• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimization Method of Bearing Support Positions in a High-Speed Flexible Rotor System

    2020-02-01 08:56:18TANGChangkeJIANGYanhongLIUJing劉靜
    關(guān)鍵詞:劉靜

    TANGChangke,JIANGYanhong,LIUJing(劉靜)

    1 College of Mechanical Engineering, Chongqing University, Chongqing 400044, China 2 High-Speed Railway Bearing Co., Ltd., Zhejiang 324000, China 3 School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China

    Abstract: Bearing support position is one of main factors affecting vibration characteristics of rotor systems. To optimize the bearing support positions in a high-speed flexible rotor system (HSFRS) based on the vibration characteristics, an optimization method of bearing support positions in the HSFRS is proposed. In this method, a finite element (FE) model of a high-speed flexible rotor (HSFR) was established. The natural frequencies and mode shapes of the HSFRS were used to obtain the initial design scheme of the bearing support positions. A frequency characteristic equation of the HSFRS was established to obtain the critical speeds of the HSFRS. And a dynamic model of the HSFRS was established to analyze the vibration characteristics for different bearing support position cases. The problem of optimizing bearing support positions in the HSFRS was solved by the developed method. The results showed that vibration amplitudes of the HSFRS were more stable when the bearing support positions were optimized. This study can provide a new method for optimizing bearing support positions of rotor systems.

    Key words: flexible rotor system; optimal design; vibration characteristic; bearing support position

    Introduction

    Rotor systems widely exist in various fields of rotating machinery, such as turbines, compressors, turbojet engines and so on. The bearing support position is one of main factors affecting vibration characteristics of rotor systems. Thus, an optimization method of bearing support positions in rotor systems should be developed.

    Numerous researches focused on the design and optimization methods of supporting stiffness, critical speed, vibrations, and dimension parameters. Pugachevetal.[1]treated the critical speed as the constraint condition and used the traditional optimization algorithm to optimize the vibration responses of a rotor system. Huangetal.[2]used different optimization algorithms to optimize the critical speed of a rotor system and discovered that the multi-objective genetic algorithm had a better effect. Wangetal.[3]developed the critical speed distribution as the objective function to optimize a rotor system by using the evolutionary algorithm. Jiaoetal.[4]developed a numerical method to obtain the responses of gain with the oil film damper bearing and optimized the bearing stiffness. Wuetal.[5]studied the discreteness laws between the support stiffness and critical speed. Chen[6]established a coupling dynamic model of rotor-bearing systems to study the vibration, critical speed, and sensitivity of unbalance response. Ou and Li[7]combined the modal analysis and finite element (FE) method to analyze vibration characteristics of an engine rotor-support-casing system. Hongetal.[8]proposed a FE model to calculate the dynamic responses of a rotor and analyzed the influence of bearing stiffness. Chiangetal.[9]studied the vibration responses of single and double rotor-rolling bearing system based on the FE method. Liuetal.[10-13]proposed different dynamic models considering the bearing deformation and defects. Sun[14]proposed a FE model of two-rotor gas turbine engine and calculated the sudden unbalanced response caused by blade loss. Hu and Palazzolo[15]established a FE model considering the gyroscopic and bearing stiffness to study the modal characteristics of a flexible rotor system (FRS). Jinetal.[16]studied the bearing varying compliance on the nonlinear dynamic of a rotor system by a proposed analytical model. Heidari and Safarpour[17]developedH∞andH2methods to obtain the optimal bearing stiffness and damping ratio of a FRS. Lietal.[18]proposed a general vibration model to analyze the vibrations of a FRS. Zhengetal.[19]presented a FE model to study the effects of the bearing stiffness and material properties of rotor on the double frequency vibrations of a FRS. Ghafarietal.[20]conducted a dynamic model to analyze the bifurcation of a rotor system. Metseboetal.[21]provided a mathematic simulation method to study the vibrations of a flexible rotor (FR).

    As the above listed descriptions, most previous works only focused on the optimization methods of rotor systems based on the evolutionary algorithm, few works were focused on the optimization methods of high-speed flexible rotor systems (HSFRSs) by optimizing the natural frequencies and mode shapes. However, the effects of bearing support positions were ignored in the above listed literature. Therefore, it is a new research direction to optimize the design of rotor systems by optimizing the bearing positions.

    1 Optimization Method of Bearing Support Positions in HSFRSs

    1.1 FE model of a high-speed flexible rotor (HSFR)

    According to the FE theory, a FE model of a HSFR is established. The natural frequencies and mode shapes of a HSFR are obtained by the free modal analysis. According to the mode shapes, the points with the relatively small amplitude of a HSFR are marked as the possible nodes. The mode shapes of a HSFR are shown in Fig. 1. The first three mode shapes of rotor are obtained by using modal analysis method of FE model. In each mode shape, the amplitudes of pointsA,B,C,D, andEare smaller than those of other positions, so pointsA,B,C,D, andEare selected as possible nodes.

    Fig. 1 Mode shapes of a HSFR

    1.2 Frequency characteristic equation for HSFRS

    When the gyro torque is considered, the shaft will be bent due to the unbalanced mass excitation. Both the orbit and rotary motions of the rotor are formulated at the same time, where line 1 is the axis of orbit motion and line 2 is the axis of rotary motion as shown in Fig. 2. In Fig. 2,ωFandωBare the orbit motion speeds in the forward and backward whirling directions, respectively; andΩis the rotational speed of rotor. When the directions ofωFandΩare the same, it is the forward whirling motion. When the directions ofωBandΩare different, it is the backward whirling motion.

    Fig. 2 Forward and backward whirling motions of FRSs: (a) forward whirling motion; (b) backward whirling motion

    When the rotational speed isΩ, the frequency characteristic equation for HSFRSs is formulated as

    |-M1ω2+J1Ωω+K1|=0,

    (1)

    whereM1,J1, andK1are the assembled mass, gyroscopic matrix and stiffness matrix of FRSs, respectively, andωis the whirling angular velocity. By solving Eq. (1), the frequencies for forward and backward whirling motions can be obtained. These frequencies can reflect the variation of angular velocities of whirling motions during the changing processing ofΩ. IfΩ= ±ωis substituted into Eq. (1), the critical speeds and natural frequencies for forward and backward whirling motions can be solved, respectively.

    According to the requirements of rotor design, the possible nodes are combined and substituted into Eq. (1), and the critical speeds under different node combinations are calculated. According to the requirement of working speeds of rotor system, the node combinations are selected as appropriate node combinations, and their critical speeds are not close to the working speeds.

    1.3 Dynamic model of HSFRSs

    According to the FE method[22], the equations of motion for HSFRSs are given by

    (2)

    Fb=KTδn,

    (3)

    whereKTis the contact stiffness;δis the contact deformation of bearing rollers; the ball and roller bearing load-deformation exponentsnare 3/2 and 10/9, respectively.

    According to the selected appropriate node combinations, add the contact stiffness of bearings to the corresponding nodes and substitute into Eq. (2). The vibration characteristics of HSFRSs under different node combinations are calculated and studied. When the root-mean-square (RMS) values of displacement, velocity and acceleration are smaller, it represents that the vibration characteristics are more stable.

    1.4 An optimization method of bearing support positions in HSFRSs

    According to the dynamic analysis method, the dynamic characteristics of HSFRSs under different node combinations are analyzed, and the time-domain vibration curves of HSFRSs under different node combinations are obtained. The time-domain vibration curves with a smaller amplitude and more stable vibration is selected, and the corresponding node combination is the optimal bearing support position. The flow chart of optimization method of bearing support positions in HSFRSs is shown in Fig. 3.

    Fig. 3 Optimization method of bearing support positions in HSFRSs

    2 Numerical Analysis

    The schematic diagram of a HSFR is shown in Fig. 4. To solve the problem of bearing support position design of a HSFR, the optimal bearing support positions of HSFRSs are determined by the optimization method of bearing support positions in the HSFRS.

    Fig. 4 Schematic diagram of a HSFR

    2.1 FE model validation

    The FE model and experimental method of modal analysis are shown in Figs. 5(a) and (b). The first seven natural frequencies are obtained. These natural frequencies are compared with the experiment values, as shown in Table 1. The maximum error between the simulation values and experiment values are less than 5%. The simulation values are basically consistent with the experiment values. Therefore, the FE model is effective.

    Fig. 5 Two modal analysis methods: (a) FE method and (b) experimental method Table 1 First seven natural frequencies from simulation and experiment

    Mode Natural frequency/HzSimulationExperimentError/%1140.64134.104.882224.73230.902.673478.34461.453.664805.18809.900.5851 270.301 272.410.1761 367.301 379.340.8772 055.301 971.104.27

    2.2 Possible nodes of the HSFR

    The FE model of a HSFR is analyzed by modal analysis method. In general, the first seven modes include bending and torsional modes, so the necessary modes number is seven. The seven mode shapes are shown in Figs. 6-12. The ranges of bearing support positions are determined by the blue region in the mode shapes. According to these mode shapes, the blue region in the mode is selected as the possible node. As shown in Fig. 13, the possible nodes of the HSFR are pointsA,B,C,DandE.

    Fig. 6 First mode shape (140.64 Hz)

    Fig. 7 Second mode shape (224.73 Hz)

    Fig. 8 Third mode shape (478.34 Hz)

    Fig. 9 Fourth mode shape (805.18 Hz)

    Fig. 10 Fifth mode shape (1 270.30 Hz)

    Fig. 11 Sixth mode shape (1 367.30 Hz)

    Fig. 12 Seventh mode shape (2 055.30 Hz)

    Fig. 13 Possible nodes of the HSFR

    2.3 Appropriate node combinations of the HSFR

    According to the actual design requirements of HSFR, the HSFR is supported by two bearings. PointsAandBare located at the position where the bearing cannot be installed. Therefore, pointsAandBare excluded.

    Three node combinations are formed by combining pointsC,D, andEin pairs, as shown in Table 2. Each node combination is substituted into the frequency characteristic equation to calculate the first three critical speeds of HSFRSs, as shown in Table 3. The working speeds I and II are 15 000.0 r/min and 34 000.0 r/min, respectively. The second critical speed of COMB3 is close to the working speed I, so the COMB3 is excluded. The first three critical speed of COMB1 and COMB2 are not close to the working speeds. Therefore, COMB1 and COMB2 are appropriate node combinations.

    Table 2 Three node combinations

    Table 3 First three critical speeds of HSFRSs under different node combinations

    2.4 Vibration characteristics of the HSFRS

    The dynamic model of HSFRSs is shown in Fig. 14. According to the COMB1 and COMB2, the vibration characteristics of the HSFRS under different working speeds are calculated. The time-domain vibration characteristics of the HSFRS at pointAfor different working speeds are shown in Figs. 15-18.

    Fig. 14 Dynamic model of the HSFRS

    Fig. 15 Vibration responses of the HSFRS of point A in the X direction under the COMB1 at the working speed I: (a) displacement, (b) displacement spectrum, (c) velocity, and (d) acceleration

    Fig. 16 Vibration responses of the HSFRS of point A in the X direction under the COMB2 at the working speed I: (a) displacement, (b) displacement spectrum, (c) velocity, and (d) acceleration

    Fig. 17 Vibration responses of the HSFRS of point A in the X direction under the COMB1 at the working speed II: (a) displacement, (b) displacement spectrum, (c) velocity, and (d) acceleration

    Fig. 18 Vibration responses of the HSFRS of point A in the X direction under the COMB2 at the working speed II: (a) displacement, (b) displacement spectrum, (c) velocity, and (d) acceleration

    2.5 Dynamic analysis and optimal design

    According to the vibration characteristics of the HSFRS under different node combinations, the RMS values of displacement(x), velocity(v) and acceleration(a) at pointAfor different working speeds under the COMB1 and COMB2 are compared, respectively, as shown in Table 4. For the working speed I of 15 000.0 r/min, the RMS values of displacement, velocity and acceleration at pointAunder the COMB1 are 7.84 μm, 3.42 mm/s and 8.10 m/s2and these under the COMB2 are 2.99 μm, 1.01 mm/s and 7.71 m/s2,respectively. For the working speed II of 34 000.0 r/min, the RMS values of displacement, velocity and acceleration at pointAunder the COMB1 are 15.77 μm, 6.77 mm/s and 9.37 m/s2and these under the COMB2 are 8.76 μm, 3.27 mm/s and 8.45 m/s2, respectively. The results show that the vibration characteristics under COMB2 are more stable than that under COMB1. Therefore, the COMB2 is selected as the optimal bearing support position for considering the stability of rotor rotation.

    Table 4 RMS values of x, v and a at point A for different working speeds under the COMB1 and COMB2

    3 Conclusions

    To develop an optimization method of bearing support positions in the HSFRS based on the vibration characteristics, an optimization method of bearing support positions in the HSFRS is proposed. In this paper, the problem of optimizing bearing support positions in the HSFRS is solved by the developed optimization method.

    (1) The first seven natural frequencies of the HSFR are basically consistent with the experiment values, so the FE model is effective.

    (2) The natural frequencies, mode shapes and critical speeds of HSFRSs are obtained. Two node combinations are selected as appropriate node combinations.

    (3) Vibration characteristics with two node combinations are analyzed. One node combination is selected as the optimal bearing position.

    The results show that vibration amplitudes of HSFRSs are more stable when the bearing support positions are optimized. This study can provide a new method for optimizing bearing support positions of rotor systems.

    猜你喜歡
    劉靜
    劉靜設(shè)計(jì)作品
    大眾文藝(2023年24期)2024-01-12 06:01:22
    Influence of viscous force on the dynamic process of micro-sphere in optical tweezers
    糖人王
    金秋(2023年24期)2023-03-18 01:49:06
    舒適護(hù)理在腰椎間盤突出患者護(hù)理中 的應(yīng)用效果分析
    OBTL模式下形成性評(píng)估在高職高專醫(yī)學(xué)英語(yǔ)教學(xué)中的促進(jìn)作用
    不同升溫速率下模塊裝藥的烤燃特性分析
    致生父
    Effective suppression of beta oscillation in Parkinsonian state via a noisy direct delayed feedback control scheme?
    劉靜藝術(shù)作品賞析
    加熱源對(duì)38CrMoAl鋼氮化層組織及性能的影響
    免费人妻精品一区二区三区视频| 日韩三级视频一区二区三区| 国产福利在线免费观看视频| 狂野欧美激情性xxxx| 怎么达到女性高潮| 手机成人av网站| 国产无遮挡羞羞视频在线观看| 日韩精品免费视频一区二区三区| 亚洲一码二码三码区别大吗| 老司机午夜福利在线观看视频 | 女同久久另类99精品国产91| 亚洲欧美色中文字幕在线| 啦啦啦 在线观看视频| 99国产综合亚洲精品| 午夜福利免费观看在线| 在线看a的网站| 久久性视频一级片| 欧美亚洲 丝袜 人妻 在线| 另类亚洲欧美激情| 精品亚洲乱码少妇综合久久| 午夜精品国产一区二区电影| 中文字幕制服av| 亚洲国产欧美日韩在线播放| 成人国产一区最新在线观看| 18禁观看日本| 亚洲少妇的诱惑av| 亚洲国产毛片av蜜桃av| 亚洲国产看品久久| 人妻 亚洲 视频| 考比视频在线观看| 国产欧美日韩精品亚洲av| 51午夜福利影视在线观看| 久久天躁狠狠躁夜夜2o2o| 久久香蕉激情| 啦啦啦在线免费观看视频4| 成人特级黄色片久久久久久久 | 菩萨蛮人人尽说江南好唐韦庄| 高潮久久久久久久久久久不卡| 一二三四在线观看免费中文在| 亚洲成人免费av在线播放| 亚洲熟妇熟女久久| 18禁黄网站禁片午夜丰满| 人人澡人人妻人| 97人妻天天添夜夜摸| 日韩视频在线欧美| 亚洲av日韩在线播放| 国产97色在线日韩免费| 国产成+人综合+亚洲专区| 99久久人妻综合| 亚洲熟妇熟女久久| 日本wwww免费看| 窝窝影院91人妻| 天堂俺去俺来也www色官网| 国产精品国产av在线观看| 老鸭窝网址在线观看| av网站在线播放免费| 又黄又粗又硬又大视频| 国产不卡一卡二| 亚洲七黄色美女视频| 国产成人欧美在线观看 | 丁香六月天网| 国产福利在线免费观看视频| 汤姆久久久久久久影院中文字幕| 热99国产精品久久久久久7| 最近最新中文字幕大全免费视频| 亚洲美女黄片视频| 国产在线一区二区三区精| 欧美+亚洲+日韩+国产| 波多野结衣av一区二区av| 一区福利在线观看| 亚洲av美国av| 国产精品一区二区在线观看99| 国产伦人伦偷精品视频| 99riav亚洲国产免费| 操出白浆在线播放| 日韩中文字幕视频在线看片| 黄色怎么调成土黄色| 99九九在线精品视频| av电影中文网址| 少妇精品久久久久久久| 亚洲国产欧美一区二区综合| 两个人看的免费小视频| 亚洲 国产 在线| 国产精品九九99| 午夜精品久久久久久毛片777| 国产aⅴ精品一区二区三区波| 亚洲欧美日韩另类电影网站| 99国产精品免费福利视频| 欧美日韩视频精品一区| 亚洲国产欧美网| 日韩欧美国产一区二区入口| 丰满人妻熟妇乱又伦精品不卡| 久久热在线av| 每晚都被弄得嗷嗷叫到高潮| 国产成人精品在线电影| 久久久国产一区二区| 两性午夜刺激爽爽歪歪视频在线观看 | 日韩熟女老妇一区二区性免费视频| 天天添夜夜摸| 国产成人av激情在线播放| 亚洲精品久久成人aⅴ小说| 亚洲国产毛片av蜜桃av| 国产精品免费一区二区三区在线 | videos熟女内射| 久久国产精品人妻蜜桃| 丁香六月欧美| 热99re8久久精品国产| 欧美+亚洲+日韩+国产| www.精华液| 一本—道久久a久久精品蜜桃钙片| 久久热在线av| 亚洲va日本ⅴa欧美va伊人久久| 久久久久久久国产电影| 国产免费av片在线观看野外av| 久久久国产精品麻豆| 大香蕉久久成人网| 亚洲avbb在线观看| 99久久99久久久精品蜜桃| 成人特级黄色片久久久久久久 | 女人久久www免费人成看片| 午夜福利在线观看吧| 亚洲成国产人片在线观看| 午夜福利视频精品| 激情视频va一区二区三区| 亚洲成人免费电影在线观看| 国产欧美日韩一区二区三| 大香蕉久久成人网| 日韩免费高清中文字幕av| 亚洲欧美色中文字幕在线| 久久精品91无色码中文字幕| 色综合婷婷激情| 色在线成人网| 99riav亚洲国产免费| 看免费av毛片| 久久国产精品男人的天堂亚洲| 一级片免费观看大全| 国产精品一区二区免费欧美| 日韩成人在线观看一区二区三区| 久久天躁狠狠躁夜夜2o2o| 久久99热这里只频精品6学生| 久久精品国产a三级三级三级| 91av网站免费观看| 最新美女视频免费是黄的| 18禁观看日本| 麻豆av在线久日| 黄色a级毛片大全视频| 老熟女久久久| 男女下面插进去视频免费观看| 色综合欧美亚洲国产小说| 国产精品 欧美亚洲| 欧美 日韩 精品 国产| 悠悠久久av| 飞空精品影院首页| 久久久国产欧美日韩av| 热99久久久久精品小说推荐| 性高湖久久久久久久久免费观看| 丝袜美腿诱惑在线| a在线观看视频网站| 国产国语露脸激情在线看| 99香蕉大伊视频| 一级片'在线观看视频| 精品一区二区三区av网在线观看 | 大片电影免费在线观看免费| 国产成人精品久久二区二区免费| 天堂俺去俺来也www色官网| 考比视频在线观看| 亚洲国产精品一区二区三区在线| 日本vs欧美在线观看视频| 亚洲色图综合在线观看| 国产视频一区二区在线看| av在线播放免费不卡| 91av网站免费观看| 夜夜夜夜夜久久久久| 男男h啪啪无遮挡| 中文字幕制服av| 女性生殖器流出的白浆| 精品熟女少妇八av免费久了| 亚洲精品av麻豆狂野| 欧美国产精品va在线观看不卡| 国产免费视频播放在线视频| 久久国产精品男人的天堂亚洲| 新久久久久国产一级毛片| 人妻一区二区av| 国产成人精品无人区| 最新在线观看一区二区三区| 久久国产亚洲av麻豆专区| 999久久久国产精品视频| 美女高潮到喷水免费观看| 国产色视频综合| 国产成人av激情在线播放| 妹子高潮喷水视频| 在线永久观看黄色视频| 久久精品91无色码中文字幕| 欧美国产精品一级二级三级| 9热在线视频观看99| 成年动漫av网址| cao死你这个sao货| 国产激情久久老熟女| 久久久久网色| 啦啦啦免费观看视频1| 亚洲av电影在线进入| 2018国产大陆天天弄谢| 两人在一起打扑克的视频| 99精品在免费线老司机午夜| 国产精品麻豆人妻色哟哟久久| 大香蕉久久成人网| 岛国在线观看网站| 大陆偷拍与自拍| svipshipincom国产片| 国产成人欧美| a在线观看视频网站| 国产成人精品久久二区二区免费| 高清视频免费观看一区二区| 国产区一区二久久| 亚洲va日本ⅴa欧美va伊人久久| 日韩欧美三级三区| 最黄视频免费看| 亚洲精品av麻豆狂野| 国产高清激情床上av| 一区二区av电影网| 美女视频免费永久观看网站| 亚洲av国产av综合av卡| 亚洲一区中文字幕在线| 国内毛片毛片毛片毛片毛片| 精品国产乱子伦一区二区三区| 少妇精品久久久久久久| 午夜精品久久久久久毛片777| 美女国产高潮福利片在线看| 午夜福利在线免费观看网站| 久久久精品94久久精品| 国产日韩欧美在线精品| 一区二区av电影网| 悠悠久久av| 老鸭窝网址在线观看| 亚洲成人手机| 黄色视频不卡| 久久国产精品人妻蜜桃| 午夜福利一区二区在线看| 精品国产一区二区久久| 麻豆成人av在线观看| 免费高清在线观看日韩| av国产精品久久久久影院| 久久亚洲精品不卡| 99热网站在线观看| 久久人人97超碰香蕉20202| 亚洲国产欧美一区二区综合| av不卡在线播放| 十八禁网站免费在线| 777米奇影视久久| 999精品在线视频| 国产男女超爽视频在线观看| 国产麻豆69| 老熟女久久久| 亚洲欧美精品综合一区二区三区| 搡老岳熟女国产| 大陆偷拍与自拍| 日韩中文字幕视频在线看片| 麻豆乱淫一区二区| 国产成人精品在线电影| 国产成人欧美在线观看 | 高清欧美精品videossex| 巨乳人妻的诱惑在线观看| 一级片免费观看大全| 国产精品一区二区免费欧美| 午夜免费成人在线视频| 蜜桃在线观看..| 丝袜人妻中文字幕| 人妻久久中文字幕网| 我要看黄色一级片免费的| 丝袜喷水一区| 电影成人av| 午夜久久久在线观看| 中文字幕av电影在线播放| 国产日韩欧美亚洲二区| 99精国产麻豆久久婷婷| 黄色片一级片一级黄色片| 国产免费视频播放在线视频| 色在线成人网| 欧美精品人与动牲交sv欧美| 黑人欧美特级aaaaaa片| 大型黄色视频在线免费观看| videosex国产| 日本wwww免费看| 国产成人免费无遮挡视频| 久久人人97超碰香蕉20202| 免费女性裸体啪啪无遮挡网站| 国产成人啪精品午夜网站| 丰满饥渴人妻一区二区三| 黄色视频不卡| 最新在线观看一区二区三区| 女同久久另类99精品国产91| 19禁男女啪啪无遮挡网站| 少妇的丰满在线观看| 国产亚洲av高清不卡| videosex国产| 亚洲第一欧美日韩一区二区三区 | 中国美女看黄片| 成人永久免费在线观看视频 | 欧美激情久久久久久爽电影 | 亚洲午夜精品一区,二区,三区| 精品国产一区二区三区久久久樱花| 黄色怎么调成土黄色| 日韩欧美一区二区三区在线观看 | 国产精品一区二区免费欧美| 黄片小视频在线播放| 一级片'在线观看视频| 国产野战对白在线观看| 色精品久久人妻99蜜桃| 高清av免费在线| cao死你这个sao货| 桃花免费在线播放| 日本av手机在线免费观看| 飞空精品影院首页| 国内毛片毛片毛片毛片毛片| 免费av中文字幕在线| 久久久精品区二区三区| 午夜福利在线免费观看网站| www.精华液| 好男人电影高清在线观看| 国产成人精品无人区| 一级毛片女人18水好多| 国产精品麻豆人妻色哟哟久久| 亚洲人成电影观看| 一区二区三区国产精品乱码| 欧美精品高潮呻吟av久久| 色精品久久人妻99蜜桃| 成人精品一区二区免费| 午夜福利欧美成人| 欧美人与性动交α欧美精品济南到| 咕卡用的链子| av视频免费观看在线观看| 国产精品美女特级片免费视频播放器 | 精品国产乱子伦一区二区三区| 亚洲精品成人av观看孕妇| 成年动漫av网址| 久久九九热精品免费| 亚洲精品av麻豆狂野| 国产亚洲精品第一综合不卡| 久久天躁狠狠躁夜夜2o2o| 热re99久久国产66热| 80岁老熟妇乱子伦牲交| 色播在线永久视频| 丁香欧美五月| 亚洲五月婷婷丁香| 王馨瑶露胸无遮挡在线观看| 两个人免费观看高清视频| 黄色片一级片一级黄色片| 777久久人妻少妇嫩草av网站| 国产欧美亚洲国产| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲熟女毛片儿| 欧美激情高清一区二区三区| 国产高清videossex| 韩国精品一区二区三区| 久久人妻熟女aⅴ| 久久久国产一区二区| 国产av国产精品国产| 热re99久久国产66热| 精品亚洲成a人片在线观看| 大香蕉久久成人网| 免费在线观看日本一区| 伊人久久大香线蕉亚洲五| 高清毛片免费观看视频网站 | 国产成人精品在线电影| 久久久久久久久免费视频了| 日韩欧美国产一区二区入口| 欧美日韩视频精品一区| 色老头精品视频在线观看| 国产精品九九99| 9色porny在线观看| av视频免费观看在线观看| 欧美日韩亚洲国产一区二区在线观看 | 久久ye,这里只有精品| 日韩精品免费视频一区二区三区| 亚洲免费av在线视频| 天天躁夜夜躁狠狠躁躁| 亚洲精华国产精华精| 午夜91福利影院| 丝瓜视频免费看黄片| 少妇裸体淫交视频免费看高清 | 丰满迷人的少妇在线观看| 亚洲国产毛片av蜜桃av| 亚洲人成电影免费在线| 精品国产超薄肉色丝袜足j| 亚洲国产欧美一区二区综合| 99国产精品一区二区三区| 亚洲av日韩精品久久久久久密| 国产单亲对白刺激| 日韩一区二区三区影片| 久久精品国产亚洲av高清一级| 大片免费播放器 马上看| 久久狼人影院| 99热国产这里只有精品6| 麻豆乱淫一区二区| 精品免费久久久久久久清纯 | 国产1区2区3区精品| 亚洲va日本ⅴa欧美va伊人久久| 亚洲成人国产一区在线观看| 成人国语在线视频| 国产高清视频在线播放一区| 电影成人av| 9191精品国产免费久久| 天堂动漫精品| √禁漫天堂资源中文www| 天天影视国产精品| 国产精品免费大片| 久久av网站| 日本av手机在线免费观看| 大香蕉久久网| 一本大道久久a久久精品| 国产免费福利视频在线观看| 一二三四在线观看免费中文在| 十八禁人妻一区二区| 欧美日韩黄片免| 99精品久久久久人妻精品| av线在线观看网站| 色综合欧美亚洲国产小说| 久久久精品免费免费高清| 国产精品一区二区在线不卡| 国产午夜精品久久久久久| 色播在线永久视频| 国产福利在线免费观看视频| 日韩一区二区三区影片| 国产欧美日韩综合在线一区二区| 色在线成人网| 成人18禁在线播放| 国产一区二区三区综合在线观看| 精品高清国产在线一区| 国产免费福利视频在线观看| 欧美成人午夜精品| 日本一区二区免费在线视频| 亚洲成人免费av在线播放| 高清av免费在线| 亚洲视频免费观看视频| 免费一级毛片在线播放高清视频 | 欧美成人午夜精品| 精品国产乱码久久久久久小说| 狠狠精品人妻久久久久久综合| 亚洲成a人片在线一区二区| 久久国产精品男人的天堂亚洲| 黑人猛操日本美女一级片| 99精品欧美一区二区三区四区| 午夜免费鲁丝| 亚洲九九香蕉| 久热爱精品视频在线9| 成年人黄色毛片网站| 成人av一区二区三区在线看| 女人久久www免费人成看片| 99在线人妻在线中文字幕 | av片东京热男人的天堂| 美女视频免费永久观看网站| 十八禁人妻一区二区| 九色亚洲精品在线播放| 51午夜福利影视在线观看| 黑人操中国人逼视频| 日韩三级视频一区二区三区| 国产日韩一区二区三区精品不卡| av视频免费观看在线观看| 大片电影免费在线观看免费| 丁香欧美五月| 国产成人免费观看mmmm| 久久久精品免费免费高清| 91大片在线观看| 美女高潮到喷水免费观看| 高清欧美精品videossex| 久久免费观看电影| 美女视频免费永久观看网站| 首页视频小说图片口味搜索| 一进一出好大好爽视频| 成人精品一区二区免费| 人成视频在线观看免费观看| 老汉色∧v一级毛片| 亚洲成a人片在线一区二区| 亚洲精品久久成人aⅴ小说| 精品一区二区三区av网在线观看 | 看免费av毛片| 欧美激情高清一区二区三区| 亚洲欧美激情在线| 亚洲人成伊人成综合网2020| 99re在线观看精品视频| 高潮久久久久久久久久久不卡| 性高湖久久久久久久久免费观看| 老司机深夜福利视频在线观看| 视频在线观看一区二区三区| 久久人人97超碰香蕉20202| 777米奇影视久久| 精品乱码久久久久久99久播| 久久精品国产综合久久久| 免费在线观看黄色视频的| 无遮挡黄片免费观看| 亚洲欧洲精品一区二区精品久久久| 岛国毛片在线播放| 欧美性长视频在线观看| 免费看十八禁软件| 日韩欧美国产一区二区入口| 多毛熟女@视频| 黄色视频不卡| a级毛片黄视频| 成人黄色视频免费在线看| 人人妻,人人澡人人爽秒播| 亚洲综合色网址| 欧美激情 高清一区二区三区| 亚洲国产欧美网| a级毛片在线看网站| 国产成人欧美| 777米奇影视久久| 男女床上黄色一级片免费看| 一本大道久久a久久精品| 国产成人影院久久av| 欧美+亚洲+日韩+国产| 十分钟在线观看高清视频www| 国产男靠女视频免费网站| 亚洲国产精品一区二区三区在线| 一区二区av电影网| 纯流量卡能插随身wifi吗| bbb黄色大片| 久久久久久人人人人人| 久久九九热精品免费| 一本综合久久免费| 俄罗斯特黄特色一大片| 亚洲av成人一区二区三| 视频区欧美日本亚洲| 亚洲精品av麻豆狂野| 国产一区二区激情短视频| 真人做人爱边吃奶动态| 美女高潮到喷水免费观看| 男男h啪啪无遮挡| 黑丝袜美女国产一区| 一本久久精品| 18禁美女被吸乳视频| 成年人午夜在线观看视频| 中国美女看黄片| 精品国产亚洲在线| 在线观看免费日韩欧美大片| 999精品在线视频| 女警被强在线播放| 99久久人妻综合| 桃花免费在线播放| 国产xxxxx性猛交| 国产精品 欧美亚洲| 国产一卡二卡三卡精品| 久久人人爽av亚洲精品天堂| 亚洲熟妇熟女久久| 热re99久久国产66热| 精品国产一区二区三区久久久樱花| 高清欧美精品videossex| 黑丝袜美女国产一区| 国产日韩欧美视频二区| 国产精品亚洲av一区麻豆| 国产精品二区激情视频| 老司机深夜福利视频在线观看| 如日韩欧美国产精品一区二区三区| 丁香欧美五月| 国产精品电影一区二区三区 | 国产成人av教育| 久久毛片免费看一区二区三区| netflix在线观看网站| 欧美日韩成人在线一区二区| 国产一区有黄有色的免费视频| 人人妻人人添人人爽欧美一区卜| 肉色欧美久久久久久久蜜桃| 免费在线观看影片大全网站| 91麻豆av在线| 国产精品九九99| 一级黄色大片毛片| 十分钟在线观看高清视频www| 日本精品一区二区三区蜜桃| 色老头精品视频在线观看| 18禁黄网站禁片午夜丰满| 国产精品久久久人人做人人爽| 咕卡用的链子| 后天国语完整版免费观看| 99re在线观看精品视频| 真人做人爱边吃奶动态| 国产成人影院久久av| 日韩成人在线观看一区二区三区| 久久青草综合色| 久久久久久久久久久久大奶| 日本五十路高清| 50天的宝宝边吃奶边哭怎么回事| 欧美在线一区亚洲| 亚洲伊人色综图| 黑人欧美特级aaaaaa片| 大型av网站在线播放| 中文字幕制服av| 伦理电影免费视频| av有码第一页| 午夜两性在线视频| 亚洲第一欧美日韩一区二区三区 | 国产在线精品亚洲第一网站| 亚洲一码二码三码区别大吗| 黑人巨大精品欧美一区二区蜜桃| 精品第一国产精品| 99国产精品一区二区蜜桃av | 精品国产乱码久久久久久男人| 成人特级黄色片久久久久久久 | 极品少妇高潮喷水抽搐| 久久国产精品人妻蜜桃| 99国产精品一区二区蜜桃av | 肉色欧美久久久久久久蜜桃| 午夜视频精品福利| 久久ye,这里只有精品| 男女之事视频高清在线观看| 好男人电影高清在线观看| 久久热在线av| 亚洲av欧美aⅴ国产| 亚洲全国av大片| 黑人欧美特级aaaaaa片| 国产精品久久久久久人妻精品电影 | 1024视频免费在线观看| 国产男靠女视频免费网站| 精品国内亚洲2022精品成人 | 视频区图区小说| 亚洲男人天堂网一区| 激情在线观看视频在线高清 |