• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of viscous force on the dynamic process of micro-sphere in optical tweezers

    2023-11-02 08:13:14JingLiu劉靜XingyuWu吳星宇YiminFeng馮怡敏MianZheng鄭冕andZhiyuanLi李志遠(yuǎn)
    Chinese Physics B 2023年10期
    關(guān)鍵詞:志遠(yuǎn)劉靜

    Jing Liu(劉靜), Xingyu Wu(吳星宇), Yimin Feng(馮怡敏), Mian Zheng(鄭冕), and Zhiyuan Li(李志遠(yuǎn))

    1College of Computer Science,South-Central Minzu University,Wuhan 430074,China

    2China Ship Development and Design Center,Wuhan 430064,China

    3School of Physics and Optoelectronics,South China University of Technology,Guangzhou 510640,China

    Keywords: optical tweezers,viscous force,equations of Newtonian mechanics,Runge-Kutta method

    1.Introduction

    The advent of optical tweezers has greatly promoted progress in the measurement of the forces and observation of the dynamics at the single molecule level,leading to a greater understanding of biochemical processes.[1]However, in the nano-world, ordinary water behaves as a very viscous liquid.The particle moving in water is like moving in the syrup.Viscosity consumes a lot of energy, which leads to a decrease in the momentum exchange and transfer between light and objects.Unlike levitating particles in liquid, optical trapping of nanoparticles in vacuum[2-4]is isolated from environmental thermal noise,thus eliminating the primary source of dissipation, which has attracted great attention in fundamental tests of quantum mechanics,[5,6]sensing of weak forces,[7,8]and searching for new physics.[9,10]In contrast to optical trapping in fluid surroundings,optical trapping in gaseous surroundings is quite challenging because of the high particle velocities and the low drag forces.

    On the other hand,the optical tweezer technique has been developed to manipulate particles with light absorption, such as metallic nanoparticles[11-14]and metallic-dielectric Janus microparticles.Different from the trap of dielectric material, these materials give rise to strong heating effects.It has been reported that nanoparticles can rotate at frequencies of several kilohertz when trapped in the circularly polarized light.[15]Due to the loss of materials and the thermal effect caused by light absorption,the surrounding waters will generate thermal[1]convection.The heating of the particles at high laser powers facilitates optical spinning because it lowers the viscosity and friction of the embedding water.Note that the common law of viscosity applies to most fluids,but there exist some materials that exhibit anomalous viscous properties.Anomalous properties may be conferred on a fluid by small particles immersed in it.[16]The viscosity of the nanofluid suspension with the same material nanoparticles varies with the particle size.Heet al.[17]found that the viscosity of TiO2-distilled water nanofluids decreases with the miniaturization of the micro-sphere size.

    Measuring real-time dynamics is crucial for uncovering the distinct mechanics of a micro-sphere.Research on the motion of an optically trapped Brownian particle has aroused great interest due to the applications of a sensitive probe of molecular and nanoscopic forces.Both experimental and numerical simulations research on an optically trapped particle have made progress,[18-20]but research on the effects of the viscous coefficients of the surrounding medium on microparticles is insufficient.In this paper, we focus on the influence of viscous coefficients on the micro-spheres in optical tweezers.First,we numerically analyze the three-dimensional(3D)dynamic process of dielectric micro-spheres in optical tweezers on the basis of the equations of Newtown mechanics.Second,we display the trajectories of the motion of micro-spheres when they are in the surrounding medium with different viscosity coefficients.Moreover, due to the different oscillation frequencies of optical tweezers along thex- andz-axes, we have considered the dynamics of the micro-sphere when it is set at different initial positions.Finally, we have reported that the equilibrium time mainly depends on the corresponding damping coefficient of the surrounding environment and oscillation frequency of the optical tweezers.

    2.Optical force on the micro-sphere in optical tweezers

    In optical tweezers, any particle falling within the laser beam undergoes two kinds of forces:a restoring force directed toward the region of highest intensity (gradient force) and a force that pushes the particle along the propagation axis of the laser beam (radiation pressure).A 3D stable trapping condition is achieved when the field gradient force overcomes the radiation pressure,the forces due to gravity and buoyancy,and the force animating the Brownian motion.If the particle is not far from the trap center,the optical force exerted on the particle is directly proportional to the displacementrfrom the equilibrium position.Since an optical trap behaves, with a good approximation, like a harmonic potential, it is able to exert a restoring force,Foptical=κ·r, whereκis the trap stiffness.Normally in an optical trap the radial optical forces are larger than those of the axial one, i.e.,κx ≈κy >κz.A schematic of the optical tweezers considered in this work is shown in Fig.1(a).

    Fig.1.(a)Schematic of optical tweezers and the coordinate system.(b)-(d)The calculated optical force acting on a micro-sphere when it moves along the x-,y-and z-axes,respectively,in the optical tweezers at the laser power P=10 mW.

    The collimated Gaussian beam at a wavelengthλ=1064 nm propagates along thez-axis and is focused by a high numerical aperture (NA=1.4) objective.We implement the ray optics model and algorithm in Ref.[21]to calculate the optical force (Foptical=[Foptical,x,Foptical,y,Foptical,z]) of a dielectric micro-sphere in an optical tweezer when the micro-sphere with radiusrsmoves around the focus point along thex-,y-,andz-axes, respectively.In the ray optics model, the focused Gaussian light beam is decomposed into a large number of individual rays.The rays are reflected and refracted at the interface of the particle and the surrounding medium.The optical force at each point quantitatively can be calculated via the principle of the exchange of momentum.The initial parameters are as follows.The surrounding medium is water with a refractive indexn1=1.33,the dielectric micro-sphere has a refractive index ofn2=1.6 and radiusrs=1μm,and the laser power isP=10 mW.In Figs.1(b)-1(d),we display the calculated optical forces as a function of the position along thex-,y- andz-axes of the micro-sphere around the identified equilibrium position.Here,the two most important features of optical tweezers are shown: the maximum axial force and spring constants that characterize the strength of the trap.Through linear fitting of the data in the Hookean region, the trap stiffness coefficients inx-,y- andz-axes are calculated and they areκx=κy=-12.47 pN·μm-1andκz=-12.02 pN·μm-1,respectively.The trap stiffness is fitted by the yellow line in the corresponding figure.Through calculating the optical force exerted on the micro-sphere,the equilibrium position of the micro-sphererequilibrium=[0,0,0.085] μm in the optical tweezers.

    3.Equations of motion of the micro-sphere

    In the optical tweezers, based on the equations of Newtown mechanics, the trapped micro-sphere motion can be approximated by

    whereris the particle position in 3D space andmis the mass of the micro-sphere,4.36×10-15kg.

    The drag force acting on the particle can be written as

    whereγis the viscous drag coefficient.For a spherical bead,γis expressed by the Stokes equation,γ=6πηrs, whereηis the fluid viscosity, 0.89×10-3Pa·s for water, and 1.81×10-5Pa·s for air at room temperature.[22]

    The gravitational forceGand buoyancy forceFbuoyacting on the micro-sphere are expressed as

    whereρsandρwcharacterize the density of the microsphere and water, respectively.Since the direction of gravity and buoyancy is along thez-axis, their resultant forces pass through the center of mass and do not provide torque to the micro-sphere.Here,Vsis the volume of the micro-sphere andgis the acceleration of gravity.

    The Brownian motion of micro-spheres is mainly the irregular motion caused by the uninterrupted impact of environmental molecules on the micro-spheres and can be expressed by[23]

    wherekBis the Boltzmann constant, andTis the temperature of the surrounding environment.In addition, Δt=t(i+1)-t(i) is a finite time interval, andN(0,1) denotes a Gaussian variable with zero mean and variance equal to 1.Brownian force is a random force due to collisions with the solvent molecules.The force cannot be determined and can only be described by a probabilistic method.According to Ref.[23], the mean-squared displacement〈(Δrx)2〉 is 3.4×10-4μm2whenη=0.89×10-3Pa·s by performing Brownian dynamics simulations when the stiffness coefficientκx=-12.47 pN·μm-1.

    The motion of the trapped micro-sphere in viscous liquid can be modeled as a forced damped oscillator.In this case,the trapped micro-sphere oscillates in the viscous liquid.The motion of the laser trap is treated as an optical force applied to the micro-sphere,while the drag force in the viscous liquid corresponds to the dampening of oscillations.In this case,owing to the asymmetry of the optical focus, the oscillation frequenciesalong the three main axes are different(ωx=ωy=53.47 kHz,ωz=52.51 kHz).The corresponding damping coefficientβcan be given byβ=γ/(2m).And then the dynamic differential equation of the micro-sphere by rewriting Eq.(1)as

    This is the differential equation for free oscillations with viscous damping.Several points may be noted about the solution of the equation.The function of which was differentiated twice to obtain the above equation may have contained two arbitrary constants that disappeared in the differentiation.The general solution must then contain two arbitrary constants that are to be evaluated with the use of the boundary conditions.

    The solution must represent a vibration with a continually decreasing amplitude if the damping is not too great.If the damping is very great,the particle should return to its equilibrium position with decreasing velocity and no vibrations will take place.There should be a borderline case when oscillations just cease and the particle returns to its equilibrium position in a minimum time.

    There are clearly three situations,namely,

    (i)β2>ω2i,overdamping;

    (ii)β2=ω2i,critical damping;

    (iii)β2<ω2i,underdamping.We shall consider these cases separately in the above order.

    4.Method of the differential equation (the fourth-order Runge-Kutta method)

    Since Eq.(5) cannot be solved analytically, we consider using the Runge-Kutta method to numerically analyze this equation.[24]Runge-Kutta is an important class of implicit or explicit iterative methods for the solution of nonlinear ordinary differential equations (ODEs).It combines classical methods such as the Euler algorithm and trapezoidal,and has the characteristics of high precision,which is very suitable for the situation in this paper.One of the above methods is very commonly used and is called the fourth-order Runge-Kutta method (RK4 method).It is mainly applied in the case of computer simulations when the derivatives and initial value information of the equation are known.This method eliminates the complex process of solving differential equations and has been successfully used to solve ODEs.The second-order differential Eq.(5) can be converted to two coupled first-order equations

    The time step Δtshould be much smaller than the characteristic time scales of the stochastic process to be simulated.If the Δtis comparable to or larger than the smallest time scale, the numerical solution will not converge and typically shows an unphysical oscillatory behavior or divergence.The characteristic timescale of our entire model is given by the relaxation timem/γ, so the minimum relaxation time is about~27 ns.In our calculations, we set the time step to 10 ns,such thatδt <m/γ.The recursive algorithm for the classical RK4 method can be written as follows:

    The velocity and position of the micro-sphere during the next integration time interval can be obtained from the following equation:

    With the fourth-order Runge-Kutta method,we can accurately calculate the kinetic parameters of the micro-sphere in the optical capture.

    5.Results and analysis

    The time reversal properties of a dynamical law signal are its dissipative character.To probe oscillations in the liquiddamped regime,a feasible route is to reduce the viscosity coefficient.For better illustration of the above three situations presented in Section 3, we display the trajectories of the motion of the micro-sphere when it is in the surrounding medium with different viscosity coefficients.Due to the different oscillation frequencies along three main axes,we have considered the trajectories of the motion of the micro-sphere when it is set at different initial positions.

    5.1.Micro-sphere set on the z-axis

    The initial parameters are listed as follows: the initial positionr0=[0,0,1]μm and the velocityv0=[0,0,0]μm·s-1In terms of thez-axial oscillation frequencyωz=52.51 kHz,when the fluid viscosity isη=2.43×10-5Pa·s the microsphere undergoes critical damping along thez-axis.Due to the symmetrical structure of optical tweezers and micro-spheres,the micro-sphere is forced by thez-axis optical force, and moves along thez-axis.Figure 2 shows the temporal evolution of thez-trajectories of a micro-sphere in liquids with different viscosities,η=0.89×10-3Pa·s,0.89×10-4Pa·s,2.43×10-5Pa·s, 0.89×10-5Pa·s, and 0.89×10-6Pa·s.The corresponding dynamic motions of micro-spheres with different viscosities are shown in the supplementary materials video S1.Table 1 displays the damping coefficient, oscillation frequency, and the equilibrium time and state of the micro-sphere with different viscosities in the optical tweezers.Whenη= 0.89×10-3Pa·s or 0.89×10-4Pa·s, because of the large damping and sufficient cushion, the whole system has enough capacity to dissipate energy.The microsphere will not oscillate back and forth, but will tend to balance monotonously and slowly in the overdamped oscillation.Finally, it respectively takes 1.05×10-2s and 1.98×10-3s to reach the equilibrium positionrequilibrium=[0,0,0.085]μm.Whenη=0.89×10-5Pa·s or 0.89×10-6Pa·s, in terms of the small damping and slow dissipation, the restoring force pulls the micro-sphere back to the equilibrium position but rushes over the position, making several periodic oscillations back and forth.With the increase of time, the whole system dissipates the kinetic energy of the micro-sphere,which causes that the amplitude of the oscillation of the micro-sphere to become smaller and smaller.In these cases,it respectively takes 6.09×10-4s and 5.05×10-3s to reach the equilibrium position.Whenη=2.43×10-5Pa·s, this situation lies between the above two situations.And the whole system has the minimum ability to prevent oscillation.In this situation, it takes 3.44×10-4s to return to the equilibrium position.Therefore,it can be concluded that,in the critical damping oscillation,it takes the least amount of time for the micro-sphere to reach the equilibrium state.

    Fig.2.The z-directional trajectories of the micro-sphere with different viscosity coefficients, and η =0.89×10-3, 0.89×10-4, 2.43×10-5,0.89×10-5,and 0.89×10-6 Pa·s at the initial position r0=[0,0,1]μm and the velocity v0=[0,0,0]μm·s-1 in the optical tweezers.

    Table 1.The relevant physical parameters of the micro-sphere with different viscosity coefficients when the micro-sphere is set at the initial position r0=[0,0,1]μm.

    Fig.3.The temporal evolution of the x-, y-, and z-directional [(a), (c)] optical force and drag force, [(b), (d)] resultant force of the microsphere with viscosity coefficients η1 =0.89×10-3 Pa·s and η5 =0.89×10-6 Pa·s at the initial position r0 =[0,0,1] μm and the velocity v0=[0,0,0]μm·s-1 in the optical tweezers,respectively.

    For clear illustration,we plot detailed pictures of the optical force,the viscous drag force,and the resultant forceFsum(Fsum=Foptical+Fdrag+G+Fbuoy, which are the same in all contexts) of the micro-sphere with viscosity coefficientsη1=0.89×10-3Pa·s andη5=0.89×10-6Pa·s in Fig.3.As shown in Figs.3(a)and 3(b),at the initial stage,the initial velocity of particle is zero.The drag force is zero too,but the optical force is very large(11.28 pN at 10 mW),and so is the resultant force.As a result,the particle is subject to a very large acceleration to raise its speed up to the maximal velocity in a short time.However,the drag force grows quickly along with the speed of the particle to the extent that it completely compensates for the optical force and makes the total force zero.This transition happens at a small timescale of only 2.18μs at 10 mW.After this time,the drag force overwhelms the optical force because the latter decays faster,leading to a negative net force consequent deceleration of the particle until it reaches the translational equilibrium position.In Figs.3(c) and 3(d),due to the viscosity coefficientη5=0.89×10-6Pa·s,the optical force far outweighs the drag force.The resultant force mainly depends on the optical force,decreasing with the dissipation of the particle kinetic energy.At this stage,the particle is like a mechanical spring,oscillating back and forth in line,as shown in Fig.2.It takes about 3 ms at 10 mW in this reciprocating process to slowly reach the balance state.

    5.2.The micro-sphere set on the x-axis or y-axis

    In the following case,we consider the oscillation frequencies of the micro-sphere along thex-axis, which is similar to the situation along they-axis.The initial position of the microspherer0=[1,0,0.085]μm,the velocityv0=[0,0,0]μm·s-1,and the oscillation frequencies in thexandyaxes areωx=ωy= 53.47 kHz.Different from the first case, the microsphere experiences thex- andz-optical forces in the optical trap.The micro-sphere does not translate directly to the equilibrium position.Instead, it moves in a complex curve.Thex- andz-trajectories of the micro-spheres in the different viscosity liquids as a function of time are displayed in Figs.4(a)and 4(b).To better illustrate the state of the motion the particle, the corresponding optical force, the viscous drag force,and the resultant force of the micro-sphere with viscosity coefficientsη1=0.89×10-3Pa·s andη5=0.89×10-6Pa·s are shown in Figs.4(c)-4(f).When the viscosity coefficients areη= 0.89×10-3Pa·s or 0.89×10-4Pa·s, the microsphere moves towardrx=0 μm in thex-axis but moves up and down along thez-axis.After reaching the maximum positionrzmax, it falls into the equilibrium position slowly, respectively, taking 1.60×10-2s and 2.97×10-3s.It is also verified in Figs.4(c) and 4(d) that the optical forcesFoptical,xandFoptical,zincrease first and then decrease with the particle reaching close to the balance position.In this short period, the particle has experienced the process of acceleration and deceleration.Meanwhile, when the fluid viscosity isη=2.47×10-5Pa·s, the corresponding damping coefficient isβ= 53.47 kHz, which is close to the critical damping.Microspheres quickly reach the equilibrium state both in thex-axis andz-axis, taking 5.15×10-4s.When the fluid viscosity isη=0.89×10-5Pa·s, the micro-sphere will oscillate back and forth, but tends to balance monotonously.It takes 1.09×10-3s to reach the equilibrium position.When the viscosity coefficientη=0.89×10-6Pa·s is near the vacuum environment,β=1.92 kHz,which is less than the natural frequency of the optical trap.The system damping is too small and the viscous force on the micro-sphere is small, as displayed in Figs.4(e) and 4(f), which leads the particle to move back and forth around the equilibrium position.Due to the resultant forcesFsum,xandFsum,zin different dimensions of space,the particle circles around the laser center.With the increase in time, the oscillation amplitude and speed of the micro-sphere gradually decrease.This system’s kinetic energy dissipation is zero and the micro-sphere reaches the equilibrium position.

    Table 2.The relevant physical parameters of the micro-sphere with different viscosity coefficients at the initial position r0=[1,0,0.085]μm.

    Fig.4.The(a)x-directional trajectories and(b)z-directional trajectories of the micro-sphere in liquids with different viscosity coefficients,and η=0.89×10-3,0.89×10-4,2.47×10-5,0.89×10-5,and 0.89×10-6 Pa·s at the initial position r0=[1,0,0.085]μm and the initial velocity v0=[0,0,0]μm·s-1 in the optical tweezers.The temporal evolution of the x-,y-,and z-directional[(c)and(e)]optical force and drag force,and[(d)and(f)]resultant force of the micro-sphere with viscosity coefficients η1=0.89×10-3 and η5=0.89×10-6 Pa·s,respectively.

    Figure 5 shows the 3D trajectories of the micro-sphere in the surrounding medium with different viscosity coefficients,andη=0.89×10-3Pa·s,0.89×10-4Pa·s,2.47×10-5Pa·s,0.89×10-5Pa·s,and 0.89×10-6Pa·s.The corresponding dynamic motions can be observed in the supplementary materials video S2.Table 2 displays the relevant physical parameters of the micro-sphere with different viscosity coefficients.As can be seen in Fig.5, the micro-sphere moves along the complex reciprocating curve.Even in this simple optical tweezer, the dielectric micro-sphere exhibits abundant phases of mechanical motions,including acceleration,deceleration,and turning.But in real experiments, it increases the difficulty in judging whether the micro-sphere is captured in the low viscosity coefficient surrounding medium due to the large vibration offset and the long equilibrium time.

    The viscous coefficient is essential to the trapping probabilities and the equilibrium time.When the viscosity coefficient is relatively large, the micro-sphere slowly moves toward the equilibrium position.When the corresponding damping coefficient is close to the optical oscillation frequency of the optical tweezers, the particle takes the minimum time to rapidly reach the equilibrium position.When the viscosity coefficient declines,the damping coefficient is less than the optical oscillation frequency of the optical tweezers.The particle exhibits oscillation behavior,and takes more time to reach the equilibrium state.The entire process of particle manipulation is of short duration,and the position offset of the micro-sphere is small.So, the dynamic process of the micro-sphere in the initial period is one that is subtle and easily overlooked point.And this dynamic analysis method has contributed to research on the working mechanism of DNA-related proteins with a micro-sphere handle.[25-27]

    6.Conclusion

    In summary, based on the equations of Newtonian mechanics, we have studied the kinetic problems of lasertrapped micro-spheres in liquids with different viscosity coefficients.Through the fourth-order Runge-Kutta method,we have deduced the equilibrium time, position, and force(Foptical,Fdrag,G,Fbuoy)of micro-spheres in motion.We have visualized the motion trajectories of micro-sphere under different viscous forces by simulating and analyzing the dynamics.We have found that, unexpectedly, the micro-sphere will not necessarily be stabilized quickly even if the viscous force is small.Instead,when the viscosity coefficient reaches an appropriate intermediate value,the system is in critical damping and the micro-sphere tends to stabilize in the shortest time.Moreover, by estimating the stiffness of optical tweezers and the viscosity coefficient of surroundings medium, we can get the dynamic state of micro-spheres to certain systems under the conditions of overdamping, critical damping, and underdamping.

    This approach of solving and analyzing micro-sphere kinetic processes from a three-dimensional scale is crucial for a variety of engineering mechanisms in biology or in the field of macromolecules.In the future,we will continue to investigate the kinetic theory of the micro-sphere and will consider more factors such as the physical properties of the particles,photothermal effects, different environmental conditions, and solving complex dynamic problems of different particles.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China(Grant No.11804399),the Special Funds for Basic Scientific Research at the Central University of South-Central University for Nationalities (Grant No.CZQ20018),and Special Funds for Basic Scientific Research at Central Universities(Grant No.YZZ17005).

    猜你喜歡
    志遠(yuǎn)劉靜
    劉靜設(shè)計(jì)作品
    大眾文藝(2023年24期)2024-01-12 06:01:22
    糖人王
    金秋(2023年24期)2023-03-18 01:49:06
    Topological photonic states in gyromagnetic photonic crystals:Physics,properties,and applications
    OBTL模式下形成性評(píng)估在高職高專醫(yī)學(xué)英語教學(xué)中的促進(jìn)作用
    呼志遠(yuǎn)美術(shù)作品
    Effective suppression of beta oscillation in Parkinsonian state via a noisy direct delayed feedback control scheme?
    Optimization Method of Bearing Support Positions in a High-Speed Flexible Rotor System
    Atom interferometers with weak-measurement path detectors and their quantum mechanical analysis?
    香噴噴的年喲
    Functional Equivalence Theory and Its Limitations in Translation
    學(xué)周刊(2015年1期)2015-07-09 22:04:00
    国产av码专区亚洲av| 久久鲁丝午夜福利片| 日韩国内少妇激情av| 久久亚洲国产成人精品v| 18+在线观看网站| 久久人妻av系列| 亚洲国产成人一精品久久久| 亚洲精品456在线播放app| 日韩亚洲欧美综合| 国产麻豆成人av免费视频| 中文字幕精品亚洲无线码一区| 少妇熟女欧美另类| 青春草国产在线视频| 色视频www国产| 国产亚洲一区二区精品| 久久人人爽人人片av| 中文字幕亚洲精品专区| 色尼玛亚洲综合影院| 直男gayav资源| 亚洲丝袜综合中文字幕| 大又大粗又爽又黄少妇毛片口| 欧美不卡视频在线免费观看| 精品国产三级普通话版| 国产精品久久久久久av不卡| 老司机福利观看| 尾随美女入室| 美女大奶头视频| 亚洲av电影在线观看一区二区三区 | 国产高潮美女av| 日韩大片免费观看网站 | 亚洲,欧美,日韩| 亚洲真实伦在线观看| 国产一区二区在线av高清观看| 国产亚洲精品久久久com| 国产精品永久免费网站| 亚洲欧美日韩东京热| 日本与韩国留学比较| 亚洲熟妇中文字幕五十中出| 午夜免费激情av| 简卡轻食公司| 精品欧美国产一区二区三| 久久久久久久久久成人| 老司机福利观看| 国产在线一区二区三区精 | 女人被狂操c到高潮| 欧美高清性xxxxhd video| 蜜桃亚洲精品一区二区三区| 久久久久久久久久久丰满| 观看免费一级毛片| 亚洲av中文字字幕乱码综合| 尾随美女入室| 欧美激情久久久久久爽电影| 在线天堂最新版资源| 精品熟女少妇av免费看| 纵有疾风起免费观看全集完整版 | h日本视频在线播放| 22中文网久久字幕| 男女下面进入的视频免费午夜| 69人妻影院| 男人狂女人下面高潮的视频| 人人妻人人澡人人爽人人夜夜 | 亚洲国产欧美人成| 美女高潮的动态| 伦精品一区二区三区| 汤姆久久久久久久影院中文字幕 | 欧美成人一区二区免费高清观看| 国产成人精品一,二区| 熟女电影av网| 午夜福利高清视频| 国产极品精品免费视频能看的| 美女脱内裤让男人舔精品视频| 三级男女做爰猛烈吃奶摸视频| 色网站视频免费| 夜夜看夜夜爽夜夜摸| 永久网站在线| 免费看a级黄色片| 在线观看一区二区三区| 七月丁香在线播放| 成人特级av手机在线观看| 国产高清有码在线观看视频| 一本久久精品| 精品无人区乱码1区二区| 欧美高清性xxxxhd video| 成人综合一区亚洲| 不卡视频在线观看欧美| 日韩欧美 国产精品| 我的女老师完整版在线观看| 亚洲av免费高清在线观看| 啦啦啦观看免费观看视频高清| 1000部很黄的大片| 成年女人永久免费观看视频| 国产一级毛片在线| 欧美日韩综合久久久久久| av免费在线看不卡| 乱系列少妇在线播放| 成人午夜精彩视频在线观看| 国产av在哪里看| 一个人免费在线观看电影| 欧美成人免费av一区二区三区| 国产精品一区二区三区四区免费观看| 草草在线视频免费看| 日韩三级伦理在线观看| 成人性生交大片免费视频hd| 亚洲无线观看免费| 亚洲av成人精品一二三区| 国产精品久久视频播放| 99热精品在线国产| 亚洲乱码一区二区免费版| 亚洲最大成人av| 久久精品久久久久久久性| 天天一区二区日本电影三级| 午夜a级毛片| videossex国产| 久久久久久久亚洲中文字幕| 又粗又爽又猛毛片免费看| 国产精品爽爽va在线观看网站| 国产精华一区二区三区| 青春草国产在线视频| 十八禁国产超污无遮挡网站| 又粗又爽又猛毛片免费看| 嫩草影院精品99| 亚洲婷婷狠狠爱综合网| 女人被狂操c到高潮| 国产91av在线免费观看| 久久精品熟女亚洲av麻豆精品 | 99久国产av精品| av专区在线播放| 色网站视频免费| 国产三级在线视频| 久久久精品94久久精品| 18禁动态无遮挡网站| 波野结衣二区三区在线| 国产亚洲午夜精品一区二区久久 | 精品人妻熟女av久视频| 在线播放无遮挡| 少妇被粗大猛烈的视频| 国产精品嫩草影院av在线观看| a级一级毛片免费在线观看| 亚洲欧美精品专区久久| 91久久精品国产一区二区成人| 国产中年淑女户外野战色| 欧美成人午夜免费资源| 久久精品熟女亚洲av麻豆精品 | 亚洲成人精品中文字幕电影| 国产精华一区二区三区| 色5月婷婷丁香| 3wmmmm亚洲av在线观看| 99在线视频只有这里精品首页| 国产午夜精品一二区理论片| 91av网一区二区| 18禁在线无遮挡免费观看视频| 欧美97在线视频| 日本五十路高清| 91久久精品国产一区二区成人| 国产高清三级在线| 午夜日本视频在线| 国产高清有码在线观看视频| 联通29元200g的流量卡| 亚洲乱码一区二区免费版| 性插视频无遮挡在线免费观看| 日本一本二区三区精品| 村上凉子中文字幕在线| 国模一区二区三区四区视频| 国产成人午夜福利电影在线观看| 亚洲欧美成人综合另类久久久 | 国产精品福利在线免费观看| 男插女下体视频免费在线播放| 亚洲丝袜综合中文字幕| 免费看a级黄色片| 久久午夜福利片| 国产欧美日韩精品一区二区| 国产不卡一卡二| 亚洲四区av| av在线亚洲专区| 久久婷婷人人爽人人干人人爱| 欧美色视频一区免费| 麻豆成人av视频| 99热网站在线观看| 中文字幕精品亚洲无线码一区| 精品酒店卫生间| 亚洲av福利一区| 久久99热6这里只有精品| 欧美最新免费一区二区三区| 中国国产av一级| 亚洲精品乱码久久久v下载方式| 国产免费一级a男人的天堂| 舔av片在线| 欧美高清性xxxxhd video| 中文天堂在线官网| 久久午夜福利片| 小蜜桃在线观看免费完整版高清| 国产伦精品一区二区三区视频9| 国产精品一区www在线观看| 日本熟妇午夜| 国产一区二区亚洲精品在线观看| 直男gayav资源| 亚洲精品自拍成人| 一区二区三区免费毛片| 91狼人影院| 国产成人免费观看mmmm| 欧美丝袜亚洲另类| 亚洲av日韩在线播放| 搡老妇女老女人老熟妇| 国产欧美日韩精品一区二区| 久久久久久久久大av| 欧美xxxx性猛交bbbb| 精品酒店卫生间| 国产精品三级大全| 精品人妻一区二区三区麻豆| 少妇人妻一区二区三区视频| 水蜜桃什么品种好| 最近中文字幕2019免费版| 国产精品爽爽va在线观看网站| 亚洲av不卡在线观看| 亚洲丝袜综合中文字幕| 大香蕉97超碰在线| 国产综合懂色| 中文亚洲av片在线观看爽| 日韩欧美精品v在线| 舔av片在线| 久久精品夜色国产| 午夜视频国产福利| 在线观看av片永久免费下载| 一边亲一边摸免费视频| 午夜精品国产一区二区电影 | 又爽又黄无遮挡网站| 中国美白少妇内射xxxbb| 国产极品精品免费视频能看的| 亚洲av一区综合| 国产高清三级在线| 国产不卡一卡二| 狂野欧美白嫩少妇大欣赏| 免费av不卡在线播放| 综合色av麻豆| 大又大粗又爽又黄少妇毛片口| 欧美日韩精品成人综合77777| 女的被弄到高潮叫床怎么办| 你懂的网址亚洲精品在线观看 | 小说图片视频综合网站| 校园人妻丝袜中文字幕| 国产又色又爽无遮挡免| 99热网站在线观看| 内地一区二区视频在线| 亚洲精品乱码久久久久久按摩| 毛片一级片免费看久久久久| 国产伦一二天堂av在线观看| 97在线视频观看| 尤物成人国产欧美一区二区三区| 欧美日韩精品成人综合77777| 一区二区三区四区激情视频| 欧美成人精品欧美一级黄| 成人一区二区视频在线观看| 国产乱人视频| 国产av不卡久久| 1024手机看黄色片| 99热精品在线国产| 九九在线视频观看精品| 国产精品人妻久久久影院| 人妻少妇偷人精品九色| 国产激情偷乱视频一区二区| 国产成人精品久久久久久| 久久久久久久久久黄片| 一本久久精品| 久久人妻av系列| ponron亚洲| 亚洲国产欧美人成| 午夜激情欧美在线| 天天一区二区日本电影三级| 婷婷六月久久综合丁香| 毛片女人毛片| 日韩欧美在线乱码| 2021天堂中文幕一二区在线观| 少妇裸体淫交视频免费看高清| 欧美极品一区二区三区四区| 欧美最新免费一区二区三区| 一边亲一边摸免费视频| 非洲黑人性xxxx精品又粗又长| 国产午夜精品一二区理论片| 只有这里有精品99| 91久久精品国产一区二区成人| 蜜桃久久精品国产亚洲av| 国语自产精品视频在线第100页| 最近最新中文字幕免费大全7| 精品人妻熟女av久视频| 亚洲av二区三区四区| 最近视频中文字幕2019在线8| 亚洲人成网站在线播| 午夜福利在线观看免费完整高清在| 国产av不卡久久| 18禁裸乳无遮挡免费网站照片| 老女人水多毛片| 日韩欧美 国产精品| 九色成人免费人妻av| 午夜激情欧美在线| 欧美日韩国产亚洲二区| 国产一区二区三区av在线| 日本av手机在线免费观看| 欧美3d第一页| 免费无遮挡裸体视频| 精品一区二区免费观看| 亚洲欧美清纯卡通| 成人综合一区亚洲| 欧美日本亚洲视频在线播放| 免费搜索国产男女视频| 啦啦啦观看免费观看视频高清| 国产精品福利在线免费观看| 三级国产精品片| 成人毛片60女人毛片免费| 插阴视频在线观看视频| 国产毛片a区久久久久| 欧美一区二区国产精品久久精品| 秋霞伦理黄片| 午夜a级毛片| 在现免费观看毛片| 免费观看在线日韩| av在线播放精品| 真实男女啪啪啪动态图| 国产成人免费观看mmmm| av黄色大香蕉| 日韩大片免费观看网站 | 精品国产一区二区三区久久久樱花 | 女人久久www免费人成看片 | 1000部很黄的大片| 天天躁日日操中文字幕| 麻豆一二三区av精品| 97人妻精品一区二区三区麻豆| 最近手机中文字幕大全| 精品不卡国产一区二区三区| 丰满少妇做爰视频| 插逼视频在线观看| 午夜福利视频1000在线观看| 人体艺术视频欧美日本| 91精品伊人久久大香线蕉| 日本熟妇午夜| 日日摸夜夜添夜夜爱| 国产精品99久久久久久久久| 精品免费久久久久久久清纯| 九草在线视频观看| 毛片一级片免费看久久久久| 老司机影院毛片| 久久6这里有精品| 不卡视频在线观看欧美| 久久6这里有精品| 人妻制服诱惑在线中文字幕| 狠狠狠狠99中文字幕| 亚洲,欧美,日韩| 一级二级三级毛片免费看| 免费av观看视频| 99久久中文字幕三级久久日本| 99热这里只有是精品在线观看| 网址你懂的国产日韩在线| 欧美一区二区亚洲| 国产成人freesex在线| 我要搜黄色片| 不卡视频在线观看欧美| 少妇猛男粗大的猛烈进出视频 | 国产成人一区二区在线| 欧美性猛交黑人性爽| 国产综合懂色| 神马国产精品三级电影在线观看| 丝袜美腿在线中文| 午夜视频国产福利| 久久人人爽人人爽人人片va| 免费一级毛片在线播放高清视频| 色综合站精品国产| 色5月婷婷丁香| 深爱激情五月婷婷| 搞女人的毛片| 久久6这里有精品| 色综合色国产| av国产久精品久网站免费入址| 久久久久久久久久久免费av| 好男人视频免费观看在线| 在线观看66精品国产| 一个人观看的视频www高清免费观看| www.av在线官网国产| 亚洲欧美日韩卡通动漫| 三级男女做爰猛烈吃奶摸视频| 国模一区二区三区四区视频| 午夜福利在线观看免费完整高清在| 2021少妇久久久久久久久久久| 亚洲中文字幕一区二区三区有码在线看| 免费观看的影片在线观看| 午夜福利在线观看免费完整高清在| 国内精品宾馆在线| 久久久亚洲精品成人影院| 水蜜桃什么品种好| 自拍偷自拍亚洲精品老妇| 人妻系列 视频| 村上凉子中文字幕在线| 国产精品久久久久久久久免| 九九久久精品国产亚洲av麻豆| 久久精品国产鲁丝片午夜精品| 亚洲国产精品专区欧美| 日本一本二区三区精品| 久久人人爽人人爽人人片va| 日韩欧美在线乱码| 久久精品国产鲁丝片午夜精品| 最新中文字幕久久久久| 国产综合懂色| 日本猛色少妇xxxxx猛交久久| 波多野结衣巨乳人妻| 嫩草影院精品99| 欧美人与善性xxx| av视频在线观看入口| 国产精品.久久久| 18禁在线无遮挡免费观看视频| 美女脱内裤让男人舔精品视频| 最后的刺客免费高清国语| 日本黄色视频三级网站网址| 午夜爱爱视频在线播放| 国产精品福利在线免费观看| 特大巨黑吊av在线直播| 国产成人免费观看mmmm| 亚洲丝袜综合中文字幕| 美女xxoo啪啪120秒动态图| 免费看光身美女| 国国产精品蜜臀av免费| 精品人妻一区二区三区麻豆| 欧美日韩在线观看h| 国产麻豆成人av免费视频| 精品一区二区三区人妻视频| 美女cb高潮喷水在线观看| 午夜福利网站1000一区二区三区| 日韩一区二区三区影片| 最新中文字幕久久久久| 亚洲av成人精品一区久久| 麻豆国产97在线/欧美| 亚洲欧美成人精品一区二区| 女人十人毛片免费观看3o分钟| av天堂中文字幕网| 国产精品嫩草影院av在线观看| 中文字幕av成人在线电影| 色视频www国产| 色噜噜av男人的天堂激情| 级片在线观看| 国产一区二区亚洲精品在线观看| 亚洲在久久综合| 亚洲高清免费不卡视频| 成人毛片60女人毛片免费| 99热全是精品| 最新中文字幕久久久久| 天堂网av新在线| 久久精品综合一区二区三区| 国产成人freesex在线| 午夜福利在线观看吧| 国产一级毛片七仙女欲春2| 国产成人aa在线观看| 国产午夜精品久久久久久一区二区三区| 人人妻人人看人人澡| 国产精品,欧美在线| 久久人妻av系列| 有码 亚洲区| 国产成人一区二区在线| 久久韩国三级中文字幕| 麻豆久久精品国产亚洲av| 亚洲国产色片| 国产一区二区三区av在线| 别揉我奶头 嗯啊视频| 亚洲国产欧洲综合997久久,| 18+在线观看网站| 亚洲精品国产成人久久av| 国产精品野战在线观看| 精品久久国产蜜桃| 精品国内亚洲2022精品成人| 亚洲一级一片aⅴ在线观看| 国产日韩欧美在线精品| 床上黄色一级片| 麻豆成人av视频| 久久综合国产亚洲精品| kizo精华| 国产一区二区亚洲精品在线观看| 夜夜爽夜夜爽视频| 国产精品,欧美在线| 亚洲精品一区蜜桃| 亚洲美女视频黄频| 成人欧美大片| 久久6这里有精品| 亚洲第一区二区三区不卡| 在线免费观看不下载黄p国产| www日本黄色视频网| videos熟女内射| 久久久精品94久久精品| 国产成人一区二区在线| 一级毛片我不卡| 亚洲精品aⅴ在线观看| 久久99热6这里只有精品| 亚洲怡红院男人天堂| 一级毛片aaaaaa免费看小| 我要搜黄色片| 欧美日韩一区二区视频在线观看视频在线 | 亚洲中文字幕日韩| 麻豆精品久久久久久蜜桃| 最新中文字幕久久久久| 免费人成在线观看视频色| 午夜亚洲福利在线播放| 你懂的网址亚洲精品在线观看 | 日本wwww免费看| 美女被艹到高潮喷水动态| 最近中文字幕高清免费大全6| 全区人妻精品视频| 久久99热6这里只有精品| 国产精品久久久久久精品电影| 免费人成在线观看视频色| 搡老妇女老女人老熟妇| 国产极品精品免费视频能看的| 国产亚洲一区二区精品| 亚洲av男天堂| 国产精品不卡视频一区二区| 一区二区三区免费毛片| 亚洲精品自拍成人| 亚洲国产精品久久男人天堂| 久久久久久国产a免费观看| 大香蕉久久网| 午夜爱爱视频在线播放| 男女下面进入的视频免费午夜| 联通29元200g的流量卡| 成人午夜高清在线视频| 一区二区三区高清视频在线| 久久久久久久国产电影| 国产亚洲91精品色在线| 国产精品乱码一区二三区的特点| 日韩亚洲欧美综合| av国产免费在线观看| 成人美女网站在线观看视频| 搡老妇女老女人老熟妇| av在线蜜桃| 如何舔出高潮| 在线免费观看的www视频| 91狼人影院| 午夜福利视频1000在线观看| 国产一区二区三区av在线| 男女那种视频在线观看| 国产黄色小视频在线观看| 国产成人精品久久久久久| 一级av片app| 国产男人的电影天堂91| 亚洲国产精品合色在线| 精品一区二区三区视频在线| 男人舔女人下体高潮全视频| 亚洲av中文字字幕乱码综合| 国产精品久久视频播放| 国产亚洲5aaaaa淫片| 国产综合懂色| 视频中文字幕在线观看| 国产成人精品久久久久久| 99久国产av精品| 99在线人妻在线中文字幕| 日韩成人伦理影院| 成人午夜高清在线视频| 在线a可以看的网站| 国产精品熟女久久久久浪| 精品人妻偷拍中文字幕| 亚洲美女搞黄在线观看| 男女国产视频网站| 国产av码专区亚洲av| 亚洲一区高清亚洲精品| 国产真实伦视频高清在线观看| 男人狂女人下面高潮的视频| 精品国产三级普通话版| 午夜免费男女啪啪视频观看| 午夜福利在线观看吧| 只有这里有精品99| 一级爰片在线观看| 偷拍熟女少妇极品色| av天堂中文字幕网| 国产亚洲一区二区精品| 国产高清视频在线观看网站| 亚洲最大成人中文| 成人av在线播放网站| 婷婷六月久久综合丁香| 日韩在线高清观看一区二区三区| 日本一二三区视频观看| 婷婷色综合大香蕉| 国产激情偷乱视频一区二区| 一边摸一边抽搐一进一小说| 黄片无遮挡物在线观看| 联通29元200g的流量卡| 亚洲五月天丁香| 日本与韩国留学比较| 中文字幕久久专区| 搡老妇女老女人老熟妇| 精品人妻偷拍中文字幕| 中文在线观看免费www的网站| 日本av手机在线免费观看| 男的添女的下面高潮视频| 亚洲精品一区蜜桃| 综合色丁香网| 91久久精品电影网| 国产av一区在线观看免费| 欧美一区二区亚洲| 欧美精品一区二区大全| 精品99又大又爽又粗少妇毛片| 久久精品综合一区二区三区| 在线天堂最新版资源| 中文字幕亚洲精品专区| 狂野欧美激情性xxxx在线观看| 免费观看在线日韩| 女人被狂操c到高潮| 色哟哟·www| 国产熟女欧美一区二区| 18禁动态无遮挡网站| 国产精品爽爽va在线观看网站| 亚洲第一区二区三区不卡| 成年av动漫网址| 偷拍熟女少妇极品色| 男的添女的下面高潮视频| 精品人妻一区二区三区麻豆| 天美传媒精品一区二区| 男女啪啪激烈高潮av片| 亚洲国产精品久久男人天堂| 青青草视频在线视频观看| 22中文网久久字幕| 丝袜喷水一区| 日韩av在线大香蕉|