• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimization Method of Bearing Support Positions in a High-Speed Flexible Rotor System

    2020-02-01 08:56:18TANGChangkeJIANGYanhongLIUJing劉靜
    關(guān)鍵詞:劉靜

    TANGChangke,JIANGYanhong,LIUJing(劉靜)

    1 College of Mechanical Engineering, Chongqing University, Chongqing 400044, China 2 High-Speed Railway Bearing Co., Ltd., Zhejiang 324000, China 3 School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China

    Abstract: Bearing support position is one of main factors affecting vibration characteristics of rotor systems. To optimize the bearing support positions in a high-speed flexible rotor system (HSFRS) based on the vibration characteristics, an optimization method of bearing support positions in the HSFRS is proposed. In this method, a finite element (FE) model of a high-speed flexible rotor (HSFR) was established. The natural frequencies and mode shapes of the HSFRS were used to obtain the initial design scheme of the bearing support positions. A frequency characteristic equation of the HSFRS was established to obtain the critical speeds of the HSFRS. And a dynamic model of the HSFRS was established to analyze the vibration characteristics for different bearing support position cases. The problem of optimizing bearing support positions in the HSFRS was solved by the developed method. The results showed that vibration amplitudes of the HSFRS were more stable when the bearing support positions were optimized. This study can provide a new method for optimizing bearing support positions of rotor systems.

    Key words: flexible rotor system; optimal design; vibration characteristic; bearing support position

    Introduction

    Rotor systems widely exist in various fields of rotating machinery, such as turbines, compressors, turbojet engines and so on. The bearing support position is one of main factors affecting vibration characteristics of rotor systems. Thus, an optimization method of bearing support positions in rotor systems should be developed.

    Numerous researches focused on the design and optimization methods of supporting stiffness, critical speed, vibrations, and dimension parameters. Pugachevetal.[1]treated the critical speed as the constraint condition and used the traditional optimization algorithm to optimize the vibration responses of a rotor system. Huangetal.[2]used different optimization algorithms to optimize the critical speed of a rotor system and discovered that the multi-objective genetic algorithm had a better effect. Wangetal.[3]developed the critical speed distribution as the objective function to optimize a rotor system by using the evolutionary algorithm. Jiaoetal.[4]developed a numerical method to obtain the responses of gain with the oil film damper bearing and optimized the bearing stiffness. Wuetal.[5]studied the discreteness laws between the support stiffness and critical speed. Chen[6]established a coupling dynamic model of rotor-bearing systems to study the vibration, critical speed, and sensitivity of unbalance response. Ou and Li[7]combined the modal analysis and finite element (FE) method to analyze vibration characteristics of an engine rotor-support-casing system. Hongetal.[8]proposed a FE model to calculate the dynamic responses of a rotor and analyzed the influence of bearing stiffness. Chiangetal.[9]studied the vibration responses of single and double rotor-rolling bearing system based on the FE method. Liuetal.[10-13]proposed different dynamic models considering the bearing deformation and defects. Sun[14]proposed a FE model of two-rotor gas turbine engine and calculated the sudden unbalanced response caused by blade loss. Hu and Palazzolo[15]established a FE model considering the gyroscopic and bearing stiffness to study the modal characteristics of a flexible rotor system (FRS). Jinetal.[16]studied the bearing varying compliance on the nonlinear dynamic of a rotor system by a proposed analytical model. Heidari and Safarpour[17]developedH∞andH2methods to obtain the optimal bearing stiffness and damping ratio of a FRS. Lietal.[18]proposed a general vibration model to analyze the vibrations of a FRS. Zhengetal.[19]presented a FE model to study the effects of the bearing stiffness and material properties of rotor on the double frequency vibrations of a FRS. Ghafarietal.[20]conducted a dynamic model to analyze the bifurcation of a rotor system. Metseboetal.[21]provided a mathematic simulation method to study the vibrations of a flexible rotor (FR).

    As the above listed descriptions, most previous works only focused on the optimization methods of rotor systems based on the evolutionary algorithm, few works were focused on the optimization methods of high-speed flexible rotor systems (HSFRSs) by optimizing the natural frequencies and mode shapes. However, the effects of bearing support positions were ignored in the above listed literature. Therefore, it is a new research direction to optimize the design of rotor systems by optimizing the bearing positions.

    1 Optimization Method of Bearing Support Positions in HSFRSs

    1.1 FE model of a high-speed flexible rotor (HSFR)

    According to the FE theory, a FE model of a HSFR is established. The natural frequencies and mode shapes of a HSFR are obtained by the free modal analysis. According to the mode shapes, the points with the relatively small amplitude of a HSFR are marked as the possible nodes. The mode shapes of a HSFR are shown in Fig. 1. The first three mode shapes of rotor are obtained by using modal analysis method of FE model. In each mode shape, the amplitudes of pointsA,B,C,D, andEare smaller than those of other positions, so pointsA,B,C,D, andEare selected as possible nodes.

    Fig. 1 Mode shapes of a HSFR

    1.2 Frequency characteristic equation for HSFRS

    When the gyro torque is considered, the shaft will be bent due to the unbalanced mass excitation. Both the orbit and rotary motions of the rotor are formulated at the same time, where line 1 is the axis of orbit motion and line 2 is the axis of rotary motion as shown in Fig. 2. In Fig. 2,ωFandωBare the orbit motion speeds in the forward and backward whirling directions, respectively; andΩis the rotational speed of rotor. When the directions ofωFandΩare the same, it is the forward whirling motion. When the directions ofωBandΩare different, it is the backward whirling motion.

    Fig. 2 Forward and backward whirling motions of FRSs: (a) forward whirling motion; (b) backward whirling motion

    When the rotational speed isΩ, the frequency characteristic equation for HSFRSs is formulated as

    |-M1ω2+J1Ωω+K1|=0,

    (1)

    whereM1,J1, andK1are the assembled mass, gyroscopic matrix and stiffness matrix of FRSs, respectively, andωis the whirling angular velocity. By solving Eq. (1), the frequencies for forward and backward whirling motions can be obtained. These frequencies can reflect the variation of angular velocities of whirling motions during the changing processing ofΩ. IfΩ= ±ωis substituted into Eq. (1), the critical speeds and natural frequencies for forward and backward whirling motions can be solved, respectively.

    According to the requirements of rotor design, the possible nodes are combined and substituted into Eq. (1), and the critical speeds under different node combinations are calculated. According to the requirement of working speeds of rotor system, the node combinations are selected as appropriate node combinations, and their critical speeds are not close to the working speeds.

    1.3 Dynamic model of HSFRSs

    According to the FE method[22], the equations of motion for HSFRSs are given by

    (2)

    Fb=KTδn,

    (3)

    whereKTis the contact stiffness;δis the contact deformation of bearing rollers; the ball and roller bearing load-deformation exponentsnare 3/2 and 10/9, respectively.

    According to the selected appropriate node combinations, add the contact stiffness of bearings to the corresponding nodes and substitute into Eq. (2). The vibration characteristics of HSFRSs under different node combinations are calculated and studied. When the root-mean-square (RMS) values of displacement, velocity and acceleration are smaller, it represents that the vibration characteristics are more stable.

    1.4 An optimization method of bearing support positions in HSFRSs

    According to the dynamic analysis method, the dynamic characteristics of HSFRSs under different node combinations are analyzed, and the time-domain vibration curves of HSFRSs under different node combinations are obtained. The time-domain vibration curves with a smaller amplitude and more stable vibration is selected, and the corresponding node combination is the optimal bearing support position. The flow chart of optimization method of bearing support positions in HSFRSs is shown in Fig. 3.

    Fig. 3 Optimization method of bearing support positions in HSFRSs

    2 Numerical Analysis

    The schematic diagram of a HSFR is shown in Fig. 4. To solve the problem of bearing support position design of a HSFR, the optimal bearing support positions of HSFRSs are determined by the optimization method of bearing support positions in the HSFRS.

    Fig. 4 Schematic diagram of a HSFR

    2.1 FE model validation

    The FE model and experimental method of modal analysis are shown in Figs. 5(a) and (b). The first seven natural frequencies are obtained. These natural frequencies are compared with the experiment values, as shown in Table 1. The maximum error between the simulation values and experiment values are less than 5%. The simulation values are basically consistent with the experiment values. Therefore, the FE model is effective.

    Fig. 5 Two modal analysis methods: (a) FE method and (b) experimental method Table 1 First seven natural frequencies from simulation and experiment

    Mode Natural frequency/HzSimulationExperimentError/%1140.64134.104.882224.73230.902.673478.34461.453.664805.18809.900.5851 270.301 272.410.1761 367.301 379.340.8772 055.301 971.104.27

    2.2 Possible nodes of the HSFR

    The FE model of a HSFR is analyzed by modal analysis method. In general, the first seven modes include bending and torsional modes, so the necessary modes number is seven. The seven mode shapes are shown in Figs. 6-12. The ranges of bearing support positions are determined by the blue region in the mode shapes. According to these mode shapes, the blue region in the mode is selected as the possible node. As shown in Fig. 13, the possible nodes of the HSFR are pointsA,B,C,DandE.

    Fig. 6 First mode shape (140.64 Hz)

    Fig. 7 Second mode shape (224.73 Hz)

    Fig. 8 Third mode shape (478.34 Hz)

    Fig. 9 Fourth mode shape (805.18 Hz)

    Fig. 10 Fifth mode shape (1 270.30 Hz)

    Fig. 11 Sixth mode shape (1 367.30 Hz)

    Fig. 12 Seventh mode shape (2 055.30 Hz)

    Fig. 13 Possible nodes of the HSFR

    2.3 Appropriate node combinations of the HSFR

    According to the actual design requirements of HSFR, the HSFR is supported by two bearings. PointsAandBare located at the position where the bearing cannot be installed. Therefore, pointsAandBare excluded.

    Three node combinations are formed by combining pointsC,D, andEin pairs, as shown in Table 2. Each node combination is substituted into the frequency characteristic equation to calculate the first three critical speeds of HSFRSs, as shown in Table 3. The working speeds I and II are 15 000.0 r/min and 34 000.0 r/min, respectively. The second critical speed of COMB3 is close to the working speed I, so the COMB3 is excluded. The first three critical speed of COMB1 and COMB2 are not close to the working speeds. Therefore, COMB1 and COMB2 are appropriate node combinations.

    Table 2 Three node combinations

    Table 3 First three critical speeds of HSFRSs under different node combinations

    2.4 Vibration characteristics of the HSFRS

    The dynamic model of HSFRSs is shown in Fig. 14. According to the COMB1 and COMB2, the vibration characteristics of the HSFRS under different working speeds are calculated. The time-domain vibration characteristics of the HSFRS at pointAfor different working speeds are shown in Figs. 15-18.

    Fig. 14 Dynamic model of the HSFRS

    Fig. 15 Vibration responses of the HSFRS of point A in the X direction under the COMB1 at the working speed I: (a) displacement, (b) displacement spectrum, (c) velocity, and (d) acceleration

    Fig. 16 Vibration responses of the HSFRS of point A in the X direction under the COMB2 at the working speed I: (a) displacement, (b) displacement spectrum, (c) velocity, and (d) acceleration

    Fig. 17 Vibration responses of the HSFRS of point A in the X direction under the COMB1 at the working speed II: (a) displacement, (b) displacement spectrum, (c) velocity, and (d) acceleration

    Fig. 18 Vibration responses of the HSFRS of point A in the X direction under the COMB2 at the working speed II: (a) displacement, (b) displacement spectrum, (c) velocity, and (d) acceleration

    2.5 Dynamic analysis and optimal design

    According to the vibration characteristics of the HSFRS under different node combinations, the RMS values of displacement(x), velocity(v) and acceleration(a) at pointAfor different working speeds under the COMB1 and COMB2 are compared, respectively, as shown in Table 4. For the working speed I of 15 000.0 r/min, the RMS values of displacement, velocity and acceleration at pointAunder the COMB1 are 7.84 μm, 3.42 mm/s and 8.10 m/s2and these under the COMB2 are 2.99 μm, 1.01 mm/s and 7.71 m/s2,respectively. For the working speed II of 34 000.0 r/min, the RMS values of displacement, velocity and acceleration at pointAunder the COMB1 are 15.77 μm, 6.77 mm/s and 9.37 m/s2and these under the COMB2 are 8.76 μm, 3.27 mm/s and 8.45 m/s2, respectively. The results show that the vibration characteristics under COMB2 are more stable than that under COMB1. Therefore, the COMB2 is selected as the optimal bearing support position for considering the stability of rotor rotation.

    Table 4 RMS values of x, v and a at point A for different working speeds under the COMB1 and COMB2

    3 Conclusions

    To develop an optimization method of bearing support positions in the HSFRS based on the vibration characteristics, an optimization method of bearing support positions in the HSFRS is proposed. In this paper, the problem of optimizing bearing support positions in the HSFRS is solved by the developed optimization method.

    (1) The first seven natural frequencies of the HSFR are basically consistent with the experiment values, so the FE model is effective.

    (2) The natural frequencies, mode shapes and critical speeds of HSFRSs are obtained. Two node combinations are selected as appropriate node combinations.

    (3) Vibration characteristics with two node combinations are analyzed. One node combination is selected as the optimal bearing position.

    The results show that vibration amplitudes of HSFRSs are more stable when the bearing support positions are optimized. This study can provide a new method for optimizing bearing support positions of rotor systems.

    猜你喜歡
    劉靜
    劉靜設(shè)計(jì)作品
    大眾文藝(2023年24期)2024-01-12 06:01:22
    Influence of viscous force on the dynamic process of micro-sphere in optical tweezers
    糖人王
    金秋(2023年24期)2023-03-18 01:49:06
    舒適護(hù)理在腰椎間盤突出患者護(hù)理中 的應(yīng)用效果分析
    OBTL模式下形成性評(píng)估在高職高專醫(yī)學(xué)英語(yǔ)教學(xué)中的促進(jìn)作用
    不同升溫速率下模塊裝藥的烤燃特性分析
    致生父
    Effective suppression of beta oscillation in Parkinsonian state via a noisy direct delayed feedback control scheme?
    劉靜藝術(shù)作品賞析
    加熱源對(duì)38CrMoAl鋼氮化層組織及性能的影響
    av福利片在线| 黄网站色视频无遮挡免费观看| 水蜜桃什么品种好| 狠狠精品人妻久久久久久综合| 久久久久视频综合| 国产一区二区三区av在线| 一二三四社区在线视频社区8| 人人妻,人人澡人人爽秒播 | 少妇猛男粗大的猛烈进出视频| 一本色道久久久久久精品综合| 日本午夜av视频| 啦啦啦 在线观看视频| 91麻豆精品激情在线观看国产 | 国产xxxxx性猛交| 精品久久久精品久久久| 欧美中文综合在线视频| 99热国产这里只有精品6| 视频在线观看一区二区三区| 国产精品九九99| 欧美黑人欧美精品刺激| xxx大片免费视频| 热re99久久国产66热| 久久国产精品影院| 在线观看免费高清a一片| 午夜久久久在线观看| 亚洲一区二区三区欧美精品| 日本a在线网址| 亚洲激情五月婷婷啪啪| 国产日韩欧美在线精品| 老熟女久久久| 女人高潮潮喷娇喘18禁视频| 天天躁狠狠躁夜夜躁狠狠躁| videos熟女内射| 国产日韩欧美亚洲二区| 乱人伦中国视频| 欧美日韩亚洲高清精品| 亚洲成人免费电影在线观看 | 亚洲av日韩精品久久久久久密 | 国产有黄有色有爽视频| 亚洲国产日韩一区二区| 国产亚洲欧美在线一区二区| av有码第一页| 在线天堂中文资源库| 国产一区二区三区综合在线观看| 乱人伦中国视频| 无遮挡黄片免费观看| av天堂在线播放| 日韩制服丝袜自拍偷拍| 少妇粗大呻吟视频| 久久人人97超碰香蕉20202| 亚洲精品在线美女| 国产精品一二三区在线看| 国产精品免费视频内射| 人妻人人澡人人爽人人| 黄色毛片三级朝国网站| 99国产精品99久久久久| 日日爽夜夜爽网站| 午夜福利视频精品| 日日摸夜夜添夜夜爱| 少妇猛男粗大的猛烈进出视频| 久久午夜综合久久蜜桃| 国产高清国产精品国产三级| 丰满人妻熟妇乱又伦精品不卡| 99久久精品国产亚洲精品| 精品久久久久久电影网| 男人操女人黄网站| 中文欧美无线码| 电影成人av| 欧美日本中文国产一区发布| 欧美精品啪啪一区二区三区 | 国产精品一区二区在线观看99| 一区福利在线观看| 美女午夜性视频免费| 男人添女人高潮全过程视频| 国产一区有黄有色的免费视频| 大话2 男鬼变身卡| 高清视频免费观看一区二区| 视频区欧美日本亚洲| 亚洲精品在线美女| 午夜福利影视在线免费观看| 欧美另类一区| 搡老乐熟女国产| 久久影院123| 久久久久精品国产欧美久久久 | 国产av一区二区精品久久| 男人添女人高潮全过程视频| 久久久久久久国产电影| 999精品在线视频| 麻豆乱淫一区二区| 一级黄片播放器| 午夜两性在线视频| 欧美日韩黄片免| 国产精品久久久久久精品古装| 老司机靠b影院| 九色亚洲精品在线播放| 不卡av一区二区三区| 老司机亚洲免费影院| 午夜福利影视在线免费观看| 亚洲中文日韩欧美视频| 欧美 亚洲 国产 日韩一| 一级毛片我不卡| 日日摸夜夜添夜夜爱| 国产在视频线精品| 午夜91福利影院| 大片免费播放器 马上看| 天天躁日日躁夜夜躁夜夜| 最近手机中文字幕大全| 国产片特级美女逼逼视频| 精品熟女少妇八av免费久了| 亚洲精品乱久久久久久| 欧美国产精品一级二级三级| 国产精品亚洲av一区麻豆| 成人黄色视频免费在线看| 国产黄色免费在线视频| 国产欧美日韩综合在线一区二区| 亚洲av成人精品一二三区| 18禁裸乳无遮挡动漫免费视频| √禁漫天堂资源中文www| 婷婷丁香在线五月| 欧美精品av麻豆av| 男男h啪啪无遮挡| 久久精品久久精品一区二区三区| 精品国产国语对白av| www日本在线高清视频| 黄色视频在线播放观看不卡| 亚洲精品在线美女| 精品人妻1区二区| 少妇精品久久久久久久| 国产欧美日韩一区二区三 | 日本av手机在线免费观看| 久久久久久久久免费视频了| 久久国产精品大桥未久av| 搡老岳熟女国产| 亚洲少妇的诱惑av| 少妇精品久久久久久久| 久久久欧美国产精品| 深夜精品福利| 亚洲av日韩在线播放| 大话2 男鬼变身卡| 如日韩欧美国产精品一区二区三区| 亚洲五月婷婷丁香| 一本—道久久a久久精品蜜桃钙片| 国产一区亚洲一区在线观看| 久久精品久久精品一区二区三区| 亚洲欧美一区二区三区久久| 亚洲欧美日韩另类电影网站| 国产高清视频在线播放一区 | 啦啦啦视频在线资源免费观看| 最近手机中文字幕大全| 一级黄色大片毛片| 少妇人妻 视频| 欧美日韩福利视频一区二区| 多毛熟女@视频| 美国免费a级毛片| 国产亚洲av高清不卡| 91字幕亚洲| 精品人妻在线不人妻| 日韩,欧美,国产一区二区三区| 国产精品av久久久久免费| 99精国产麻豆久久婷婷| a级毛片在线看网站| 亚洲精品乱久久久久久| 国产av国产精品国产| 色播在线永久视频| 久久国产亚洲av麻豆专区| 男女午夜视频在线观看| 91成人精品电影| 人妻 亚洲 视频| 亚洲av电影在线进入| 肉色欧美久久久久久久蜜桃| 日韩人妻精品一区2区三区| 日本色播在线视频| xxx大片免费视频| 精品一区二区三区av网在线观看 | tube8黄色片| 宅男免费午夜| 欧美激情高清一区二区三区| 麻豆国产av国片精品| av片东京热男人的天堂| 亚洲欧洲日产国产| 青春草亚洲视频在线观看| 真人做人爱边吃奶动态| 啦啦啦视频在线资源免费观看| 国产亚洲av高清不卡| 91成人精品电影| 黄色视频不卡| 丝袜人妻中文字幕| 18禁黄网站禁片午夜丰满| 久久久精品94久久精品| 热re99久久国产66热| 亚洲精品第二区| 国产真人三级小视频在线观看| 叶爱在线成人免费视频播放| 又大又爽又粗| 一级毛片电影观看| 热99国产精品久久久久久7| 欧美亚洲日本最大视频资源| 999久久久国产精品视频| 人妻 亚洲 视频| 99精国产麻豆久久婷婷| 两性夫妻黄色片| 一级片'在线观看视频| 久久久久久久精品精品| a级毛片黄视频| 国产在线一区二区三区精| 999精品在线视频| 久久天堂一区二区三区四区| 狠狠婷婷综合久久久久久88av| 又大又爽又粗| 亚洲av电影在线观看一区二区三区| 欧美乱码精品一区二区三区| 精品卡一卡二卡四卡免费| 午夜两性在线视频| 欧美变态另类bdsm刘玥| 亚洲第一青青草原| 成人亚洲欧美一区二区av| 18在线观看网站| 各种免费的搞黄视频| 日日爽夜夜爽网站| 激情视频va一区二区三区| 国产不卡av网站在线观看| 99精国产麻豆久久婷婷| 别揉我奶头~嗯~啊~动态视频 | 丝袜人妻中文字幕| 又粗又硬又长又爽又黄的视频| 日日摸夜夜添夜夜爱| 另类精品久久| 午夜福利一区二区在线看| 成人免费观看视频高清| 一区二区三区精品91| 亚洲欧洲精品一区二区精品久久久| 精品福利观看| 一区福利在线观看| 亚洲av欧美aⅴ国产| xxx大片免费视频| 国精品久久久久久国模美| 黄网站色视频无遮挡免费观看| 免费在线观看完整版高清| 国产成人精品无人区| 大话2 男鬼变身卡| 欧美黄色淫秽网站| 精品高清国产在线一区| av天堂在线播放| 免费观看av网站的网址| av一本久久久久| 亚洲成人免费电影在线观看 | www.精华液| 亚洲精品中文字幕在线视频| 丝袜美腿诱惑在线| 99香蕉大伊视频| 99久久99久久久精品蜜桃| 久久狼人影院| 91国产中文字幕| 丁香六月欧美| 精品一品国产午夜福利视频| 亚洲人成电影免费在线| 热99国产精品久久久久久7| 尾随美女入室| 日韩伦理黄色片| 亚洲中文日韩欧美视频| 亚洲欧美色中文字幕在线| www.999成人在线观看| 免费高清在线观看视频在线观看| www.精华液| 中文乱码字字幕精品一区二区三区| 午夜免费成人在线视频| 看十八女毛片水多多多| 中文字幕人妻熟女乱码| av天堂久久9| 亚洲精品中文字幕在线视频| 在线天堂中文资源库| 久9热在线精品视频| 精品一区二区三区av网在线观看 | 女人被躁到高潮嗷嗷叫费观| 巨乳人妻的诱惑在线观看| 亚洲第一青青草原| a级毛片在线看网站| 熟女少妇亚洲综合色aaa.| 精品卡一卡二卡四卡免费| 久久精品国产a三级三级三级| 亚洲精品美女久久av网站| 国产亚洲av高清不卡| 国产成人精品久久二区二区免费| 老熟女久久久| 国产成人欧美| 人妻一区二区av| 久久99精品国语久久久| 国产一区亚洲一区在线观看| 国产日韩欧美视频二区| 波多野结衣av一区二区av| 国产精品av久久久久免费| xxx大片免费视频| 国产日韩一区二区三区精品不卡| 一边摸一边做爽爽视频免费| 午夜福利一区二区在线看| 成年人黄色毛片网站| 日日爽夜夜爽网站| 亚洲av在线观看美女高潮| 纵有疾风起免费观看全集完整版| 大码成人一级视频| 水蜜桃什么品种好| 熟女av电影| 欧美日韩视频精品一区| 成年女人毛片免费观看观看9 | 波野结衣二区三区在线| 女警被强在线播放| 黄色a级毛片大全视频| 精品福利观看| 午夜免费男女啪啪视频观看| 1024视频免费在线观看| 中国国产av一级| 国产亚洲av高清不卡| www.av在线官网国产| 18禁黄网站禁片午夜丰满| 丁香六月欧美| 韩国精品一区二区三区| 熟女av电影| 99国产精品一区二区蜜桃av | 菩萨蛮人人尽说江南好唐韦庄| 男男h啪啪无遮挡| 欧美av亚洲av综合av国产av| 日韩熟女老妇一区二区性免费视频| 后天国语完整版免费观看| av又黄又爽大尺度在线免费看| 777久久人妻少妇嫩草av网站| 欧美老熟妇乱子伦牲交| 中文欧美无线码| 欧美日韩国产mv在线观看视频| 国产免费又黄又爽又色| 国产伦人伦偷精品视频| 国产男女内射视频| 午夜福利影视在线免费观看| 亚洲欧美中文字幕日韩二区| 亚洲成人国产一区在线观看 | 黄色 视频免费看| 国产免费现黄频在线看| 久久久精品国产亚洲av高清涩受| 中文字幕精品免费在线观看视频| 亚洲成人国产一区在线观看 | 91字幕亚洲| 中文字幕另类日韩欧美亚洲嫩草| 中国国产av一级| av在线老鸭窝| 国产成人精品无人区| 高潮久久久久久久久久久不卡| 好男人电影高清在线观看| 一级毛片黄色毛片免费观看视频| 菩萨蛮人人尽说江南好唐韦庄| 97人妻天天添夜夜摸| 欧美黑人欧美精品刺激| 久久这里只有精品19| 欧美性长视频在线观看| 另类亚洲欧美激情| 在线观看免费午夜福利视频| 男人爽女人下面视频在线观看| 亚洲成人国产一区在线观看 | 男人舔女人的私密视频| 国产欧美日韩精品亚洲av| 国产成人91sexporn| 免费日韩欧美在线观看| 一本一本久久a久久精品综合妖精| 精品国产乱码久久久久久小说| 国产av国产精品国产| 99久久人妻综合| 大话2 男鬼变身卡| 黑人欧美特级aaaaaa片| 亚洲图色成人| 亚洲黑人精品在线| 日日爽夜夜爽网站| 考比视频在线观看| 一区二区av电影网| 亚洲一区中文字幕在线| 亚洲国产日韩一区二区| 久久久久国产一级毛片高清牌| 妹子高潮喷水视频| 精品国产一区二区三区久久久樱花| 男女边吃奶边做爰视频| 亚洲精品在线美女| 宅男免费午夜| 老司机午夜十八禁免费视频| 一二三四在线观看免费中文在| videosex国产| 一级毛片电影观看| 每晚都被弄得嗷嗷叫到高潮| 男女下面插进去视频免费观看| 国产成人av激情在线播放| 亚洲av在线观看美女高潮| 男女边摸边吃奶| 亚洲成人手机| 国产精品久久久av美女十八| 电影成人av| 脱女人内裤的视频| av在线老鸭窝| 亚洲av国产av综合av卡| 天天躁日日躁夜夜躁夜夜| 波多野结衣av一区二区av| 国产一区二区三区av在线| 精品卡一卡二卡四卡免费| 国产在线观看jvid| 一区在线观看完整版| 欧美性长视频在线观看| 国产成人一区二区在线| 精品一区二区三区四区五区乱码 | 人人妻,人人澡人人爽秒播 | 在线av久久热| 国产精品一二三区在线看| 欧美激情高清一区二区三区| 少妇的丰满在线观看| 婷婷色av中文字幕| 国产免费现黄频在线看| 午夜久久久在线观看| 人人妻,人人澡人人爽秒播 | 国产亚洲午夜精品一区二区久久| 久久精品国产a三级三级三级| 国产成人精品久久久久久| 中文字幕av电影在线播放| 久久精品熟女亚洲av麻豆精品| 婷婷色麻豆天堂久久| 日本av手机在线免费观看| 久久亚洲精品不卡| 国产极品粉嫩免费观看在线| 国产精品免费视频内射| 最近中文字幕2019免费版| 免费在线观看日本一区| 国产真人三级小视频在线观看| 国产熟女午夜一区二区三区| 一本综合久久免费| 99国产精品免费福利视频| 成人国产av品久久久| 国产一区二区激情短视频 | av国产精品久久久久影院| 日韩精品免费视频一区二区三区| 国产欧美日韩综合在线一区二区| 欧美性长视频在线观看| 精品人妻熟女毛片av久久网站| 午夜激情久久久久久久| 晚上一个人看的免费电影| 18在线观看网站| 无限看片的www在线观看| 欧美黑人欧美精品刺激| 伦理电影免费视频| 亚洲国产看品久久| 国产精品亚洲av一区麻豆| 久久久久久免费高清国产稀缺| 一级,二级,三级黄色视频| 在现免费观看毛片| 欧美日韩综合久久久久久| 日日夜夜操网爽| 熟女av电影| 又粗又硬又长又爽又黄的视频| 男女午夜视频在线观看| 免费不卡黄色视频| 成年av动漫网址| 超色免费av| 一区二区三区乱码不卡18| 一本一本久久a久久精品综合妖精| 精品福利观看| 久久久久国产精品人妻一区二区| 久久中文字幕一级| 成人18禁高潮啪啪吃奶动态图| 巨乳人妻的诱惑在线观看| 视频区图区小说| 老汉色∧v一级毛片| 婷婷色麻豆天堂久久| 亚洲一区中文字幕在线| 狠狠婷婷综合久久久久久88av| 一级毛片电影观看| 中文字幕亚洲精品专区| 天天添夜夜摸| 天天躁夜夜躁狠狠久久av| www.999成人在线观看| 欧美日韩黄片免| 91字幕亚洲| 国产伦一二天堂av在线观看| 日韩精品中文字幕看吧| 国产一级毛片七仙女欲春2 | 久久久久免费精品人妻一区二区 | 成年人黄色毛片网站| 免费无遮挡裸体视频| 久久精品国产亚洲av高清一级| 热re99久久国产66热| 国产高清激情床上av| 亚洲av电影不卡..在线观看| 亚洲自拍偷在线| 国产真实乱freesex| 在线观看www视频免费| 亚洲精品久久国产高清桃花| 99国产精品一区二区三区| 天堂√8在线中文| 精品第一国产精品| 美女免费视频网站| 国产日本99.免费观看| 国内少妇人妻偷人精品xxx网站 | 国产一级毛片七仙女欲春2 | 国产视频一区二区在线看| 夜夜爽天天搞| 欧美绝顶高潮抽搐喷水| 一个人免费在线观看的高清视频| 脱女人内裤的视频| 在线免费观看的www视频| 在线播放国产精品三级| 人人妻人人澡欧美一区二区| 亚洲人成电影免费在线| 老汉色∧v一级毛片| 午夜免费激情av| 老司机在亚洲福利影院| 日日干狠狠操夜夜爽| 无限看片的www在线观看| 黑丝袜美女国产一区| 99国产精品99久久久久| 哪里可以看免费的av片| 国产精品一区二区免费欧美| 久久精品国产清高在天天线| 久久久久精品国产欧美久久久| 国产精品香港三级国产av潘金莲| 国产97色在线日韩免费| av天堂在线播放| 非洲黑人性xxxx精品又粗又长| 亚洲精品在线美女| 两性夫妻黄色片| 手机成人av网站| 人成视频在线观看免费观看| 一本综合久久免费| 国产精品av久久久久免费| 国产成人精品久久二区二区免费| 亚洲精品国产精品久久久不卡| 亚洲天堂国产精品一区在线| 久久婷婷人人爽人人干人人爱| 国产成人啪精品午夜网站| 国产高清激情床上av| 色尼玛亚洲综合影院| 亚洲精品久久成人aⅴ小说| 成人亚洲精品av一区二区| 精华霜和精华液先用哪个| 精品欧美一区二区三区在线| 久久久国产欧美日韩av| 最新在线观看一区二区三区| 久久久久亚洲av毛片大全| 无人区码免费观看不卡| 男人舔女人的私密视频| 久久久国产成人免费| 欧美在线黄色| 日本撒尿小便嘘嘘汇集6| 最好的美女福利视频网| 国产亚洲欧美98| 久久人人精品亚洲av| 性欧美人与动物交配| 国产三级在线视频| 精品无人区乱码1区二区| 此物有八面人人有两片| 日韩一卡2卡3卡4卡2021年| 午夜免费成人在线视频| 在线看三级毛片| 精品国产超薄肉色丝袜足j| 嫁个100分男人电影在线观看| 亚洲成人免费电影在线观看| 99riav亚洲国产免费| 亚洲中文字幕日韩| 黄片大片在线免费观看| 国产熟女xx| 嫩草影院精品99| 免费在线观看日本一区| 变态另类丝袜制服| 日日爽夜夜爽网站| 老汉色av国产亚洲站长工具| 免费观看精品视频网站| АⅤ资源中文在线天堂| 看免费av毛片| www.999成人在线观看| 中文字幕最新亚洲高清| 国产不卡一卡二| 国产精品久久电影中文字幕| 在线永久观看黄色视频| 午夜久久久久精精品| 欧美激情 高清一区二区三区| 一级毛片女人18水好多| 亚洲精品粉嫩美女一区| 亚洲国产欧美网| 精品国产乱码久久久久久男人| 激情在线观看视频在线高清| 亚洲国产欧美一区二区综合| 在线观看舔阴道视频| 男女之事视频高清在线观看| 777久久人妻少妇嫩草av网站| 高清毛片免费观看视频网站| 一区二区三区激情视频| 操出白浆在线播放| 午夜福利18| 午夜成年电影在线免费观看| 国产一卡二卡三卡精品| 亚洲 欧美一区二区三区| 久久久久久大精品| 日本熟妇午夜| 99riav亚洲国产免费| av免费在线观看网站| 丝袜人妻中文字幕| 亚洲国产欧美日韩在线播放| 精品一区二区三区四区五区乱码| 国产成人系列免费观看| 久久伊人香网站| 99精品欧美一区二区三区四区| 国产激情偷乱视频一区二区| 亚洲无线在线观看| 搞女人的毛片| 久久天躁狠狠躁夜夜2o2o| 老汉色∧v一级毛片| 可以在线观看的亚洲视频| 色在线成人网| 亚洲国产精品久久男人天堂| 十八禁网站免费在线| 99久久99久久久精品蜜桃| 国产高清有码在线观看视频 | 两个人看的免费小视频| 久久香蕉国产精品| 亚洲专区字幕在线|