but rushes over the position, making several periodic oscillations back and forth.With the increase of time, the whole system dissipates the kinetic energy of the micro-sphere,which causes that the amplitude of the oscillation of the micro-sphere to become smaller and smaller.In these cases,it respectively takes 6.09×10-4s and 5.05×10-3s to reach the equilibrium position.Whenη=2.43×10-5Pa·s, this situation lies between the above two situations.And the whole system has the minimum ability to prevent oscillation.In this situation, it takes 3.44×10-4s to return to the equilibrium position.Therefore,it can be concluded that,in the critical damping oscillation,it takes the least amount of time for the micro-sphere to reach the equilibrium state.

    Fig.2.The z-directional trajectories of the micro-sphere with different viscosity coefficients, and η =0.89×10-3, 0.89×10-4, 2.43×10-5,0.89×10-5,and 0.89×10-6 Pa·s at the initial position r0=[0,0,1]μm and the velocity v0=[0,0,0]μm·s-1 in the optical tweezers.

    Table 1.The relevant physical parameters of the micro-sphere with different viscosity coefficients when the micro-sphere is set at the initial position r0=[0,0,1]μm.

    Fig.3.The temporal evolution of the x-, y-, and z-directional [(a), (c)] optical force and drag force, [(b), (d)] resultant force of the microsphere with viscosity coefficients η1 =0.89×10-3 Pa·s and η5 =0.89×10-6 Pa·s at the initial position r0 =[0,0,1] μm and the velocity v0=[0,0,0]μm·s-1 in the optical tweezers,respectively.

    For clear illustration,we plot detailed pictures of the optical force,the viscous drag force,and the resultant forceFsum(Fsum=Foptical+Fdrag+G+Fbuoy, which are the same in all contexts) of the micro-sphere with viscosity coefficientsη1=0.89×10-3Pa·s andη5=0.89×10-6Pa·s in Fig.3.As shown in Figs.3(a)and 3(b),at the initial stage,the initial velocity of particle is zero.The drag force is zero too,but the optical force is very large(11.28 pN at 10 mW),and so is the resultant force.As a result,the particle is subject to a very large acceleration to raise its speed up to the maximal velocity in a short time.However,the drag force grows quickly along with the speed of the particle to the extent that it completely compensates for the optical force and makes the total force zero.This transition happens at a small timescale of only 2.18μs at 10 mW.After this time,the drag force overwhelms the optical force because the latter decays faster,leading to a negative net force consequent deceleration of the particle until it reaches the translational equilibrium position.In Figs.3(c) and 3(d),due to the viscosity coefficientη5=0.89×10-6Pa·s,the optical force far outweighs the drag force.The resultant force mainly depends on the optical force,decreasing with the dissipation of the particle kinetic energy.At this stage,the particle is like a mechanical spring,oscillating back and forth in line,as shown in Fig.2.It takes about 3 ms at 10 mW in this reciprocating process to slowly reach the balance state.

    5.2.The micro-sphere set on the x-axis or y-axis

    In the following case,we consider the oscillation frequencies of the micro-sphere along thex-axis, which is similar to the situation along they-axis.The initial position of the microspherer0=[1,0,0.085]μm,the velocityv0=[0,0,0]μm·s-1,and the oscillation frequencies in thexandyaxes areωx=ωy= 53.47 kHz.Different from the first case, the microsphere experiences thex- andz-optical forces in the optical trap.The micro-sphere does not translate directly to the equilibrium position.Instead, it moves in a complex curve.Thex- andz-trajectories of the micro-spheres in the different viscosity liquids as a function of time are displayed in Figs.4(a)and 4(b).To better illustrate the state of the motion the particle, the corresponding optical force, the viscous drag force,and the resultant force of the micro-sphere with viscosity coefficientsη1=0.89×10-3Pa·s andη5=0.89×10-6Pa·s are shown in Figs.4(c)-4(f).When the viscosity coefficients areη= 0.89×10-3Pa·s or 0.89×10-4Pa·s, the microsphere moves towardrx=0 μm in thex-axis but moves up and down along thez-axis.After reaching the maximum positionrzmax, it falls into the equilibrium position slowly, respectively, taking 1.60×10-2s and 2.97×10-3s.It is also verified in Figs.4(c) and 4(d) that the optical forcesFoptical,xandFoptical,zincrease first and then decrease with the particle reaching close to the balance position.In this short period, the particle has experienced the process of acceleration and deceleration.Meanwhile, when the fluid viscosity isη=2.47×10-5Pa·s, the corresponding damping coefficient isβ= 53.47 kHz, which is close to the critical damping.Microspheres quickly reach the equilibrium state both in thex-axis andz-axis, taking 5.15×10-4s.When the fluid viscosity isη=0.89×10-5Pa·s, the micro-sphere will oscillate back and forth, but tends to balance monotonously.It takes 1.09×10-3s to reach the equilibrium position.When the viscosity coefficientη=0.89×10-6Pa·s is near the vacuum environment,β=1.92 kHz,which is less than the natural frequency of the optical trap.The system damping is too small and the viscous force on the micro-sphere is small, as displayed in Figs.4(e) and 4(f), which leads the particle to move back and forth around the equilibrium position.Due to the resultant forcesFsum,xandFsum,zin different dimensions of space,the particle circles around the laser center.With the increase in time, the oscillation amplitude and speed of the micro-sphere gradually decrease.This system’s kinetic energy dissipation is zero and the micro-sphere reaches the equilibrium position.

    Table 2.The relevant physical parameters of the micro-sphere with different viscosity coefficients at the initial position r0=[1,0,0.085]μm.

    Fig.4.The(a)x-directional trajectories and(b)z-directional trajectories of the micro-sphere in liquids with different viscosity coefficients,and η=0.89×10-3,0.89×10-4,2.47×10-5,0.89×10-5,and 0.89×10-6 Pa·s at the initial position r0=[1,0,0.085]μm and the initial velocity v0=[0,0,0]μm·s-1 in the optical tweezers.The temporal evolution of the x-,y-,and z-directional[(c)and(e)]optical force and drag force,and[(d)and(f)]resultant force of the micro-sphere with viscosity coefficients η1=0.89×10-3 and η5=0.89×10-6 Pa·s,respectively.

    Figure 5 shows the 3D trajectories of the micro-sphere in the surrounding medium with different viscosity coefficients,andη=0.89×10-3Pa·s,0.89×10-4Pa·s,2.47×10-5Pa·s,0.89×10-5Pa·s,and 0.89×10-6Pa·s.The corresponding dynamic motions can be observed in the supplementary materials video S2.Table 2 displays the relevant physical parameters of the micro-sphere with different viscosity coefficients.As can be seen in Fig.5, the micro-sphere moves along the complex reciprocating curve.Even in this simple optical tweezer, the dielectric micro-sphere exhibits abundant phases of mechanical motions,including acceleration,deceleration,and turning.But in real experiments, it increases the difficulty in judging whether the micro-sphere is captured in the low viscosity coefficient surrounding medium due to the large vibration offset and the long equilibrium time.

    The viscous coefficient is essential to the trapping probabilities and the equilibrium time.When the viscosity coefficient is relatively large, the micro-sphere slowly moves toward the equilibrium position.When the corresponding damping coefficient is close to the optical oscillation frequency of the optical tweezers, the particle takes the minimum time to rapidly reach the equilibrium position.When the viscosity coefficient declines,the damping coefficient is less than the optical oscillation frequency of the optical tweezers.The particle exhibits oscillation behavior,and takes more time to reach the equilibrium state.The entire process of particle manipulation is of short duration,and the position offset of the micro-sphere is small.So, the dynamic process of the micro-sphere in the initial period is one that is subtle and easily overlooked point.And this dynamic analysis method has contributed to research on the working mechanism of DNA-related proteins with a micro-sphere handle.[25-27]

    6.Conclusion

    In summary, based on the equations of Newtonian mechanics, we have studied the kinetic problems of lasertrapped micro-spheres in liquids with different viscosity coefficients.Through the fourth-order Runge-Kutta method,we have deduced the equilibrium time, position, and force(Foptical,Fdrag,G,Fbuoy)of micro-spheres in motion.We have visualized the motion trajectories of micro-sphere under different viscous forces by simulating and analyzing the dynamics.We have found that, unexpectedly, the micro-sphere will not necessarily be stabilized quickly even if the viscous force is small.Instead,when the viscosity coefficient reaches an appropriate intermediate value,the system is in critical damping and the micro-sphere tends to stabilize in the shortest time.Moreover, by estimating the stiffness of optical tweezers and the viscosity coefficient of surroundings medium, we can get the dynamic state of micro-spheres to certain systems under the conditions of overdamping, critical damping, and underdamping.

    This approach of solving and analyzing micro-sphere kinetic processes from a three-dimensional scale is crucial for a variety of engineering mechanisms in biology or in the field of macromolecules.In the future,we will continue to investigate the kinetic theory of the micro-sphere and will consider more factors such as the physical properties of the particles,photothermal effects, different environmental conditions, and solving complex dynamic problems of different particles.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China(Grant No.11804399),the Special Funds for Basic Scientific Research at the Central University of South-Central University for Nationalities (Grant No.CZQ20018),and Special Funds for Basic Scientific Research at Central Universities(Grant No.YZZ17005).

    猜你喜歡
    志遠(yuǎn)劉靜
    劉靜設(shè)計(jì)作品
    大眾文藝(2023年24期)2024-01-12 06:01:22
    糖人王
    金秋(2023年24期)2023-03-18 01:49:06
    Topological photonic states in gyromagnetic photonic crystals:Physics,properties,and applications
    OBTL模式下形成性評(píng)估在高職高專醫(yī)學(xué)英語教學(xué)中的促進(jìn)作用
    呼志遠(yuǎn)美術(shù)作品
    Effective suppression of beta oscillation in Parkinsonian state via a noisy direct delayed feedback control scheme?
    Optimization Method of Bearing Support Positions in a High-Speed Flexible Rotor System
    Atom interferometers with weak-measurement path detectors and their quantum mechanical analysis?
    香噴噴的年喲
    Functional Equivalence Theory and Its Limitations in Translation
    學(xué)周刊(2015年1期)2015-07-09 22:04:00
    十分钟在线观看高清视频www | 建设人人有责人人尽责人人享有的| 欧美成人精品欧美一级黄| 成年女人在线观看亚洲视频| 色网站视频免费| 亚洲精品日韩av片在线观看| 国产日韩一区二区三区精品不卡 | 国产亚洲一区二区精品| 日日摸夜夜添夜夜添av毛片| 纵有疾风起免费观看全集完整版| 蜜臀久久99精品久久宅男| 一区在线观看完整版| 国产成人精品婷婷| 嫩草影院入口| 十八禁高潮呻吟视频 | 最后的刺客免费高清国语| 18禁动态无遮挡网站| 亚洲无线观看免费| 一区二区三区精品91| 亚洲欧洲日产国产| 99热6这里只有精品| 免费人成在线观看视频色| 高清午夜精品一区二区三区| 色吧在线观看| 女性被躁到高潮视频| 精品亚洲成国产av| 制服丝袜香蕉在线| 亚洲自偷自拍三级| 国产精品一区www在线观看| 亚洲国产精品国产精品| av福利片在线观看| 久久久久视频综合| 国产精品熟女久久久久浪| 久久久a久久爽久久v久久| 色网站视频免费| 菩萨蛮人人尽说江南好唐韦庄| 国产成人免费无遮挡视频| 久热久热在线精品观看| 九草在线视频观看| 精品国产乱码久久久久久小说| 天堂8中文在线网| 久久精品国产亚洲网站| 18+在线观看网站| 美女大奶头黄色视频| 高清av免费在线| 热99国产精品久久久久久7| 在线观看人妻少妇| 成人毛片60女人毛片免费| 在线观看三级黄色| 秋霞在线观看毛片| 日本黄色日本黄色录像| 99热网站在线观看| 丰满少妇做爰视频| 欧美97在线视频| 天堂中文最新版在线下载| 桃花免费在线播放| 亚洲国产色片| 欧美变态另类bdsm刘玥| 久久99精品国语久久久| 天美传媒精品一区二区| 国产在线一区二区三区精| 五月开心婷婷网| 99热国产这里只有精品6| 国产av国产精品国产| 特大巨黑吊av在线直播| 99精国产麻豆久久婷婷| 国产亚洲午夜精品一区二区久久| 狂野欧美白嫩少妇大欣赏| 欧美变态另类bdsm刘玥| 国产精品成人在线| 久久97久久精品| 久热久热在线精品观看| 色94色欧美一区二区| 亚洲av成人精品一二三区| 国产精品久久久久久av不卡| 观看免费一级毛片| 中文天堂在线官网| 男女边吃奶边做爰视频| 成人二区视频| 最近中文字幕2019免费版| 97超视频在线观看视频| 女性被躁到高潮视频| 在线观看免费视频网站a站| 中文天堂在线官网| 9色porny在线观看| 国产综合精华液| av女优亚洲男人天堂| 亚洲av成人精品一区久久| 国产成人精品无人区| 少妇的逼好多水| 黄色视频在线播放观看不卡| 伦精品一区二区三区| 日本色播在线视频| 婷婷色综合www| 午夜影院在线不卡| 交换朋友夫妻互换小说| 免费大片18禁| av线在线观看网站| 国产免费一级a男人的天堂| 国产精品免费大片| 亚洲成人一二三区av| 看免费成人av毛片| 亚洲av成人精品一二三区| 一区二区三区乱码不卡18| 国产一区有黄有色的免费视频| 大话2 男鬼变身卡| 99九九线精品视频在线观看视频| 九九爱精品视频在线观看| 夫妻性生交免费视频一级片| 少妇的逼好多水| 在线免费观看不下载黄p国产| 日韩在线高清观看一区二区三区| 国产欧美日韩综合在线一区二区 | 人人妻人人爽人人添夜夜欢视频 | 99热6这里只有精品| 国产伦在线观看视频一区| 久久国产乱子免费精品| 久久 成人 亚洲| 国产乱人偷精品视频| 亚洲电影在线观看av| 高清av免费在线| 秋霞在线观看毛片| 欧美日本中文国产一区发布| 五月玫瑰六月丁香| 亚洲成人一二三区av| 久久久久久久久久久免费av| av又黄又爽大尺度在线免费看| 人妻少妇偷人精品九色| 九草在线视频观看| 午夜久久久在线观看| 99热全是精品| 黄色一级大片看看| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲av成人精品一二三区| 亚洲综合精品二区| 亚洲精品一二三| 五月伊人婷婷丁香| av女优亚洲男人天堂| 中国美白少妇内射xxxbb| 哪个播放器可以免费观看大片| 国产成人免费无遮挡视频| 国产色爽女视频免费观看| 日韩一本色道免费dvd| 丰满迷人的少妇在线观看| 晚上一个人看的免费电影| 色网站视频免费| 国产男女内射视频| 国产欧美日韩一区二区三区在线 | 在线播放无遮挡| 亚洲精品视频女| 免费大片18禁| 久久久久久久亚洲中文字幕| 亚洲av国产av综合av卡| 精品少妇内射三级| 少妇的逼水好多| 国产真实伦视频高清在线观看| 少妇猛男粗大的猛烈进出视频| 久久久a久久爽久久v久久| 亚洲精品视频女| 亚洲,一卡二卡三卡| 丁香六月天网| 日本av免费视频播放| 亚洲,一卡二卡三卡| 久久久a久久爽久久v久久| 亚洲精品自拍成人| 久久韩国三级中文字幕| 两个人免费观看高清视频 | 亚洲精品一区蜜桃| 成人毛片a级毛片在线播放| 偷拍熟女少妇极品色| 丝瓜视频免费看黄片| 国产成人精品无人区| 天堂8中文在线网| 中文字幕人妻熟人妻熟丝袜美| 亚洲av欧美aⅴ国产| 视频中文字幕在线观看| 国产日韩欧美在线精品| 免费观看a级毛片全部| 国语对白做爰xxxⅹ性视频网站| 一级毛片aaaaaa免费看小| 中文欧美无线码| 好男人视频免费观看在线| 亚洲三级黄色毛片| 欧美日韩视频精品一区| 国产淫片久久久久久久久| 久久av网站| 菩萨蛮人人尽说江南好唐韦庄| 欧美精品亚洲一区二区| 美女脱内裤让男人舔精品视频| 黑人猛操日本美女一级片| 欧美成人精品欧美一级黄| 亚洲欧美精品自产自拍| 91在线精品国自产拍蜜月| 国产高清三级在线| 亚洲欧美精品专区久久| 国产免费视频播放在线视频| 国产69精品久久久久777片| 熟妇人妻不卡中文字幕| 国产男女内射视频| 一区二区三区乱码不卡18| 狂野欧美白嫩少妇大欣赏| 欧美老熟妇乱子伦牲交| 日韩欧美 国产精品| 我的女老师完整版在线观看| 精品卡一卡二卡四卡免费| 亚洲精品国产av蜜桃| 十八禁网站网址无遮挡 | 一区二区三区四区激情视频| 国产乱来视频区| 黄色一级大片看看| 成人18禁高潮啪啪吃奶动态图 | 亚洲三级黄色毛片| 美女国产视频在线观看| 国产一级毛片在线| 亚洲激情五月婷婷啪啪| 能在线免费看毛片的网站| 亚洲人成网站在线观看播放| 国产成人91sexporn| 99热全是精品| 人妻夜夜爽99麻豆av| 精品少妇久久久久久888优播| 久久国产精品男人的天堂亚洲 | 午夜日本视频在线| av不卡在线播放| 欧美人与善性xxx| 欧美精品国产亚洲| 嘟嘟电影网在线观看| 高清黄色对白视频在线免费看 | 大话2 男鬼变身卡| 欧美日韩国产mv在线观看视频| 国产精品国产av在线观看| 国产精品秋霞免费鲁丝片| 欧美精品亚洲一区二区| 亚洲欧美精品自产自拍| 久久97久久精品| 午夜免费观看性视频| 极品人妻少妇av视频| 亚洲欧美日韩另类电影网站| 永久免费av网站大全| 一二三四中文在线观看免费高清| 国产毛片在线视频| 多毛熟女@视频| 久久精品国产a三级三级三级| 亚洲精品日韩在线中文字幕| 日韩亚洲欧美综合| 欧美日韩综合久久久久久| 久久久久人妻精品一区果冻| 大又大粗又爽又黄少妇毛片口| 欧美bdsm另类| 亚洲成人一二三区av| 两个人的视频大全免费| 亚洲综合精品二区| 久久久久国产网址| 色视频在线一区二区三区| 一级毛片aaaaaa免费看小| 草草在线视频免费看| 日本黄色片子视频| 男女啪啪激烈高潮av片| 亚洲av免费高清在线观看| 黄色一级大片看看| 精品少妇久久久久久888优播| 久久婷婷青草| 欧美精品国产亚洲| av黄色大香蕉| 亚洲av成人精品一二三区| 麻豆精品久久久久久蜜桃| 久久人妻熟女aⅴ| 中文字幕av电影在线播放| 国产午夜精品一二区理论片| 777米奇影视久久| 99热这里只有精品一区| 少妇人妻一区二区三区视频| a 毛片基地| 久久久久久久久久人人人人人人| 久久6这里有精品| 国产成人午夜福利电影在线观看| 亚洲精品乱久久久久久| 精品人妻一区二区三区麻豆| 日本wwww免费看| 韩国高清视频一区二区三区| 男女边摸边吃奶| 夜夜骑夜夜射夜夜干| 女性生殖器流出的白浆| 日日爽夜夜爽网站| 国产欧美亚洲国产| 久久精品久久精品一区二区三区| 久久久欧美国产精品| 久久久久视频综合| 丝袜喷水一区| 一级毛片 在线播放| 亚洲国产欧美日韩在线播放 | 精品99又大又爽又粗少妇毛片| 国产黄色免费在线视频| 午夜激情福利司机影院| 亚洲一区二区三区欧美精品| 最近的中文字幕免费完整| 日本-黄色视频高清免费观看| 日日摸夜夜添夜夜爱| 熟女av电影| 高清av免费在线| 丁香六月天网| 色吧在线观看| 久久韩国三级中文字幕| 欧美日本中文国产一区发布| 我要看日韩黄色一级片| 亚洲精品一二三| 国产精品免费大片| 成年女人在线观看亚洲视频| 高清av免费在线| av在线老鸭窝| 18禁裸乳无遮挡动漫免费视频| 成年av动漫网址| av播播在线观看一区| 久久久久国产精品人妻一区二区| a级毛片在线看网站| 亚洲精品日本国产第一区| 国产高清不卡午夜福利| 一区二区三区免费毛片| 黄色一级大片看看| 中文字幕av电影在线播放| 亚洲久久久国产精品| 亚洲精品国产色婷婷电影| 精品久久久噜噜| 桃花免费在线播放| av在线老鸭窝| 精品午夜福利在线看| 新久久久久国产一级毛片| 搡女人真爽免费视频火全软件| 91精品国产九色| 日本与韩国留学比较| 久久精品夜色国产| 纵有疾风起免费观看全集完整版| 亚洲欧美中文字幕日韩二区| 交换朋友夫妻互换小说| 国产美女午夜福利| 久久久亚洲精品成人影院| 男人和女人高潮做爰伦理| 一级毛片黄色毛片免费观看视频| 人妻人人澡人人爽人人| 一级毛片黄色毛片免费观看视频| 国产精品久久久久成人av| av天堂中文字幕网| 亚洲国产最新在线播放| 最近中文字幕2019免费版| 大片免费播放器 马上看| 成年人免费黄色播放视频 | 99久久精品一区二区三区| 久久人人爽人人爽人人片va| 久久狼人影院| 国产精品三级大全| 两个人免费观看高清视频 | 欧美日本中文国产一区发布| 中文字幕av电影在线播放| 黄色配什么色好看| 一二三四中文在线观看免费高清| 亚洲av二区三区四区| 国精品久久久久久国模美| 人妻制服诱惑在线中文字幕| 少妇猛男粗大的猛烈进出视频| www.av在线官网国产| 黄色怎么调成土黄色| 欧美激情国产日韩精品一区| 国产av国产精品国产| 久久鲁丝午夜福利片| 久久青草综合色| 日本wwww免费看| 五月天丁香电影| 九九在线视频观看精品| 2021少妇久久久久久久久久久| av.在线天堂| 中文字幕精品免费在线观看视频 | 久久久久国产网址| 精品少妇内射三级| 人体艺术视频欧美日本| 99久久精品国产国产毛片| 你懂的网址亚洲精品在线观看| 亚洲精品国产av成人精品| 免费av不卡在线播放| 久久午夜福利片| 国产高清不卡午夜福利| 99久国产av精品国产电影| 欧美xxⅹ黑人| 亚洲国产精品成人久久小说| 一级,二级,三级黄色视频| 免费黄色在线免费观看| 只有这里有精品99| 如何舔出高潮| 亚洲美女视频黄频| 国产亚洲av片在线观看秒播厂| 日日撸夜夜添| 精品一区二区三卡| 多毛熟女@视频| 免费看不卡的av| 噜噜噜噜噜久久久久久91| 日日摸夜夜添夜夜添av毛片| 久久97久久精品| 久久久久久久久久久免费av| 亚洲欧美清纯卡通| 永久免费av网站大全| 欧美精品亚洲一区二区| 国产精品偷伦视频观看了| 成人二区视频| 草草在线视频免费看| 国产日韩欧美亚洲二区| 中文精品一卡2卡3卡4更新| 青春草视频在线免费观看| 啦啦啦在线观看免费高清www| 日韩精品免费视频一区二区三区 | 精品人妻偷拍中文字幕| 麻豆乱淫一区二区| 3wmmmm亚洲av在线观看| 亚洲国产精品国产精品| 亚洲自偷自拍三级| 久久毛片免费看一区二区三区| 亚洲国产精品一区三区| 免费大片黄手机在线观看| 嫩草影院入口| 精品熟女少妇av免费看| 日韩 亚洲 欧美在线| 国产黄色免费在线视频| 特大巨黑吊av在线直播| 亚洲综合色惰| 久久婷婷青草| 天堂8中文在线网| 欧美激情极品国产一区二区三区 | 观看美女的网站| 欧美日本中文国产一区发布| 午夜老司机福利剧场| 亚洲国产精品一区二区三区在线| 亚洲人与动物交配视频| 午夜av观看不卡| 在线亚洲精品国产二区图片欧美 | 午夜91福利影院| 亚洲欧美一区二区三区黑人 | 美女主播在线视频| 新久久久久国产一级毛片| 国产男人的电影天堂91| 国产又色又爽无遮挡免| 啦啦啦视频在线资源免费观看| 亚洲成人av在线免费| 久久国内精品自在自线图片| 亚洲精品日韩在线中文字幕| 晚上一个人看的免费电影| 精品久久久久久电影网| 一级毛片aaaaaa免费看小| 青春草亚洲视频在线观看| 亚洲在久久综合| 亚洲高清免费不卡视频| 国产免费一级a男人的天堂| 99热6这里只有精品| 哪个播放器可以免费观看大片| 老熟女久久久| 九色成人免费人妻av| 日韩成人伦理影院| 国产成人免费无遮挡视频| 全区人妻精品视频| 少妇 在线观看| av免费观看日本| av在线app专区| 国产亚洲欧美精品永久| 亚洲国产精品999| 啦啦啦视频在线资源免费观看| 国产有黄有色有爽视频| a 毛片基地| 国产一区二区三区av在线| 乱人伦中国视频| 久久人人爽人人爽人人片va| 人人妻人人爽人人添夜夜欢视频 | 在线精品无人区一区二区三| 一级,二级,三级黄色视频| 校园人妻丝袜中文字幕| 最近中文字幕2019免费版| 人妻少妇偷人精品九色| 国产亚洲5aaaaa淫片| 中文字幕制服av| 国产精品国产三级国产av玫瑰| 日韩欧美一区视频在线观看 | 中文字幕人妻丝袜制服| 黄色视频在线播放观看不卡| 欧美日韩精品成人综合77777| videos熟女内射| 一级毛片电影观看| 日韩在线高清观看一区二区三区| 亚洲av电影在线观看一区二区三区| 赤兔流量卡办理| 我要看日韩黄色一级片| 桃花免费在线播放| 国产淫片久久久久久久久| 纵有疾风起免费观看全集完整版| 校园人妻丝袜中文字幕| 岛国毛片在线播放| 在线观看美女被高潮喷水网站| 国产毛片在线视频| 在线观看美女被高潮喷水网站| 十八禁网站网址无遮挡 | 男女无遮挡免费网站观看| 精品久久国产蜜桃| 国产在线男女| 97在线视频观看| 亚洲丝袜综合中文字幕| 精华霜和精华液先用哪个| 亚洲精品456在线播放app| 亚洲熟女精品中文字幕| 啦啦啦啦在线视频资源| 这个男人来自地球电影免费观看 | 久久人人爽av亚洲精品天堂| av专区在线播放| 多毛熟女@视频| 欧美高清成人免费视频www| 久久ye,这里只有精品| 18+在线观看网站| 成人特级av手机在线观看| 另类亚洲欧美激情| 伦理电影免费视频| 日韩成人伦理影院| 人人澡人人妻人| 国产一区二区三区综合在线观看 | 亚洲精品自拍成人| 少妇人妻精品综合一区二区| 亚洲精品日韩在线中文字幕| 国产日韩欧美视频二区| 日本与韩国留学比较| 欧美 日韩 精品 国产| 日韩中字成人| 国产在线一区二区三区精| 一级毛片电影观看| 欧美最新免费一区二区三区| 一级黄片播放器| 日本wwww免费看| 少妇被粗大的猛进出69影院 | 日本wwww免费看| 欧美变态另类bdsm刘玥| 亚洲成人手机| freevideosex欧美| 涩涩av久久男人的天堂| 美女xxoo啪啪120秒动态图| 插逼视频在线观看| 国产69精品久久久久777片| 国产精品国产三级国产av玫瑰| 亚洲无线观看免费| 亚洲精品国产av成人精品| 国产精品成人在线| 成人美女网站在线观看视频| 色视频在线一区二区三区| 国产成人精品久久久久久| 国产精品久久久久久久久免| 国产男女内射视频| 亚洲经典国产精华液单| 狂野欧美激情性bbbbbb| 亚洲欧美成人综合另类久久久| 国产伦精品一区二区三区四那| 男男h啪啪无遮挡| 亚洲精品自拍成人| 涩涩av久久男人的天堂| 欧美日韩视频高清一区二区三区二| 国产精品久久久久久久电影| 亚洲精品中文字幕在线视频 | 极品少妇高潮喷水抽搐| 丰满迷人的少妇在线观看| 亚洲电影在线观看av| 国产精品伦人一区二区| 大码成人一级视频| 国产精品一区二区三区四区免费观看| 人妻少妇偷人精品九色| 菩萨蛮人人尽说江南好唐韦庄| 蜜桃在线观看..| 丰满少妇做爰视频| 国产一区二区三区av在线| 亚洲三级黄色毛片| 91精品伊人久久大香线蕉| 亚洲精品视频女| 丁香六月天网| 久久99热这里只频精品6学生| 女性生殖器流出的白浆| 婷婷色综合www| 99久久精品国产国产毛片| 黄色日韩在线| 91精品国产国语对白视频| 在线天堂最新版资源| 最近的中文字幕免费完整| 精品国产乱码久久久久久小说| av在线老鸭窝| 国产日韩一区二区三区精品不卡 | a 毛片基地| av网站免费在线观看视频| 国产无遮挡羞羞视频在线观看| 亚洲欧洲国产日韩| 高清不卡的av网站| 色网站视频免费| 简卡轻食公司| 看非洲黑人一级黄片| 老熟女久久久| 爱豆传媒免费全集在线观看| av在线老鸭窝| 少妇的逼好多水| 久久久国产欧美日韩av| 狂野欧美激情性xxxx在线观看| 日本黄色日本黄色录像| 高清欧美精品videossex| 欧美精品人与动牲交sv欧美| av女优亚洲男人天堂| 久久国产乱子免费精品| 国产亚洲av片在线观看秒播厂| 一级a做视频免费观看| 亚洲久久久国产精品| 国产亚洲精品久久久com| freevideosex欧美| 精品亚洲乱码少妇综合久久| 亚洲精品乱久久久久久| 中文资源天堂在线| 午夜老司机福利剧场| 亚洲激情五月婷婷啪啪| 国产精品久久久久久久久免| 色婷婷av一区二区三区视频| 人妻 亚洲 视频|